Merge branch 'ggerganov:master' into cuda-build-doc

This commit is contained in:
Yann Follet 2024-12-12 17:15:04 +08:00 committed by GitHub
commit 14f64dab74
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
38 changed files with 576 additions and 556 deletions

View File

@ -79,7 +79,7 @@ jobs:
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
with:
node-version: 22
node-version: '22.11.0'
- name: Verify bundled index.html
id: verify_server_index_html

View File

@ -591,7 +591,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.ctx_shift = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
add_opt(common_arg(
{"--chunks"}, "N",
string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
@ -1711,6 +1711,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.public_path = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
add_opt(common_arg(
{"--no-webui"},
string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
[](common_params & params) {
params.webui = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
add_opt(common_arg(
{"--embedding", "--embeddings"},
string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),

View File

@ -81,7 +81,7 @@ Several quantization methods are supported. They differ in the resulting model d
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
- [#4996 - k-quants tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)

View File

@ -146,6 +146,7 @@ The project is under active development, and we are [looking for feedback and co
| `--host HOST` | ip address to listen (default: 127.0.0.1)<br/>(env: LLAMA_ARG_HOST) |
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
| `--path PATH` | path to serve static files from (default: )<br/>(env: LLAMA_ARG_STATIC_PATH) |
| `--no-webui` | disable the Web UI<br/>(env: LLAMA_ARG_NO_WEBUI) |
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
| `--reranking, --rerank` | enable reranking endpoint on server (default: disabled)<br/>(env: LLAMA_ARG_RERANKING) |
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
@ -302,23 +303,23 @@ mkdir llama-client
cd llama-client
```
Create a index.js file and put this inside:
Create an index.js file and put this inside:
```javascript
const prompt = `Building a website can be done in 10 simple steps:`;
const prompt = "Building a website can be done in 10 simple steps:"
async function Test() {
async function test() {
let response = await fetch("http://127.0.0.1:8080/completion", {
method: 'POST',
method: "POST",
body: JSON.stringify({
prompt,
n_predict: 512,
n_predict: 64,
})
})
console.log((await response.json()).content)
}
Test()
test()
```
And run it:
@ -380,7 +381,7 @@ Multiple prompts are also supported. In this case, the completion result will be
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
`stream`: Allows receiving each predicted token in real-time instead of waiting for the completion to finish (uses a different response format). To enable this, set to `true`.
`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
@ -441,11 +442,11 @@ These words will not be included in the completion, so make sure to add them to
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values.
`timings_per_token`: Include prompt processing and text generation speed information in each response. Default: `false`
`timings_per_token`: Include prompt processing and text generation speed information in each response. Default: `false`
**Response format**
- Note: When using streaming mode (`stream`), only `content` and `stop` will be returned until end of completion.
- Note: In streaming mode (`stream`), only `content` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support.
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:

File diff suppressed because one or more lines are too long

View File

@ -3815,6 +3815,9 @@ int main(int argc, char ** argv) {
// Router
//
if (!params.webui) {
LOG_INF("Web UI is disabled\n");
} else {
// register static assets routes
if (!params.public_path.empty()) {
// Set the base directory for serving static files
@ -3830,6 +3833,7 @@ int main(int argc, char ** argv) {
return false;
});
}
}
// register API routes
svr->Get ("/health", handle_health); // public endpoint (no API key check)

View File

@ -1,4 +1,5 @@
import pytest
import requests
from utils import *
server = ServerPreset.tinyllama2()
@ -76,3 +77,20 @@ def test_load_split_model():
})
assert res.status_code == 200
assert match_regex("(little|girl)+", res.body["content"])
def test_no_webui():
global server
