common : refactor cli arg parsing (#7675)

* common : gpt_params_parse do not print usage

* common : rework usage print (wip)

* common : valign

* common : rework print_usage

* infill : remove cfg support

* common : reorder args

* server : deduplicate parameters

ggml-ci

* common : add missing header

ggml-ci

* common : remote --random-prompt usages

ggml-ci

* examples : migrate to gpt_params

ggml-ci

* batched-bench : migrate to gpt_params

* retrieval : migrate to gpt_params

* common : change defaults for escape and n_ctx

* common : remove chatml and instruct params

ggml-ci

* common : passkey use gpt_params
This commit is contained in:
Georgi Gerganov 2024-06-04 21:23:39 +03:00 committed by GitHub
parent 554c247caf
commit 1442677f92
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
34 changed files with 899 additions and 1455 deletions

File diff suppressed because it is too large Load Diff

View File

@ -60,7 +60,7 @@ struct gpt_params {
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1; int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
@ -110,12 +110,12 @@ struct gpt_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits std::string logits_file = ""; // file for saving *all* logits
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides; std::vector<llama_model_kv_override> kv_overrides;
// TODO: avoid tuple, use struct // TODO: avoid tuple, use struct
@ -127,8 +127,8 @@ struct gpt_params {
int32_t control_vector_layer_start = -1; // layer range for control vector int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting) // (which is more convenient to use for plotting)
// //
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
@ -142,19 +142,17 @@ struct gpt_params {
bool kl_divergence = false; // compute KL divergence bool kl_divergence = false; // compute KL divergence
bool random_prompt = false; // do not randomize prompt if none provided bool usage = false; // print usage
bool use_color = false; // use color to distinguish generations and inputs bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
bool special = false; // enable special token output bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix) bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
bool embedding = false; // get only sentence embedding bool embedding = false; // get only sentence embedding
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\" bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool interactive_first = false; // wait for user input immediately
bool multiline_input = false; // reverse the usage of `\` bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly bool cont_batching = true; // insert new sequences for decoding on-the-fly
@ -162,10 +160,10 @@ struct gpt_params {
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
bool logits_all = false; // return logits for all tokens in the batch bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory bool use_mlock = false; // use mlock to keep model in memory
bool verbose = false;
bool verbose_prompt = false; // print prompt tokens before generation bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode bool infill = false; // use infill mode
@ -180,6 +178,47 @@ struct gpt_params {
// multimodal models (see examples/llava) // multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s) std::vector<std::string> image; // path to image file(s)
// server params
int32_t port = 8080;
int32_t timeout_read = 600;
int32_t timeout_write = timeout_read;
int32_t n_threads_http = -1;
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
std::vector<std::string> api_keys;
std::string ssl_file_key = "";
std::string ssl_file_cert = "";
bool endpoint_slots = true;
bool endpoint_metrics = false;
bool log_json = false;
std::string slot_save_path;
// batched-bench params
bool is_pp_shared = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
std::vector<int32_t> n_pl;
// retrieval params
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
// passkey params
int32_t n_junk = 250; // number of times to repeat the junk text
int32_t i_pos = -1; // position of the passkey in the junk text
}; };
void gpt_params_handle_model_default(gpt_params & params); void gpt_params_handle_model_default(gpt_params & params);
@ -199,7 +238,20 @@ std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str); std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp(); std::string string_get_sortable_timestamp();
std::string string_random_prompt(std::mt19937 & rng);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides); bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input); void string_process_escapes(std::string & input);
@ -282,6 +334,13 @@ std::string llama_detokenize_bpe(
// defaults to true when model type is SPM, otherwise false. // defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model); bool llama_should_add_bos_token(const llama_model * model);
//
// Chat template utils
//
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool llama_chat_verify_template(const std::string & tmpl);
// //
// KV cache utils // KV cache utils
// //

View File

@ -10,16 +10,16 @@ There are 2 modes of operation:
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`) - `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
```bash ```bash
./batched-bench MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL> ./batched-bench -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared # LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 2048 512 0 99 ./batched-bench -m ./models/llama-7b/ggml-model-f16.gguf -c 16384 -b 2048 -ub 512 -ngl 99
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared # LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 2048 512 1 99 ./batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 16384 -b 2048 -ub 512 -ngl 99 -pps
# custom set of batches # custom set of batches
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 512 512 0 999 0 128,256,512 128,256 1,2,4,8,16,32 ./batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 2048 -b 512 -ub 512 -ngl 999 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32
``` ```
## Sample results ## Sample results

View File

@ -28,67 +28,27 @@ static std::vector<int> parse_list(char * p) {
return ret; return ret;
} }
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') { if (!gpt_params_parse(argc, argv, params)) {
printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]); print_usage(argc, argv, params);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n"); return 1;
printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
} }
int n_kv_max = 2048; int is_pp_shared = params.is_pp_shared;
int n_batch = 2048;
int n_ubatch = 512;
bool flash_attn = false;
int is_pp_shared = 0;
int n_gpu_layers = 0;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, }; std::vector<int> n_pp = params.n_pp;
std::vector<int> n_tg = { 128, 256, }; std::vector<int> n_tg = params.n_tg;
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, }; std::vector<int> n_pl = params.n_pl;
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_kv_max = std::atoi(argv[2]);
}
if (argc >= 4) {
n_batch = std::atoi(argv[3]);
}
if (argc >= 5) {
n_ubatch = std::atoi(argv[4]);
}
if (argc >= 6) {
flash_attn = std::atoi(argv[5]);
}
if (argc >= 7) {
is_pp_shared = std::atoi(argv[6]);
}
if (argc >= 8) {
n_gpu_layers = std::atoi(argv[7]);
}
if (argc >= 9) {
n_pp = parse_list(argv[8]);
}
if (argc >= 10) {
n_tg = parse_list(argv[9]);
}
if (argc >= 11) {
n_pl = parse_list(argv[10]);
}
// init LLM // init LLM
@ -97,12 +57,7 @@ int main(int argc, char ** argv) {
// initialize the model // initialize the model
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_params_from_gpt_params(params);
const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -111,16 +66,7 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = n_batch;
ctx_params.n_ubatch = n_ubatch;
ctx_params.flash_attn = flash_attn;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
// ensure enough sequences are available // ensure enough sequences are available
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end()); ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
@ -132,6 +78,8 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
const int32_t n_kv_max = llama_n_ctx(ctx);
llama_batch batch = llama_batch_init(n_kv_max, 0, 1); llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
// decode in batches of ctx_params.n_batch tokens // decode in batches of ctx_params.n_batch tokens
@ -175,7 +123,7 @@ int main(int argc, char ** argv) {
} }
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View File

