mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
parent
3f1ae2e32c
commit
148844fe97
13
Makefile
13
Makefile
@ -5,7 +5,6 @@ BUILD_TARGETS = \
|
||||
llama-batched \
|
||||
llama-batched-bench \
|
||||
llama-bench \
|
||||
llama-benchmark-matmult \
|
||||
llama-cli \
|
||||
llama-convert-llama2c-to-ggml \
|
||||
llama-embedding \
|
||||
@ -68,7 +67,7 @@ TEST_TARGETS = \
|
||||
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
|
||||
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
|
||||
retrieval speculative infill tokenize parallel export-lora lookahead lookup passkey gritlm
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
|
||||
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
|
||||
@ -1523,16 +1522,6 @@ common/build-info.o: common/build-info.cpp
|
||||
|
||||
tests: $(TEST_TARGETS)
|
||||
|
||||
llama-benchmark-matmult: examples/benchmark/benchmark-matmult.cpp \
|
||||
$(OBJ_GGML) common/build-info.o
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
run-benchmark-matmult: llama-benchmark-matmult
|
||||
./$@
|
||||
|
||||
.PHONY: run-benchmark-matmult swift
|
||||
|
||||
tests/test-arg-parser: tests/test-arg-parser.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
@ -16,7 +16,6 @@ else()
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(benchmark)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
|
@ -1,6 +0,0 @@
|
||||
set(TARGET llama-bench-matmult)
|
||||
add_executable(${TARGET} benchmark-matmult.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
@ -1,275 +0,0 @@
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <locale.h>
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <unordered_map>
|
||||
#include <queue>
|
||||
#include <string.h>
|
||||
#include <cassert>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
static float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
double sum = 0;
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||
for (int k = 0; k < tensor->ne[0]; k++) {
|
||||
sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
||||
tensor->type, ggml_type_name(tensor->type),
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
float sum = tensor_sum_elements(tensor);
|
||||
printf("Sum of tensor %s is %6.2f\n", name, sum);
|
||||
}
|
||||
|
||||
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
|
||||
|
||||
struct benchmark_params_struct {
|
||||
int n_threads = 1;
|
||||
int32_t n_iterations = 10;
|
||||
};
|
||||
|
||||
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct benchmark_params_struct benchmark_params;
|
||||
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
|
||||
if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
benchmark_params.n_threads = std::stoi(argv[i]);
|
||||
} else if (arg == "-i" || arg == "--iter") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
benchmark_params.n_iterations = std::stoi(argv[i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
printf("Starting Test\n");
|
||||
|
||||
// create the ggml context
|
||||
struct ggml_context * ctx;
|
||||
//const int sizex = 4096;
|
||||
//const int sizey = 11008;
|
||||
|
||||
#undef VERBOSE_DEBUGGING
|
||||
#ifndef VERBOSE_DEBUGGING
|
||||
const int sizey = 4096;
|
||||
const int sizex = 11008;
|
||||
const int sizez = 128;
|
||||
#else
|
||||
/* Working - let's increase size */
|
||||
const int sizey = 1;
|
||||
const int sizex = (8*32);
|
||||
const int sizez = 1;
|
||||
|
||||
/*const int sizey = 1;
|
||||
const int sizex = 3*(8*32);
|
||||
const int sizez = 1;*/
|
||||
#endif
|
||||
|
||||
//printf("Memsize required = %i\n", sizex*sizex);
|
||||
|
||||
// TODO: perform the bench for all types or for a user specified type
|
||||
const ggml_type qtype = GGML_TYPE_Q4_1;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
|
||||
ctx_size += ggml_row_size(qtype, sizex*sizey);
|
||||
ctx_size += ggml_row_size(qtype, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
|
||||
ctx_size += 1024*1024*16;
|
||||
|
||||
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/* no_alloc =*/ 0
|
||||
};
|
||||
|
||||
ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
printf("Creating new tensors\n");
|
||||
// printf("Creating new tensor m1\n");
|
||||
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
|
||||
ggml_set_f32(m11, 1.0f);
|
||||
|
||||
// printf("Creating new tensor m1\n");
|
||||
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
|
||||
ggml_set_f32(m12, 1.5f);
|
||||
|
||||
// printf("Creating new tensor m2\n");
|
||||
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
|
||||
ggml_set_f32(m2, 2.0f);
|
||||
|
||||
printf("\n------ Test 1 - Matrix Mult via F32 code\n");
|
||||
// printf("Creating new tensor m11xm2\n");
|
||||
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf, m11xm2);
|
||||
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(m11);
|
||||
TENSOR_DUMP(m2);
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(ggml_graph_node(gf, 0));
|
||||
|
||||
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
||||
|
||||
int32_t nelements = sizex*sizey;
|
||||
|
||||
// Set up a the benchmark matrices
|
||||
// printf("Creating new tensor q11 & Running quantize\n");
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
|
||||
|
||||
// Set up a the compute graph
|
||||
// printf("Creating new tensor q31\n");
|
||||
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf31, q31);
|
||||
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
|
||||
|
||||
// printf("Creating new tensor q32\n");
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
||||
//printf("Creating compute graph\n");
|
||||
struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf32, q32);
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
const int dimx = sizex;
|
||||
const int dimy = sizey;
|
||||
const int dimz = sizez;
|
||||
long long int flops_per_dot_product = dimy + dimy;
|
||||
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
|
||||
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
|
||||
|
||||
|
||||
// Let's use the F32 result from above as a reference for the quantized multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(ggml_graph_node(gf, 0));
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||
printf("=====================================================================================\n");
|
||||
|
||||
double gflops_sum = 0;
|
||||
for (int i=0;i<benchmark_params.n_iterations ;i++) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
|
||||
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
double gflops = (double)(flops_per_matrix)/usec/1000.0;
|
||||
gflops_sum += gflops;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
|
||||
i,
|
||||
benchmark_params.n_threads,
|
||||
sizex, sizey, sizez, flops_per_matrix,
|
||||
usec,gflops);
|
||||
|
||||
#ifdef VERBOSE_DEBUGGING
|
||||
TENSOR_DUMP("res",gf31.nodes[0])
|
||||
#endif
|
||||
|
||||
// Check that the matrix multiplication result is in the right ballpark
|
||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||
float sum_of_Q4_result = tensor_sum_elements(ggml_graph_node(gf31, 0));
|
||||
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||
|
||||
if (delta > allowed_delta) {
|
||||
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
|
||||
sum_of_F32_reference,
|
||||
sum_of_Q4_result,
|
||||
delta,
|
||||
allowed_delta
|
||||
);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
|
||||
}
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
printf("=====================================================================================\n");
|
||||
}
|
Loading…
Reference in New Issue
Block a user