# default: webui enabled
server.start()
url = f"http://{server.server_host}:{server.server_port}"
res = requests.get(url)
assert res.status_code == 200
assert "<html>" in res.text
server.stop()
# with --no-webui
server.no_webui = True
server.start()
res = requests.get(url)
assert res.status_code == 404

View File

@ -72,6 +72,7 @@ class ServerProcess:
disable_ctx_shift: int | None = False
draft_min: int | None = None
draft_max: int | None = None
no_webui: bool | None = None
# session variables
process: subprocess.Popen | None = None
@ -158,6 +159,8 @@ class ServerProcess:
server_args.extend(["--draft-max", self.draft_max])
if self.draft_min:
server_args.extend(["--draft-min", self.draft_min])
if self.no_webui:
server_args.append("--no-webui")
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")

View File

@ -333,7 +333,7 @@ static std::string llama_get_chat_template(const struct llama_model * model) {
if (res < 2) {
return "";
} else {
std::vector<char> model_template(res, 0);
std::vector<char> model_template(res + 1, 0);
llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
return std::string(model_template.data(), model_template.size() - 1);
}

View File

@ -15,7 +15,7 @@
<!-- sidebar -->
<div class="drawer-side h-screen lg:h-screen z-50 lg:max-w-64">
<label for="toggle-drawer" aria-label="close sidebar" class="drawer-overlay"></label>
<div class="flex flex-col bg-base-200 min-h-full max-w-[calc(100vw-2em)] py-4 px-4">
<div class="flex flex-col bg-base-200 min-h-full max-w-64 py-4 px-4">
<div class="flex flex-row items-center justify-between mb-4 mt-4">
<h2 class="font-bold ml-4">Conversations</h2>
@ -120,51 +120,25 @@
{{ messages.length === 0 ? 'Send a message to start' : '' }}
</div>
<div v-for="msg in messages" class="group">
<div :class="{
'chat': true,
'chat-start': msg.role !== 'user',
'chat-end': msg.role === 'user',
}">
<div :class="{
'chat-bubble markdown': true,
'chat-bubble-base-300': msg.role !== 'user',
}">
<!-- textarea for editing message -->
<template v-if="editingMsg && editingMsg.id === msg.id">
<textarea
class="textarea textarea-bordered bg-base-100 text-base-content w-[calc(90vw-8em)] lg:w-96"
v-model="msg.content"></textarea>
<br/>
<button class="btn btn-ghost mt-2 mr-2" @click="editingMsg = null">Cancel</button>
<button class="btn mt-2" @click="editUserMsgAndRegenerate(msg)">Submit</button>
</template>
<!-- render message as markdown -->
<vue-markdown v-else :source="msg.content" />
</div>
</div>
<!-- actions for each message -->
<div :class="{'text-right': msg.role === 'user'}" class="mx-4 mt-2 mb-2">
<!-- user message -->
<button v-if="msg.role === 'user'" class="badge btn-mini show-on-hover" @click="editingMsg = msg" :disabled="isGenerating">
✍️ Edit
</button>
<!-- assistant message -->
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="regenerateMsg(msg)" :disabled="isGenerating">
🔄 Regenerate
</button>
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="copyMsg(msg)" :disabled="isGenerating">
📋 Copy
</button>
</div>
<message-bubble
:config="config"
:msg="msg"
:key="msg.id"
:is-generating="isGenerating"
:edit-user-msg-and-regenerate="editUserMsgAndRegenerate"
:regenerate-msg="regenerateMsg"></message-bubble>
</div>
<!-- pending (ongoing) assistant message -->
<div id="pending-msg" class="chat chat-start">
<div v-if="pendingMsg" class="chat-bubble markdown chat-bubble-base-300">
<span v-if="!pendingMsg.content" class="loading loading-dots loading-md"></span>
<vue-markdown v-else :source="pendingMsg.content" />
</div>
<div id="pending-msg" class="group">
<message-bubble
v-if="pendingMsg"
:config="config"
:msg="pendingMsg"
:key="pendingMsg.id"
:is-generating="isGenerating"
:edit-user-msg-and-regenerate="() => {}"
:regenerate-msg="() => {}"></message-bubble>
</div>
</div>
@ -227,6 +201,10 @@
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
<summary class="collapse-title font-bold">Advanced config</summary>
<div class="collapse-content">
<div class="flex flex-row items-center mb-2">
<input type="checkbox" class="checkbox" v-model="config.showTokensPerSecond" />
<span class="ml-4">Show tokens per second</span>
</div>
<label class="form-control mb-2">
<!-- Custom parameters input -->
<div class="label inline">Custom JSON config (For more info, refer to <a class="underline" href="https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md" target="_blank" rel="noopener noreferrer">server documentation</a>)</div>
@ -247,6 +225,66 @@
</div>
<!-- Template to be used as message bubble -->
<template id="message-bubble">