@ -3,7 +3,7 @@
The example demonstrates batched generation from a given prompt The example demonstrates batched generation from a given prompt
```bash ```bash
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4 ./batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
... ...

View File

@ -7,48 +7,31 @@
#include <string> #include <string>
#include <vector> #include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') { params.prompt = "Hello my name is";
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]); params.n_predict = 32;
return 1 ;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
} }
// number of parallel batches // number of parallel batches
int n_parallel = 1; int n_parallel = params.n_parallel;
// total length of the sequences including the prompt // total length of the sequences including the prompt
int n_len = 32; int n_predict = 32;
// number of layers to offload to the GPU
int n_gpu_layers = 0;
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (argc >= 4) {
n_parallel = std::atoi(argv[3]);
}
if (argc >= 5) {
n_len = std::atoi(argv[4]);
}
if (argc >= 6) {
n_gpu_layers = std::atoi(argv[5]);
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
string_process_escapes(params.prompt);
// init LLM // init LLM
@ -57,9 +40,7 @@ int main(int argc, char ** argv) {
// initialize the model // initialize the model
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_params_from_gpt_params(params);
model_params.n_gpu_layers = n_gpu_layers;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -73,18 +54,14 @@ int main(int argc, char ** argv) {
std::vector<llama_token> tokens_list; std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(model, params.prompt, true); tokens_list = ::llama_tokenize(model, params.prompt, true);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
// initialize the context // initialize the context
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req; ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel); ctx_params.n_batch = std::max(n_predict, n_parallel);
ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx = llama_new_context_with_model(model, ctx_params); llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@ -95,7 +72,7 @@ int main(int argc, char ** argv) {
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens // make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) { if (n_kv_req > n_ctx) {
@ -156,7 +133,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us(); const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) { while (n_cur <= n_predict) {
// prepare the next batch // prepare the next batch
llama_batch_clear(batch); llama_batch_clear(batch);
@ -192,7 +169,7 @@ int main(int argc, char ** argv) {
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation? -> mark the stream as finished // is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) { if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
i_batch[i] = -1; i_batch[i] = -1;
LOG_TEE("\n"); LOG_TEE("\n");
if (n_parallel > 1) { if (n_parallel > 1) {

View File

@ -63,6 +63,7 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
@ -79,9 +80,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init(); llama_backend_init();
llama_numa_init(params.numa); llama_numa_init(params.numa);

View File

@ -140,20 +140,18 @@ static bool run(llama_context * ctx, const gpt_params & params) {
} }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
callback_data cb_data; callback_data cb_data;
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
print_build_info(); print_build_info();
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init(); llama_backend_init();
llama_numa_init(params.numa); llama_numa_init(params.numa);

View File

@ -41,7 +41,7 @@ echo PASS
echo echo
# 2b. Test the sharded model is loading properly # 2b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --random-prompt --n-predict 32 $MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
echo PASS echo PASS
echo echo
@ -51,7 +51,7 @@ echo PASS
echo echo
# 3b. Test the merged model is loading properly # 3b. Test the merged model is loading properly
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32 $MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
echo PASS echo PASS
echo echo
@ -61,7 +61,7 @@ echo PASS
echo echo
# 4b. Test the sharded model is loading properly # 4b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --random-prompt --n-predict 32 $MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
echo PASS echo PASS
echo echo
@ -71,7 +71,7 @@ echo
#echo #echo
# 5b. Test the merged model is loading properly # 5b. Test the merged model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --random-prompt --n-predict 32 #$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#echo PASS #echo PASS
#echo #echo
@ -81,7 +81,7 @@ echo PASS
echo echo
# 6b. Test the sharded model is loading properly # 6b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --random-prompt --n-predict 32 $MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
echo PASS echo PASS
echo echo

View File

@ -153,7 +153,9 @@ static std::string gritlm_instruction(const std::string & instruction) {
int main(int argc, char * argv[]) { int main(int argc, char * argv[]) {
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -533,7 +533,6 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
} }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
StatParams sparams; StatParams sparams;
std::string prev_result_file; std::string prev_result_file;
std::string combine_files; std::string combine_files;
@ -581,7 +580,9 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
params.n_batch = 512; params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
@ -597,9 +598,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
sparams.dataset = params.prompt_file; sparams.dataset = params.prompt_file;
g_collector.set_parameters(std::move(sparams)); g_collector.set_parameters(std::move(sparams));

View File

@ -107,6 +107,7 @@ int main(int argc, char ** argv) {
g_params = &params; g_params = &params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
@ -139,27 +140,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8; params.n_ctx = 8;
} }
if (params.instruct) {
printf("\n************\n");
printf("%s: please use the 'main' tool for instruct mode\n", __func__);
printf("************\n\n");
return 0;
}
if (params.chatml) {
printf("\n************\n");
printf("%s: please use the 'main' tool for chatml mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.antiprompt.empty()) {
printf("\n************\n");
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) { if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
printf("\n************\n"); printf("\n************\n");
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__); printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
@ -167,20 +147,6 @@ int main(int argc, char ** argv) {
return 0; return 0;
} }
if (params.random_prompt) {
printf("\n************\n");
printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.path_prompt_cache.empty()) {
printf("\n************\n");
printf("%s: infill does not support prompt caching\n", __func__);
printf("************\n\n");
return 0;
}
if (params.rope_freq_base != 0.0) { if (params.rope_freq_base != 0.0) {
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
@ -207,17 +173,13 @@ int main(int argc, char ** argv) {
llama_model * model; llama_model * model;
llama_context * ctx; llama_context * ctx;
llama_context * ctx_guidance = NULL;
g_model = &model; g_model = &model;
g_ctx = &ctx; g_ctx = &ctx;
// load the model and apply lora adapter, if any // load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__); LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams);
}
if (model == NULL) { if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n", __func__); LOG_TEE("%s: error: unable to load model\n", __func__);
@ -273,25 +235,6 @@ int main(int argc, char ** argv) {
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
} }
// Tokenize negative prompt
std::vector<llama_token> guidance_inp;
int guidance_offset = 0;
int original_prompt_len = 0;
if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
LOG("guidance_offset: %s", log_tostr(guidance_offset));
}
if ((int) embd_inp.size() > n_ctx - 4) { if ((int) embd_inp.size() > n_ctx - 4) {
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1; return 1;
@ -319,15 +262,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
} }
if (ctx_guidance) {
LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
}
}
if (params.n_keep > 0) { if (params.n_keep > 0) {
LOG_TEE("%s: static prompt based on n_keep: '", __func__); LOG_TEE("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) { for (int i = 0; i < params.n_keep; i++) {
@ -400,7 +334,6 @@ int main(int argc, char ** argv) {
int n_past = 0; int n_past = 0;
int n_remain = params.n_predict; int n_remain = params.n_predict;
int n_consumed = 0; int n_consumed = 0;
int n_past_guidance = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens; std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens; std::vector<int> output_tokens; g_output_tokens = &output_tokens;
@ -410,7 +343,6 @@ int main(int argc, char ** argv) {
console::set_display(console::prompt); console::set_display(console::prompt);
