From 12cc80cb8975aea3bc9f39d3c9b84f7001ab94c5 Mon Sep 17 00:00:00 2001 From: Ebey Abraham Date: Fri, 15 Dec 2023 20:56:57 +0000 Subject: [PATCH] phi2 implementation --- convert-hf-to-gguf.py | 19 ++++ gguf-py/gguf/constants.py | 13 +++ gguf-py/gguf/tensor_mapping.py | 8 ++ llama.cpp | 187 ++++++++++++++++++++++++++++++++- 4 files changed, 226 insertions(+), 1 deletion(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index e46a7813a..b56be8448 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -182,6 +182,8 @@ class Model: return QwenModel if model_architecture == "MixtralForCausalLM": return MixtralModel + if model_architecture == "PhiForCausalLM": + return Phi2Model return Model def _is_model_safetensors(self) -> bool: @@ -221,6 +223,8 @@ class Model: return gguf.MODEL_ARCH.QWEN if arch == "MixtralForCausalLM": return gguf.MODEL_ARCH.LLAMA + if arch == "PhiForCausalLM": + return gguf.MODEL_ARCH.PHI2 raise NotImplementedError(f'Architecture "{arch}" not supported!') @@ -980,6 +984,21 @@ class QwenModel(Model): print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") self.gguf_writer.add_tensor(new_name, data) +class Phi2Model(Model): + def set_gguf_parameters(self): + block_count = self.hparams["n_layer"] + + self.gguf_writer.add_name("Phi2") + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"]) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_head_count_kv(self.hparams["n_head"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"]) + self.gguf_writer.add_file_type(self.ftype) + ###### CONVERSION LOGIC ###### diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 12133882b..390dca049 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -95,6 +95,7 @@ class MODEL_ARCH(IntEnum): BLOOM = auto() STABLELM = auto() QWEN = auto() + PHI2 = auto() class MODEL_TENSOR(IntEnum): @@ -140,6 +141,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.BLOOM: "bloom", MODEL_ARCH.STABLELM: "stablelm", MODEL_ARCH.QWEN: "qwen", + MODEL_ARCH.PHI2: "phi2", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -350,6 +352,17 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_ARCH.GPT2: [ # TODO ], + MODEL_ARCH.PHI2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ] # TODO } diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 0115ea1c6..6fcbdbc1c 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -17,6 +17,7 @@ class TensorNameMap: "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert "language_model.embedding.word_embeddings", # persimmon + "transformer.embd.wte", # phi2 ), # Token type embeddings @@ -41,6 +42,7 @@ class TensorNameMap: "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen "output", # llama-pth bloom "word_embeddings_for_head", # persimmon + "lm_head.linear", # phi2 ), # Output norm @@ -53,6 +55,7 @@ class TensorNameMap: "transformer.norm_f", # mpt "ln_f", # refact bloom qwen "language_model.encoder.final_layernorm", # persimmon + "lm_head.ln", # phi2 ), # Rope frequencies @@ -75,6 +78,7 @@ class TensorNameMap: "encoder.layer.{bid}.attention.output.LayerNorm", # bert "language_model.encoder.layers.{bid}.input_layernorm", # persimmon "model.layers.{bid}.ln1", # yi + "transformer.h.{bid}.ln", # phi2 ), # Attention norm 2 @@ -90,6 +94,7 @@ class TensorNameMap: "transformer.h.{bid}.self_attention.query_key_value", # falcon "h.{bid}.self_attention.query_key_value", # bloom "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon + "transformer.h.{bid}.mixer.Wqkv", # phi2 ), # Attention query @@ -128,6 +133,7 @@ class TensorNameMap: "encoder.layer.{bid}.attention.output.dense", # bert "transformer.h.{bid}.attn.out_proj", # gpt-j "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon + "transformer.h.{bid}.mixer.out_proj", # phi2 ), # Rotary embeddings @@ -167,6 +173,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.fc_in", # gpt-j "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon "transformer.h.{bid}.mlp.w1", # qwen + "transformer.h.{bid}.mlp.fc1", # phi2 ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -198,6 +205,7 @@ class TensorNameMap: "encoder.layer.{bid}.output.dense", # bert "transformer.h.{bid}.mlp.fc_out", # gpt-j "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon + "transformer.h.