<div :class="{
'chat': true,
'chat-start': msg.role !== 'user',
'chat-end': msg.role === 'user',
}">
<div :class="{
'chat-bubble markdown': true,
'chat-bubble-base-300': msg.role !== 'user',
}">
<!-- textarea for editing message -->
<template v-if="editingContent !== null">
<textarea
class="textarea textarea-bordered bg-base-100 text-base-content w-[calc(90vw-8em)] lg:w-96"
v-model="editingContent"></textarea>
<br/>
<button class="btn btn-ghost mt-2 mr-2" @click="editingContent = null">Cancel</button>
<button class="btn mt-2" @click="editMsg()">Submit</button>
</template>
<template v-else>
<!-- show loading dots for pending message -->
<span v-if="msg.content === null" class="loading loading-dots loading-md"></span>
<!-- render message as markdown -->
<vue-markdown v-else :source="msg.content"></vue-markdown>
<!-- render timings if enabled -->
<div class="dropdown dropdown-hover dropdown-top mt-2" v-if="timings && config.showTokensPerSecond">
<div tabindex="0" role="button" class="cursor-pointer font-semibold text-sm opacity-60">Speed: {{ timings.predicted_per_second.toFixed(1) }} t/s</div>
<div class="dropdown-content bg-base-100 z-10 w-64 p-2 shadow mt-4">
<b>Prompt</b><br/>
- Tokens: {{ timings.prompt_n }}<br/>
- Time: {{ timings.prompt_ms }} ms<br/>
- Speed: {{ timings.prompt_per_second.toFixed(1) }} t/s<br/>
<b>Generation</b><br/>
- Tokens: {{ timings.predicted_n }}<br/>
- Time: {{ timings.predicted_ms }} ms<br/>
- Speed: {{ timings.predicted_per_second.toFixed(1) }} t/s<br/>
</div>
</div>
</template>
</div>
</div>
<!-- actions for each message -->
<div :class="{'text-right': msg.role === 'user', 'opacity-0': isGenerating}" class="mx-4 mt-2 mb-2">
<!-- user message -->
<button v-if="msg.role === 'user'" class="badge btn-mini show-on-hover" @click="editingContent = msg.content" :disabled="isGenerating">
✍️ Edit
</button>
<!-- assistant message -->
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="regenerateMsg(msg)" :disabled="isGenerating">
🔄 Regenerate
</button>
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="copyMsg()" :disabled="isGenerating">
📋 Copy
</button>
</div>
</template>
<!-- Template to be used by settings modal -->
<template id="settings-modal-short-input">
<label class="input input-bordered join-item grow flex items-center gap-2 mb-2">

View File

@ -13,6 +13,7 @@
"markdown-it": "^14.1.0",
"postcss": "^8.4.49",
"tailwindcss": "^3.4.15",
"textlinestream": "^1.1.1",
"vite-plugin-singlefile": "^2.0.3",
"vue": "^3.5.13"
},
@ -2677,6 +2678,12 @@
"node": ">=14.0.0"
}
},
"node_modules/textlinestream": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/textlinestream/-/textlinestream-1.1.1.tgz",
"integrity": "sha512-iBHbi7BQxrFmwZUQJsT0SjNzlLLsXhvW/kg7EyOMVMBIrlnj/qYofwo1LVLZi+3GbUEo96Iu2eqToI2+lZoAEQ==",
"license": "MIT"
},
"node_modules/uc.micro": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/uc.micro/-/uc.micro-2.1.0.tgz",

View File

@ -17,6 +17,7 @@
"markdown-it": "^14.1.0",
"postcss": "^8.4.49",
"tailwindcss": "^3.4.15",
"textlinestream": "^1.1.1",
"vite-plugin-singlefile": "^2.0.3",
"vue": "^3.5.13"
}

View File

@ -1,225 +0,0 @@
const paramDefaults = {
stream: true,
temperature: 0.2,
};
let generation_settings = null;
export class CompletionError extends Error {
constructor(message, name, data) {
super(message);
this.name = name;
}
};
// Completes the prompt as a generator. Recommended for most use cases.
//
// Example:
//
// import { llama } from '/completion.js'
//
// const request = llama("Tell me a joke", {n_predict: 800})
// for await (const chunk of request) {
// document.write(chunk.data.content)
// }
//
export async function* llama(prompt, params = {}, config = {}) {
let controller = config.controller;
const api_url = config.api_url?.replace(/\/+$/, '') || "";
if (!controller) {
controller = new AbortController();
}
const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
method: 'POST',
body: JSON.stringify(completionParams),
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream',
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
},
signal: controller.signal,
});
const status = response.status;
if (status !== 200) {
try {
const body = await response.json();
if (body && body.error && body.error.message) {
throw new CompletionError(body.error.message, 'ServerError');
}
} catch (err) {
throw new CompletionError(err.message, 'ServerError');
}
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
let content = "";
let leftover = ""; // Buffer for partially read lines
try {