std::vector<llama_token> embd; std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams); struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
@ -436,7 +368,7 @@ int main(int argc, char ** argv) {
// if we run out of context: // if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past) // - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) { if (n_past + (int) embd.size() > n_ctx) {
if (params.n_predict == -2) { if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break; break;
@ -453,11 +385,7 @@ int main(int argc, char ** argv) {
n_past -= n_discard; n_past -= n_discard;
if (ctx_guidance) { LOG("after swap: n_past = %d\n", n_past);
n_past_guidance -= n_discard;
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
@ -465,45 +393,6 @@ int main(int argc, char ** argv) {
// evaluate tokens in batches // evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always // embd is typically prepared beforehand to fit within a batch, but not always
if (ctx_guidance) {
int input_size = 0;
llama_token * input_buf = NULL;
if (n_past_guidance < (int) guidance_inp.size()) {
// Guidance context should have the same data with these modifications:
//
// * Replace the initial prompt
// * Shift everything by guidance_offset
embd_guidance = guidance_inp;
if (embd.begin() + original_prompt_len < embd.end()) {
embd_guidance.insert(
embd_guidance.end(),
embd.begin() + original_prompt_len,
embd.end()
);
}
input_buf = embd_guidance.data();
input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
} else {
input_buf = embd.data();
input_size = embd.size();
}
for (int i = 0; i < input_size; i += params.n_batch) {
int n_eval = std::min(input_size - i, params.n_batch);
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past_guidance += n_eval;
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) { for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i; int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) { if (n_eval > params.n_batch) {
@ -525,11 +414,9 @@ int main(int argc, char ** argv) {
} }
embd.clear(); embd.clear();
embd_guidance.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) { if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, nullptr);
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
llama_sampling_accept(ctx_sampling, ctx, id, true); llama_sampling_accept(ctx_sampling, ctx, id, true);
@ -583,7 +470,6 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs; // if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) { if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode // deal with eot token in infill mode
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){ if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
if (is_interacting && !params.interactive_first) { if (is_interacting && !params.interactive_first) {
@ -644,7 +530,6 @@ int main(int argc, char ** argv) {
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
embd_inp.push_back(llama_token_middle(model)); embd_inp.push_back(llama_token_middle(model));
embd.clear(); embd.clear();
embd_guidance.clear();
n_remain = params.n_predict; n_remain = params.n_predict;
n_past = 0; n_past = 0;
n_consumed = 0; n_consumed = 0;
@ -751,7 +636,6 @@ int main(int argc, char ** argv) {
llama_print_timings(ctx); llama_print_timings(ctx);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
if (ctx_guidance) { llama_free(ctx_guidance); }
llama_free(ctx); llama_free(ctx);
llama_free_model(model); llama_free_model(model);

View File

@ -41,20 +41,6 @@ static std::string join(const std::vector<T> & values, const std::string & delim
return str.str(); return str.str();
} }
template<class T>
static std::vector<T> split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
template<typename T, typename F> template<typename T, typename F>
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) { static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
std::vector<std::string> str_values; std::vector<std::string> str_values;
@ -322,28 +308,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<std::string>(argv[i], split_delim); auto p = string_split<std::string>(argv[i], split_delim);
params.model.insert(params.model.end(), p.begin(), p.end()); params.model.insert(params.model.end(), p.begin(), p.end());
} else if (arg == "-p" || arg == "--n-prompt") { } else if (arg == "-p" || arg == "--n-prompt") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<int>(argv[i], split_delim); auto p = string_split<int>(argv[i], split_delim);
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end()); params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
} else if (arg == "-n" || arg == "--n-gen") { } else if (arg == "-n" || arg == "--n-gen") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<int>(argv[i], split_delim); auto p = string_split<int>(argv[i], split_delim);
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end()); params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
} else if (arg == "-pg") { } else if (arg == "-pg") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<std::string>(argv[i], ','); auto p = string_split<std::string>(argv[i], ',');
if (p.size() != 2) { if (p.size() != 2) {
invalid_param = true; invalid_param = true;
break; break;
@ -354,21 +340,21 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<int>(argv[i], split_delim); auto p = string_split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end()); params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "-ub" || arg == "--ubatch-size") { } else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<int>(argv[i], split_delim); auto p = string_split<int>(argv[i], split_delim);
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end()); params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
} else if (arg == "-ctk" || arg == "--cache-type-k") { } else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<std::string>(argv[i], split_delim); auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types; std::vector<ggml_type> types;
for (const auto & t : p) { for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t); ggml_type gt = ggml_type_from_name(t);
@ -384,7 +370,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<std::string>(argv[i], split_delim); auto p = string_split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types; std::vector<ggml_type> types;
for (const auto & t : p) { for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t); ggml_type gt = ggml_type_from_name(t);
@ -400,14 +386,14 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<int>(argv[i], split_delim); auto p = string_split<int>(argv[i], split_delim);
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end()); params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-ngl" || arg == "--n-gpu-layers") { } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<int>(argv[i], split_delim); auto p = string_split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-rpc" || arg == "--rpc") { } else if (arg == "-rpc" || arg == "--rpc") {
if (++i >= argc) { if (++i >= argc) {
@ -420,7 +406,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<std::string>(argv[i], split_delim); auto p = string_split<std::string>(argv[i], split_delim);
std::vector<llama_split_mode> modes; std::vector<llama_split_mode> modes;
for (const auto & m : p) { for (const auto & m : p) {
llama_split_mode mode; llama_split_mode mode;
@ -442,13 +428,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.main_gpu = split<int>(argv[i], split_delim); params.main_gpu = string_split<int>(argv[i], split_delim);
} else if (arg == "-nkvo" || arg == "--no-kv-offload") { } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<bool>(argv[i], split_delim); auto p = string_split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end()); params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "--numa") { } else if (arg == "--numa") {
if (++i >= argc) { if (++i >= argc) {
@ -466,28 +452,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<bool>(argv[i], split_delim); auto p = string_split<bool>(argv[i], split_delim);
params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end()); params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") { } else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<bool>(argv[i], split_delim); auto p = string_split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end()); params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-embd" || arg == "--embeddings") { } else if (arg == "-embd" || arg == "--embeddings") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
auto p = split<bool>(argv[i], split_delim); auto p = string_split<bool>(argv[i], split_delim);
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end()); params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") { } else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
for (auto ts : split<std::string>(argv[i], split_delim)) { for (auto ts : string_split<std::string>(argv[i], split_delim)) {
// split string by ; and / // split string by ; and /
const std::regex regex{R"([;/]+)"}; const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1}; std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};

View File

@ -112,9 +112,12 @@ struct llava_context {
struct llama_model * model = NULL; struct llama_model * model = NULL;
}; };
static void show_additional_info(int /*argc*/, char ** argv) { static void print_usage(int argc, char ** argv, const gpt_params & params) {