{bid}.mlp.fc2", # phi2 ), MODEL_TENSOR.FFN_DOWN_EXP: ( diff --git a/llama.cpp b/llama.cpp index eddb70859..e229ecfe3 100644 --- a/llama.cpp +++ b/llama.cpp @@ -195,6 +195,7 @@ enum llm_arch { LLM_ARCH_BLOOM, LLM_ARCH_STABLELM, LLM_ARCH_QWEN, + LLM_ARCH_PHI2, LLM_ARCH_UNKNOWN, }; @@ -212,6 +213,7 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_BLOOM, "bloom" }, { LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_QWEN, "qwen" }, + { LLM_ARCH_PHI2, "phi2" }, }; enum llm_kv { @@ -550,6 +552,19 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_PHI2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, @@ -1420,6 +1435,7 @@ struct llama_model { struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; struct ggml_tensor * output; + struct ggml_tensor * output_b; std::vector layers; @@ -3625,7 +3641,77 @@ static void llm_load_tensors( } } } break; + case LLM_ARCH_PHI2: + { + // TODO: CPU-only for now + model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + + // output + { + ggml_backend_type backend_norm; + ggml_backend_type backend_output; + + if (n_gpu_layers > int(n_layer)) { + backend_norm = llama_backend_offload; + backend_output = llama_backend_offload_split; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + vram_weights += ggml_nbytes(model.output_norm_b); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + vram_weights += ggml_nbytes(model.output_b); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); + layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend); + + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend); + + layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); + layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend); + + layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + + ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) + + ggml_nbytes(layer.ffn_up) + ggml_nbytes(layer.ffn_up_b) + + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_down_b); + } + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -5417,6 +5503,101 @@ struct llm_build_context { ggml_build_forward_expand(gf, cur); + return gf; + } + struct ggml_cgraph * build_phi2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + struct ggml_tensor * cur; + struct ggml_tensor * attn_norm_output; + struct ggml_tensor * ffn_output; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb); + cb(inpL, "inp_embd", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + cb(inp_pos, "inp_pos", -1); + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + cb(KQ_scale, "KQ_scale", -1); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + cb(KQ_mask, "KQ_mask", -1); + + for (int il = 0; il < n_layer; ++il) { + + attn_norm_output = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(attn_norm_output, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + // RoPE + Qcur = ggml_rope(ctx0, Qcur, inp_pos, 32, 2, 0); + Kcur = ggml_rope(ctx0, Kcur, inp_pos, 32, 2, 0); + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + + llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); + + cur = llm_build_kqv(ctx0, hparams, kv_self, + model.layers[il].wo, model.layers[il].bo, + Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il); + cb(cur, "kqv_out", il); + } + + // FF + { + ffn_output = llm_build_ffn(ctx0, attn_norm_output, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(ffn_output, "ffn_out", il); + } + + inpL = ggml_add(ctx0, cur, ggml_add_inplace(ctx0, ffn_output, inpL)); + cb(inpL, "l_out", il); + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + cur = ggml_add(ctx0, cur, model.output_b); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + return gf; } }; @@ -5917,6 +6098,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_qwen(); } break; + case LLM_ARCH_PHI2: + { + result = llm.build_phi2(); + } break; default: GGML_ASSERT(false); } @@ -6051,7 +6236,7 @@ static int llama_decode_internal( ggml_allocr_alloc_graph(lctx.alloc, gf); struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; - struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; + struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 3]; GGML_ASSERT(strcmp(res->name, "result_output") == 0); GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);