llama : add session file format and saved sessions in main (#1169)

This commit is contained in:
Evan Jones 2023-04-28 11:59:37 -04:00 committed by GitHub
parent 11d902364b
commit 1481a9cf25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 156 additions and 2 deletions

View File

@ -31,8 +31,6 @@ The transcript only includes text, it does not include markup like HTML and Mark
$USER_NAME: Hello, $AI_NAME! $USER_NAME: Hello, $AI_NAME!
$AI_NAME: Hello $USER_NAME! How may I help you today? $AI_NAME: Hello $USER_NAME! How may I help you today?
$USER_NAME: What time is it?
$AI_NAME: It is $(date +%H:%M).
$USER_NAME: What year is it? $USER_NAME: What year is it?
$AI_NAME: We are in $(date +%Y). $AI_NAME: We are in $(date +%Y).
$USER_NAME: Please tell me the largest city in Europe. $USER_NAME: Please tell me the largest city in Europe.
@ -50,4 +48,6 @@ $AI_NAME: The arguments are stored in process.argv.
argv[3] is the second argument passed to the script and so on. argv[3] is the second argument passed to the script and so on.
$USER_NAME: Name a color. $USER_NAME: Name a color.
$AI_NAME: Blue $AI_NAME: Blue
$USER_NAME: What time is it?
$AI_NAME: It is $(date +%H:%M).
$USER_NAME:" "$@" $USER_NAME:" "$@"

View File

@ -61,6 +61,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.prompt = argv[i]; params.prompt = argv[i];
} else if (arg == "--session") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.path_session = argv[i];
} else if (arg == "-f" || arg == "--file") { } else if (arg == "-f" || arg == "--file") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -228,6 +234,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: empty)\n"); fprintf(stderr, " prompt to start generation with (default: empty)\n");
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
fprintf(stderr, " --random-prompt start with a randomized prompt.\n"); fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n"); fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " -f FNAME, --file FNAME\n");

View File

@ -31,6 +31,7 @@ struct gpt_params {
std::string model = "models/lamma-7B/ggml-model.bin"; // model path std::string model = "models/lamma-7B/ggml-model.bin"; // model path
std::string prompt = ""; std::string prompt = "";
std::string path_session = ""; // path to file for saving/loading model eval state
std::string input_prefix = ""; // string to prefix user inputs with std::string input_prefix = ""; // string to prefix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted

View File

@ -157,6 +157,32 @@ int main(int argc, char ** argv) {
// Add a space in front of the first character to match OG llama tokenizer behavior // Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' '); params.prompt.insert(0, 1, ' ');
std::string path_session = params.path_session;
std::vector<llama_token> session_tokens;
if (!path_session.empty()) {
fprintf(stderr, "%s: attempting to load saved session from %s..\n", __func__, path_session.c_str());
// REVIEW - fopen to check for existing session
FILE * fp = std::fopen(path_session.c_str(), "rb");
if (fp != NULL) {
std::fclose(fp);
session_tokens.resize(params.n_ctx);
size_t n_token_count_out = 0;
const size_t n_session_bytes = llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out);
session_tokens.resize(n_token_count_out);
if (n_session_bytes > 0) {
fprintf(stderr, "%s: loaded %zu bytes of session data!\n", __func__, n_session_bytes);
} else {
fprintf(stderr, "%s: could not load session file, will recreate\n", __func__);
}
} else {
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
}
}
// tokenize the prompt // tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true); auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
@ -167,6 +193,26 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (session_tokens.size()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (n_matching_session_tokens >= embd_inp.size()) {
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
}
// number of tokens to keep when resetting context // number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) { if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) {
params.n_keep = (int)embd_inp.size(); params.n_keep = (int)embd_inp.size();
@ -252,9 +298,16 @@ int main(int argc, char ** argv) {
bool is_antiprompt = false; bool is_antiprompt = false;
bool input_noecho = false; bool input_noecho = false;
// HACK - because session saving incurs a non-negligible delay, for now skip re-saving session
// if we loaded a session with at least 75% similarity. It's currently just used to speed up the
// initial prompt so it doesn't need to be an exact match.
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4);
int n_past = 0; int n_past = 0;
int n_remain = params.n_predict; int n_remain = params.n_predict;
int n_consumed = 0; int n_consumed = 0;
int n_session_consumed = 0;
// the first thing we will do is to output the prompt, so set color accordingly // the first thing we will do is to output the prompt, so set color accordingly
set_console_color(con_st, CONSOLE_COLOR_PROMPT); set_console_color(con_st, CONSOLE_COLOR_PROMPT);
@ -276,6 +329,9 @@ int main(int argc, char ** argv) {
// insert n_left/2 tokens at the start of embd from last_n_tokens // insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size()); embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
// REVIEW - stop saving session if we run out of context
path_session = "";
//printf("\n---\n"); //printf("\n---\n");
//printf("resetting: '"); //printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) { //for (int i = 0; i < (int) embd.size(); i++) {
@ -285,6 +341,28 @@ int main(int argc, char ** argv) {
//printf("\n---\n"); //printf("\n---\n");
} }
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
// REVIEW
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
// evaluate tokens in batches // evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always // embd is typically prepared beforehand to fit within a batch, but not always
for (int i = 0; i < (int) embd.size(); i += params.n_batch) { for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
@ -298,6 +376,11 @@ int main(int argc, char ** argv) {
} }
n_past += n_eval; n_past += n_eval;
} }
if (embd.size() > 0 && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
} }
embd.clear(); embd.clear();
@ -309,6 +392,12 @@ int main(int argc, char ** argv) {
const float temp = params.temp; const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty; const float repeat_penalty = params.repeat_penalty;
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session) {
need_to_save_session = false;
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_token id = 0; llama_token id = 0;
{ {

View File

@ -2431,3 +2431,56 @@ std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_te
return ctx->model.tensors_by_name; return ctx->model.tensors_by_name;
} }
size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
// TODO leverage mmap
llama_file file(path_session, "rb");
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (!(magic == 'ggsn' && version == 0)) {
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return 0;
}
llama_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(llama_hparams));
// REVIEW
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
return 0;
}
const uint32_t n_token_count = file.read_u32();
LLAMA_ASSERT(n_token_capacity >= n_token_count);
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
const size_t n_state_size = file.size - file.tell();
const size_t n_orig_state_size = llama_get_state_size(ctx);
if (n_state_size != n_orig_state_size) {
fprintf(stderr, "%s : failed to validate state size\n", __func__);
}
std::unique_ptr<uint8_t[]> state_data(new uint8_t[n_state_size]);
file.read_raw(state_data.get(), n_state_size);
return llama_set_state_data(ctx, state_data.get());
}
size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
// TODO save temp & swap
llama_file file(path_session, "wb");
const size_t n_state_size = llama_get_state_size(ctx);
std::unique_ptr<uint8_t[]> state_data(new uint8_t[n_state_size]);
llama_copy_state_data(ctx, state_data.get());
file.write_u32('ggsn'); // magic
file.write_u32(0); // version
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
file.write_u32((uint32_t) n_token_count); // REVIEW
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
file.write_raw(state_data.get(), n_state_size);
return n_state_size; // REVIEW
}

View File

@ -133,6 +133,10 @@ extern "C" {
// Returns the number of bytes read // Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src); LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
// Save/load session file
LLAMA_API size_t llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API size_t llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token. // Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process // tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls // n_past is the number of tokens to use from previous eval calls