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); gpt_params_print_usage(argc, argv, params);
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
LOG_TEE("\n example usage:\n");
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
} }
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) { static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
@ -278,7 +281,7 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv); print_usage(argc, argv, params);
return 1; return 1;
} }
@ -290,8 +293,7 @@ int main(int argc, char ** argv) {
#endif // LOG_DISABLE_LOGS #endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_params_print_usage(argc, argv, params); print_usage(argc, argv, {});
show_additional_info(argc, argv);
return 1; return 1;
} }
auto model = llava_init(&params); auto model = llava_init(&params);

View File

@ -37,7 +37,8 @@ struct ngram_container {
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -14,8 +14,10 @@ int main(int argc, char ** argv){
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
// init llama.cpp // init llama.cpp
llama_backend_init(); llama_backend_init();
llama_numa_init(params.numa); llama_numa_init(params.numa);

View File

@ -16,6 +16,7 @@ int main(int argc, char ** argv){
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -15,6 +15,7 @@ int main(int argc, char ** argv){
gpt_params params; gpt_params params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -53,13 +53,13 @@ The following command generates "infinite" text from a starting prompt (you can
#### Unix-based systems (Linux, macOS, etc.): #### Unix-based systems (Linux, macOS, etc.):
```bash ```bash
./main -m models/7B/ggml-model.bin --ignore-eos -n -1 --random-prompt ./main -m models/7B/ggml-model.bin --ignore-eos -n -1
``` ```
#### Windows: #### Windows:
```powershell ```powershell
main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1
``` ```
## Common Options ## Common Options
@ -80,7 +80,6 @@ The `main` program provides several ways to interact with the LLaMA models using
- `--prompt PROMPT`: Provide a prompt directly as a command-line option. - `--prompt PROMPT`: Provide a prompt directly as a command-line option.
- `--file FNAME`: Provide a file containing a prompt or multiple prompts. - `--file FNAME`: Provide a file containing a prompt or multiple prompts.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.) - `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
- `--random-prompt`: Start with a randomized prompt.
## Interaction ## Interaction

View File

@ -122,8 +122,10 @@ int main(int argc, char ** argv) {
g_params = &params; g_params = &params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
llama_sampling_params & sparams = params.sparams; llama_sampling_params & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
@ -180,9 +182,6 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: seed = %u\n", __func__, params.seed); LOG_TEE("%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
LOG("%s: llama backend init\n", __func__); LOG("%s: llama backend init\n", __func__);
llama_backend_init(); llama_backend_init();
@ -250,11 +249,8 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) { if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n"); LOG("tokenize the prompt\n");
if (params.chatml) {
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
}
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true); embd_inp = ::llama_tokenize(ctx, params.prompt, true, true);
} else { } else {
LOG("use session tokens\n"); LOG("use session tokens\n");
@ -332,37 +328,13 @@ int main(int argc, char ** argv) {
} }
// number of tokens to keep when resetting context // number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) { if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size(); params.n_keep = (int)embd_inp.size();
} else { } else {
params.n_keep += add_bos; // always keep the BOS token params.n_keep += add_bos; // always keep the BOS token
} }
// prefix & suffix for instruct mode if (params.conversation) {
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true, true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// chatml prefix & suffix
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", true, true);
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_first = true;
params.antiprompt.emplace_back("### Instruction:\n\n");
}
// similar for chatml mode
else if (params.chatml) {
params.interactive_first = true;
params.antiprompt.emplace_back("<|im_start|>user\n");
}
else if (params.conversation) {
params.interactive_first = true; params.interactive_first = true;
} }
@ -823,15 +795,13 @@ int main(int argc, char ** argv) {
is_interacting = true; is_interacting = true;
printf("\n"); printf("\n");
} else if (params.instruct || params.chatml) {
is_interacting = true;
} }
} }
if (n_past > 0 && is_interacting) { if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n"); LOG("waiting for user input\n");
if (params.conversation || params.instruct || params.chatml) { if (params.conversation) {
printf("\n> "); printf("\n> ");
} }
@ -874,24 +844,12 @@ int main(int argc, char ** argv) {
const size_t original_size = embd_inp.size(); const size_t original_size = embd_inp.size();
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {
LOG("inserting instruction prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
// chatml mode: insert user chat prefix
if (params.chatml && !is_antiprompt) {
LOG("inserting chatml prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
}
if (params.escape) { if (params.escape) {
string_process_escapes(buffer); string_process_escapes(buffer);
} }
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials); const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
@ -900,17 +858,6 @@ int main(int argc, char ** argv) {
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end()); embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
// instruct mode: insert response suffix
if (params.instruct) {
LOG("inserting instruction suffix\n");
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
// chatml mode: insert assistant chat suffix
if (params.chatml) {
LOG("inserting chatml suffix\n");
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
}
for (size_t i = original_size; i < embd_inp.size(); ++i) { for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i]; const llama_token token = embd_inp[i];
output_tokens.push_back(token); output_tokens.push_back(token);
@ -935,7 +882,7 @@ int main(int argc, char ** argv) {
} }
// end of generation // end of generation
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) { if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
LOG_TEE(" [end of text]\n"); LOG_TEE(" [end of text]\n");
break; break;
} }

View File

@ -100,7 +100,8 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -8,5 +8,5 @@ See the following PRs for more info:
### Usage ### Usage
```bash ```bash
make -j && ./passkey ./models/llama-7b-v2/ggml-model-f16.gguf 250 make -j && ./passkey -m ./models/llama-7b-v2/ggml-model-f16.gguf --junk 250
``` ```

View File

@ -6,46 +6,32 @@
#include <string> #include <string>
#include <vector> #include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') { params.n_junk = 250;
printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]); params.n_keep = 32;
return 1 ; params.i_pos = -1;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
} }
int seed = -1; srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
int n_junk = 250; // number of times to repeat the junk text int n_junk = params.n_junk;
int n_keep = 32; // number of tokens in the prompt prefix int n_keep = params.n_keep;
int n_grp = 1; // if more than 1 - perform LongLM SelfExtend int n_grp = params.grp_attn_n;
int i_pos = -1; // position of the passkey in the junk text int i_pos = params.i_pos;
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_junk = std::stoi(argv[2]);
}
if (argc >= 4) {
n_grp = std::stoi(argv[3]);
}
if (argc >= 5) {
i_pos = std::stoi(argv[4]);
}
if (argc >= 6) {
seed = std::stoi(argv[5]);
}
if (seed == -1) {
seed = time(NULL);
}
srand(seed);
if (i_pos == -1) { if (i_pos == -1) {
i_pos = rand() % n_junk; i_pos = rand() % n_junk;
@ -76,9 +62,7 @@ int main(int argc, char ** argv) {
// initialize the model // initialize the model
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_params_from_gpt_params(params);
model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -89,13 +73,9 @@ int main(int argc, char ** argv) {
// initialize the context // initialize the context
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = seed;
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep; ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
ctx_params.n_batch = 512;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp"); GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
@ -135,7 +115,7 @@ int main(int argc, char ** argv) {
LOG_TEE("prompt tokens: %d\n", n_tokens_all); LOG_TEE("prompt tokens: %d\n", n_tokens_all);
//LOG_TEE("prompt: %s\n", params.prompt.c_str()); //LOG_TEE("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init(512, 0, 1); llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
int n_past = 0; int n_past = 0;

View File

@ -1032,7 +1032,7 @@ struct winogrande_entry {
std::vector<llama_token> seq_tokens[2]; std::vector<llama_token> seq_tokens[2];
}; };
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) { static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
std::vector<winogrande_entry> result; std::vector<winogrande_entry> result;
std::istringstream in(prompt); std::istringstream in(prompt);
std::string line; std::string line;
@ -1964,12 +1964,14 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
params.n_ctx = 512;
params.logits_all = true;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }
params.logits_all = true;
const int32_t n_ctx = params.n_ctx; const int32_t n_ctx = params.n_ctx;
if (n_ctx <= 0) { if (n_ctx <= 0) {
@ -2006,9 +2008,6 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed); std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init(); llama_backend_init();
llama_numa_init(params.numa); llama_numa_init(params.numa);
@ -2027,6 +2026,7 @@ int main(int argc, char ** argv) {
} }
const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx_train = llama_n_ctx_train(model);
if (params.n_ctx > n_ctx_train) { if (params.n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx); __func__, n_ctx_train, params.n_ctx);

View File

@ -47,7 +47,7 @@ echo PASS
echo echo
# 3a. Test the requanted model is loading properly # 3a. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32 $MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32
echo PASS echo PASS
echo echo
@ -57,7 +57,7 @@ echo PASS
echo echo
# 4b. Test the requanted model is loading properly # 4b. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32 $MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32
echo PASS echo PASS
echo echo

View File

@ -4,72 +4,12 @@
#include <algorithm> #include <algorithm>
#include <fstream> #include <fstream>
struct retrieval_params { static void print_usage(int argc, char ** argv, const gpt_params & params) {
std::vector<std::string> context_files; // context files to embed gpt_params_print_usage(argc, argv, params);
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
};
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) { LOG_TEE("\nexample usage:\n");
gpt_params_print_usage(argc, argv, gpt_params); LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
printf("retrieval options:\n"); LOG_TEE("\n");
printf(" --context-file FNAME file containing context to embed.\n");
printf(" specify multiple files by providing --context-file option multiple times.\n");
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
printf(" --chunk-separator STRING\n");
printf(" string to separate chunks (default: \"\\n\")\n");
printf("\n");
}
static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
int i = 1;
std::string arg;
while (i < argc) {
arg = argv[i];
bool invalid_gpt_param = false;
if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
if (invalid_gpt_param) {
fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
// option was parsed by gpt_params_find_arg
} else if (arg == "--context-file") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --context-file\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
// store the external file name in params
retrieval_params.context_files.push_back(argv[i]);
} else if (arg == "--chunk-size") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --chunk-size\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
retrieval_params.chunk_size = std::stoi(argv[i]);
} else if (arg == "--chunk-separator") {
if (++i >= argc) {
fprintf(stderr, "error: missing argument for --chunk-separator\n");
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
retrieval_params.chunk_separator = argv[i];
} else {
// unknown argument
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
exit(1);
}
i++;
}
} }
struct chunk { struct chunk {
@ -171,33 +111,35 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
retrieval_params retrieval_params;
retrieval_params_parse(argc, argv, params, retrieval_params); if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
// For BERT models, batch size must be equal to ubatch size // For BERT models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch; params.n_ubatch = params.n_batch;
params.embedding = true;
if (retrieval_params.chunk_size <= 0) { if (params.chunk_size <= 0) {
fprintf(stderr, "chunk_size must be positive\n"); fprintf(stderr, "chunk_size must be positive\n");
return 1; return 1;
} }
if (retrieval_params.context_files.empty()) { if (params.context_files.empty()) {
fprintf(stderr, "context_files must be specified\n"); fprintf(stderr, "context_files must be specified\n");
return 1; return 1;
} }
params.embedding = true;
print_build_info(); print_build_info();
printf("processing files:\n"); printf("processing files:\n");
for (auto & context_file : retrieval_params.context_files) { for (auto & context_file : params.context_files) {
printf("%s\n", context_file.c_str()); printf("%s\n", context_file.c_str());
} }
std::vector<chunk> chunks; std::vector<chunk> chunks;
for (auto & context_file : retrieval_params.context_files) { for (auto & context_file : params.context_files) {
std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator); std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end()); chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
} }
printf("Number of chunks: %ld\n", chunks.size()); printf("Number of chunks: %ld\n", chunks.size());
@ -242,7 +184,7 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// add eos if not present // add eos if not present
if (inp.empty() || inp.back() != llama_token_eos(model)) { if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
inp.push_back(llama_token_eos(model)); inp.push_back(llama_token_eos(model));
} }
chunk.tokens = inp; chunk.tokens = inp;

View File

@ -11,6 +11,7 @@ int main(int argc, char ** argv) {
params.prompt = "The quick brown fox"; params.prompt = "The quick brown fox";
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -123,29 +123,6 @@ struct slot_params {
json input_suffix; json input_suffix;
}; };
struct server_params {
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
int32_t n_threads_http = -1;
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
std::vector<std::string> api_keys;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
std::string ssl_key_file = "";
std::string ssl_cert_file = "";
#endif
bool slots_endpoint = true;
bool metrics_endpoint = false;
std::string slot_save_path;
};
struct server_slot { struct server_slot {
int id; int id;
int id_task = -1; int id_task = -1;
@ -2334,561 +2311,6 @@ struct server_context {
} }
}; };
static void server_print_usage(const char * argv0, const gpt_params & params, const server_params & sparams) {
printf("usage: %s [options]\n", argv0);
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
printf(" -ub N, --ubatch-size N physical maximum batch size (default: %d)\n", params.n_ubatch);
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
printf(" - distribute: spread execution evenly over all nodes\n");
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
printf(" - numactl: use the CPU map provided my numactl\n");
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row)\n");
printf(" -nkvo, --no-kv-offload\n");
printf(" disable KV offload\n");
}
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH);
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: unused)\n");
printf(" -hfr REPO, --hf-repo REPO\n");
printf(" Hugging Face model repository (default: unused)\n");
printf(" -hff FILE, --hf-file FILE\n");
printf(" Hugging Face model file (default: unused)\n");
printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --rpc SERVERS comma separated list of RPC servers\n");
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
printf(" --ssl-key-file FNAME path to file a PEM-encoded SSL private key\n");
printf(" --ssl-cert-file FNAME path to file a PEM-encoded SSL certificate\n");
#endif
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n");
printf(" KV cache data type for K (default: f16)\n");
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: f16)\n");
printf(" --log-format log output format: json or text (default: json)\n");
printf(" --log-disable disables logging to a file.\n");
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
printf(" --slot-save-path PATH path to save slot kv cache (default: disabled)\n");
printf("\n");
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
printf(" --chat-template JINJA_TEMPLATE\n");
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
printf(" only commonly used templates are accepted:\n");
printf(" https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template\n");
printf("\n");
}
static void server_params_parse(int argc, char ** argv, server_params & sparams, gpt_params & params) {
gpt_params default_params;
server_params default_sparams;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "--port") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
} else if (arg == "--rpc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rpc_servers = argv[i];
} else if (arg == "--host") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.hostname = argv[i];
} else if (arg == "--path") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.public_path = argv[i];
} else if (arg == "--api-key") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.api_keys.push_back(argv[i]);
} else if (arg == "--api-key-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream key_file(argv[i]);
if (!key_file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::string key;
while (std::getline(key_file, key)) {
if (key.size() > 0) {
sparams.api_keys.push_back(key);
}
}
key_file.close();
}
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
else if (arg == "--ssl-key-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.ssl_key_file = argv[i];
} else if (arg == "--ssl-cert-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.ssl_cert_file = argv[i];
}
#endif
else if (arg == "--timeout" || arg == "-to") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.read_timeout = std::stoi(argv[i]);
sparams.write_timeout = std::stoi(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-mu" || arg == "--model-url") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_url = argv[i];
} else if (arg == "-hfr" || arg == "--hf-repo") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hf_repo = argv[i];
} else if (arg == "-hff" || arg == "--hf-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hf_file = argv[i];
} else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_alias = argv[i];
} else if (arg == "-h" || arg == "--help") {
server_print_usage(argv[0], default_params, default_sparams);
exit(0);
} else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "--rope-scaling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_base = std::stof(argv[i]);
} else if (arg == "--rope-freq-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = std::stof(argv[i]);
} else if (arg == "--yarn-ext-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-attn-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
} else if (arg == "--yarn-beta-fast") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
} else if (arg == "--yarn-beta-slow") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--pooling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else { invalid_param = true; break; }
} else if (arg == "--defrag-thold" || arg == "-dt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.defrag_thold = std::stof(argv[i]);
} else if (arg == "--threads" || arg == "-t") {
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
} else if (arg == "--grp-attn-n" || arg == "-gan") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_n = std::stoi(argv[i]);
} else if (arg == "--grp-attn-w" || arg == "-gaw") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_w = std::stoi(argv[i]);
} else if (arg == "--threads-batch" || arg == "-tb") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads_batch = std::stoi(argv[i]);
} else if (arg == "--threads-http") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.n_threads_http = std::stoi(argv[i]);
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ubatch = std::stoi(argv[i]);
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (llama_supports_gpu_offload()) {
params.n_gpu_layers = std::stoi(argv[i]);
} else {
LOG_WARNING(
"Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}});
}
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
params.no_kv_offload = true;
} else if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUDA
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUDA
} else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
break;
}
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= llama_max_devices());
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device) {
if (i_device < split_arg.size()) {
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
} else {
params.tensor_split[i_device] = 0.0f;
}
}
#else
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
#endif // GGML_USE_CUDA
} else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
break;
}
#if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
params.main_gpu = std::stoi(argv[i]);
#else
LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a main GPU.", {});
#endif
} else if (arg == "--lora") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
} else if (arg == "--lora-scaled") {
if (++i >= argc) {
invalid_param = true;
break;
}
const char * lora_adapter = argv[i];
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_base = argv[i];
} else if (arg == "-v" || arg == "--verbose") {
#if SERVER_VERBOSE != 1
LOG_WARNING("server.cpp is not built with verbose logging.", {});
#else
server_verbose = true;
#endif
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
}
} else if (arg == "--embedding" || arg == "--embeddings") {
params.embedding = true;
} else if (arg == "-cb" || arg == "--cont-batching") {
params.cont_batching = true;
} else if (arg == "-fa" || arg == "--flash-attn") {
params.flash_attn = true;
} else if (arg == "-np" || arg == "--parallel") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_parallel = std::stoi(argv[i]);
} else if (arg == "-n" || arg == "--n-predict") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
} else if (arg == "-spf" || arg == "--system-prompt-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::string system_prompt;
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(system_prompt)
);
sparams.system_prompt = system_prompt;
} else if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
} else if (arg == "-ctv" || arg == "--cache-type-v") {
params.cache_type_v = argv[++i];
} else if (arg == "--log-format") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (std::strcmp(argv[i], "json") == 0) {
server_log_json = true;
} else if (std::strcmp(argv[i], "text") == 0) {
server_log_json = false;
} else {
invalid_param = true;
break;
}
} else if (arg == "--log-disable") {
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
} else if (arg == "--slots-endpoint-disable") {
sparams.slots_endpoint = false;
} else if (arg == "--metrics") {
sparams.metrics_endpoint = true;
} else if (arg == "--slot-save-path") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.slot_save_path = argv[i];
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!sparams.slot_save_path.empty() && sparams.slot_save_path[sparams.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
sparams.slot_save_path += DIRECTORY_SEPARATOR;
}
} else if (arg == "--chat-template") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (!verify_custom_template(argv[i])) {
fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
invalid_param = true;
break;
}
sparams.chat_template = argv[i];
} else if (arg == "--override-kv") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
gpt_params_handle_model_default(params);
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
static void log_server_request(const httplib::Request & req, const httplib::Response & res) { static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
// skip GH copilot requests when using default port // skip GH copilot requests when using default port
if (req.path == "/v1/health" || req.path == "/v1/completions") { if (req.path == "/v1/health" || req.path == "/v1/completions") {
@ -2930,15 +2352,21 @@ int main(int argc, char ** argv) {
#endif #endif
// own arguments required by this example // own arguments required by this example
gpt_params params; gpt_params params;
server_params sparams;
if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1;
}
// TODO: not great to use extern vars
server_log_json = params.log_json;
server_verbose = params.verbose;
// struct that contains llama context and inference // struct that contains llama context and inference
server_context ctx_server; server_context ctx_server;
server_params_parse(argc, argv, sparams, params); if (!params.system_prompt.empty()) {
ctx_server.system_prompt_set(params.system_prompt);
if (!sparams.system_prompt.empty()) {
ctx_server.system_prompt_set(sparams.system_prompt);
} }
if (params.model_alias == "unknown") { if (params.model_alias == "unknown") {
@ -2962,10 +2390,10 @@ int main(int argc, char ** argv) {
std::unique_ptr<httplib::Server> svr; std::unique_ptr<httplib::Server> svr;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (sparams.ssl_key_file != "" && sparams.ssl_cert_file != "") { if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
LOG_INFO("Running with SSL", {{"key", sparams.ssl_key_file}, {"cert", sparams.ssl_cert_file}}); LOG_INFO("Running with SSL", {{"key", params.ssl_file_key}, {"cert", params.ssl_file_cert}});
svr.reset( svr.reset(
new httplib::SSLServer(sparams.ssl_cert_file.c_str(), sparams.ssl_key_file.c_str()) new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
); );
} else { } else {
LOG_INFO("Running without SSL", {}); LOG_INFO("Running without SSL", {});
@ -3019,24 +2447,24 @@ int main(int argc, char ** argv) {
}); });
// set timeouts and change hostname and port // set timeouts and change hostname and port
svr->set_read_timeout (sparams.read_timeout); svr->set_read_timeout (params.timeout_read);
svr->set_write_timeout(sparams.write_timeout); svr->set_write_timeout(params.timeout_write);
if (!svr->bind_to_port(sparams.hostname, sparams.port)) { if (!svr->bind_to_port(params.hostname, params.port)) {
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port); fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port);
return 1; return 1;
} }
std::unordered_map<std::string, std::string> log_data; std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = sparams.hostname; log_data["hostname"] = params.hostname;
log_data["port"] = std::to_string(sparams.port); log_data["port"] = std::to_string(params.port);
if (sparams.api_keys.size() == 1) { if (params.api_keys.size() == 1) {
auto key = sparams.api_keys[0]; auto key = params.api_keys[0];
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0)); log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
} else if (sparams.api_keys.size() > 1) { } else if (params.api_keys.size() > 1) {
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded"; log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
} }
// load the model // load the model
@ -3053,10 +2481,10 @@ int main(int argc, char ** argv) {
const auto model_meta = ctx_server.model_meta(); const auto model_meta = ctx_server.model_meta();
// if a custom chat template is not supplied, we will use the one that comes with the model (if any) // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
if (sparams.chat_template.empty()) { if (params.chat_template.empty()) {
if (!ctx_server.validate_model_chat_template()) { if (!ctx_server.validate_model_chat_template()) {
LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {}); LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "chatml"; params.chat_template = "chatml";
} }
} }
@ -3068,11 +2496,11 @@ int main(int argc, char ** argv) {
chat.push_back({{"role", "assistant"}, {"content", "Hi there"}}); chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
chat.push_back({{"role", "user"}, {"content", "How are you?"}}); chat.push_back({{"role", "user"}, {"content", "How are you?"}});
const std::string chat_example = format_chat(ctx_server.model, sparams.chat_template, chat); const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat);
LOG_INFO("chat template", { LOG_INFO("chat template", {
{"chat_example", chat_example}, {"chat_example", chat_example},
{"built_in", sparams.chat_template.empty()}, {"built_in", params.chat_template.empty()},
}); });
} }
@ -3080,7 +2508,7 @@ int main(int argc, char ** argv) {
// Middlewares // Middlewares
// //
auto middleware_validate_api_key = [&sparams, &res_error](const httplib::Request & req, httplib::Response & res) { auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
// TODO: should we apply API key to all endpoints, including "/health" and "/models"? // TODO: should we apply API key to all endpoints, including "/health" and "/models"?
static const std::set<std::string> protected_endpoints = { static const std::set<std::string> protected_endpoints = {
"/props", "/props",
@ -3098,7 +2526,7 @@ int main(int argc, char ** argv) {
}; };
// If API key is not set, skip validation // If API key is not set, skip validation
if (sparams.api_keys.empty()) { if (params.api_keys.empty()) {
return true; return true;
} }
@ -3113,7 +2541,7 @@ int main(int argc, char ** argv) {
std::string prefix = "Bearer "; std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) { if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size()); std::string received_api_key = auth_header.substr(prefix.size());
if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) { if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
return true; // API key is valid return true; // API key is valid
} }
} }
@ -3168,7 +2596,7 @@ int main(int argc, char ** argv) {
}; };
res.status = 200; // HTTP OK res.status = 200; // HTTP OK
if (sparams.slots_endpoint && req.has_param("include_slots")) { if (params.endpoint_slots && req.has_param("include_slots")) {
health["slots"] = result.data.at("slots"); health["slots"] = result.data.at("slots");
} }
@ -3194,7 +2622,7 @@ int main(int argc, char ** argv) {
}; };
const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) { const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
if (!sparams.slots_endpoint) { if (!params.endpoint_slots) {
res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED)); res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
return; return;
} }
@ -3218,7 +2646,7 @@ int main(int argc, char ** argv) {
}; };
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) { const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
if (!sparams.metrics_endpoint) { if (!params.endpoint_metrics) {
res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED)); res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
return; return;
} }
@ -3318,14 +2746,14 @@ int main(int argc, char ** argv) {
res.status = 200; // HTTP OK res.status = 200; // HTTP OK
}; };
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) { const auto handle_slots_save = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body); json request_data = json::parse(req.body);
std::string filename = request_data.at("filename"); std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) { if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return; return;
} }
std::string filepath = sparams.slot_save_path + filename; std::string filepath = params.slot_save_path + filename;
server_task task; server_task task;
task.type = SERVER_TASK_TYPE_SLOT_SAVE; task.type = SERVER_TASK_TYPE_SLOT_SAVE;
@ -3348,14 +2776,14 @@ int main(int argc, char ** argv) {
} }
}; };
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) { const auto handle_slots_restore = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body); json request_data = json::parse(req.body);
std::string filename = request_data.at("filename"); std::string filename = request_data.at("filename");
if (!fs_validate_filename(filename)) { if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return; return;
} }
std::string filepath = sparams.slot_save_path + filename; std::string filepath = params.slot_save_path + filename;
server_task task; server_task task;
task.type = SERVER_TASK_TYPE_SLOT_RESTORE; task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
@ -3530,9 +2958,9 @@ int main(int argc, char ** argv) {
res.set_content(models.dump(), "application/json; charset=utf-8"); res.set_content(models.dump(), "application/json; charset=utf-8");
}; };
const auto handle_chat_completions = [&ctx_server, &sparams, &res_error](const httplib::Request & req, httplib::Response & res) { const auto handle_chat_completions = [&ctx_server, &params, &res_error](const httplib::Request & req, httplib::Response & res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), sparams.chat_template); json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
const int id_task = ctx_server.queue_tasks.get_new_id(); const int id_task = ctx_server.queue_tasks.get_new_id();
@ -3757,16 +3185,16 @@ int main(int argc, char ** argv) {
// //
// register static assets routes // register static assets routes
if (!sparams.public_path.empty()) { if (!params.public_path.empty()) {
// Set the base directory for serving static files // Set the base directory for serving static files
svr->set_base_dir(sparams.public_path); svr->set_base_dir(params.public_path);
} }
// using embedded static files // using embedded static files
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8")); svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8")); svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8")); svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
svr->Get("/json-schema-to-grammar.mjs", handle_static_file( svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
// add new-ui files // add new-ui files
svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8")); svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
@ -3798,7 +3226,7 @@ int main(int argc, char ** argv) {
svr->Post("/v1/embeddings", handle_embeddings); svr->Post("/v1/embeddings", handle_embeddings);
svr->Post("/tokenize", handle_tokenize); svr->Post("/tokenize", handle_tokenize);
svr->Post("/detokenize", handle_detokenize); svr->Post("/detokenize", handle_detokenize);
if (!sparams.slot_save_path.empty()) { if (!params.slot_save_path.empty()) {
// only enable slot endpoints if slot_save_path is set // only enable slot endpoints if slot_save_path is set
svr->Post("/slots/:id_slot", handle_slots_action); svr->Post("/slots/:id_slot", handle_slots_action);
} }
@ -3806,12 +3234,12 @@ int main(int argc, char ** argv) {
// //
// Start the server // Start the server
// //
if (sparams.n_threads_http < 1) { if (params.n_threads_http < 1) {
// +2 threads for monitoring endpoints // +2 threads for monitoring endpoints
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1); params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
} }
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http); log_data["n_threads_http"] = std::to_string(params.n_threads_http);
svr->new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); }; svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
LOG_INFO("HTTP server listening", log_data); LOG_INFO("HTTP server listening", log_data);

View File

@ -116,13 +116,6 @@ static inline void server_log(const char * level, const char * function, int lin
// chat template utils // chat template utils
// //
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
inline bool verify_custom_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
// Format given chat. If tmpl is empty, we take the template from model metadata // Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) { inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
size_t alloc_size = 0; size_t alloc_size = 0;

View File

@ -3,7 +3,7 @@
The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt. The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt.
```bash ```bash
./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" ./simple -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is"
... ...

View File

@ -6,28 +6,27 @@
#include <string> #include <string>
#include <vector> #include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is"; params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
} }
// total length of the sequence including the prompt // total length of the sequence including the prompt
const int n_len = 32; const int n_predict = params.n_predict;
// init LLM // init LLM
@ -36,9 +35,7 @@ int main(int argc, char ** argv) {
// initialize the model // initialize the model
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_params_from_gpt_params(params);
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@ -49,12 +46,7 @@ int main(int argc, char ** argv) {
// initialize the context // initialize the context
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = 1234;
ctx_params.n_ctx = 2048;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx = llama_new_context_with_model(model, ctx_params); llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@ -69,14 +61,14 @@ int main(int argc, char ** argv) {
tokens_list = ::llama_tokenize(ctx, params.prompt, true); tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size()); const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req); LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens // make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) { if (n_kv_req > n_ctx) {
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__); LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
return 1; return 1;
} }
@ -115,7 +107,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us(); const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) { while (n_cur <= n_predict) {
// sample the next token // sample the next token
{ {
auto n_vocab = llama_n_vocab(model); auto n_vocab = llama_n_vocab(model);
@ -134,7 +126,7 @@ int main(int argc, char ** argv) {
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation? // is it an end of generation?
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) { if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
LOG_TEE("\n"); LOG_TEE("\n");
break; break;

View File

@ -27,7 +27,8 @@ struct seq_draft {
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) { if (!gpt_params_parse(argc, argv, params)) {
gpt_params_print_usage(argc, argv, params);
return 1; return 1;
} }

View File

@ -108,7 +108,7 @@
// //
LLAMA_ATTRIBUTE_FORMAT(2, 3) LLAMA_ATTRIBUTE_FORMAT(2, 3)
static void llama_log_internal (ggml_log_level level, const char* format, ...); static void llama_log_internal (ggml_log_level level, const char * format, ...);
static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)

View File

@ -13,12 +13,12 @@ logger = logging.getLogger("run-with-preset")
CLI_ARGS_MAIN_PERPLEXITY = [ CLI_ARGS_MAIN_PERPLEXITY = [
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape", "batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag", "export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct", "hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix",
"interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base", "interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
"low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock", "low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
"model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q", "model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt", "np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n", "prompt-cache", "prompt-cache-all", "prompt-cache-ro", "repeat-last-n",
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed", "repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
"simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical", "simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
"verbose-prompt" "verbose-prompt"