let cont = true;
while (cont) {
const result = await reader.read();
if (result.done) {
break;
}
// Add any leftover data to the current chunk of data
const text = leftover + decoder.decode(result.value);
// Check if the last character is a line break
const endsWithLineBreak = text.endsWith('\n');
// Split the text into lines
let lines = text.split('\n');
// If the text doesn't end with a line break, then the last line is incomplete
// Store it in leftover to be added to the next chunk of data
if (!endsWithLineBreak) {
leftover = lines.pop();
} else {
leftover = ""; // Reset leftover if we have a line break at the end
}
// Parse all sse events and add them to result
const regex = /^(\S+):\s(.*)$/gm;
for (const line of lines) {
const match = regex.exec(line);
if (match) {
result[match[1]] = match[2];
if (result.data === '[DONE]') {
cont = false;
break;
}
// since we know this is llama.cpp, let's just decode the json in data
if (result.data) {
result.data = JSON.parse(result.data);
content += result.data.content;
// yield
yield result;
// if we got a stop token from server, we will break here
if (result.data.stop) {
if (result.data.generation_settings) {
generation_settings = result.data.generation_settings;
}
cont = false;
break;
}
}
if (result.error) {
try {
result.error = JSON.parse(result.error);
if (result.error.message.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error [${result.error.code} - ${result.error.type}]: ${result.error.message}`);
}
} catch(e) {
console.error(`llama.cpp error ${result.error}`)
}
}
}
}
}
} catch (e) {
if (e.name !== 'AbortError') {
console.error("llama error: ", e);
}
throw e;
}
finally {
controller.abort();
}
return content;
}
// Call llama, return an event target that you can subscribe to
//
// Example:
//
// import { llamaEventTarget } from '/completion.js'
//
// const conn = llamaEventTarget(prompt)
// conn.addEventListener("message", (chunk) => {
// document.write(chunk.detail.content)
// })
//
export const llamaEventTarget = (prompt, params = {}, config = {}) => {
const eventTarget = new EventTarget();
(async () => {
let content = "";
for await (const chunk of llama(prompt, params, config)) {
if (chunk.data) {
content += chunk.data.content;
eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data }));
}
if (chunk.data.generation_settings) {
eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings }));
}
if (chunk.data.timings) {
eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings }));
}
}
eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } }));
})();
return eventTarget;
}
// Call llama, return a promise that resolves to the completed text. This does not support streaming
//
// Example:
//
// llamaPromise(prompt).then((content) => {
// document.write(content)
// })
//
// or
//
// const content = await llamaPromise(prompt)
// document.write(content)
//
export const llamaPromise = (prompt, params = {}, config = {}) => {
return new Promise(async (resolve, reject) => {
let content = "";
try {
for await (const chunk of llama(prompt, params, config)) {
content += chunk.data.content;
}
resolve(content);
} catch (error) {
reject(error);
}
});
};
/**
* (deprecated)
*/
export const llamaComplete = async (params, controller, callback) => {
for await (const chunk of llama(params.prompt, params, { controller })) {
callback(chunk);
}
}
// Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async (config = {}) => {
if (!generation_settings) {
const api_url = config.api_url?.replace(/\/+$/, '') || "";
const props = await fetch(`${api_url}/props`).then(r => r.json());
generation_settings = props.default_generation_settings;
}
return generation_settings;
}

View File

@ -1,21 +1,25 @@
import './styles.css';
import { createApp, defineComponent, shallowRef, computed, h } from 'vue/dist/vue.esm-bundler.js';
import { llama } from './completion.js';
import MarkdownIt from 'markdown-it';
import TextLineStream from 'textlinestream';
const isDev = import.meta.env.MODE === 'development';
// utility functions
const isString = (x) => !!x.toLowerCase;
const isNumeric = (n) => !isString(n) && !isNaN(n);
const isBoolean = (x) => x === true || x === false;
const isNumeric = (n) => !isString(n) && !isNaN(n) && !isBoolean(n);
const escapeAttr = (str) => str.replace(/>/g, '&gt;').replace(/"/g, '&quot;');
const copyStr = (str) => navigator.clipboard.writeText(str);
// constants
const BASE_URL = localStorage.getItem('base') // for debugging
|| (new URL('.', document.baseURI).href).toString(); // for production
|| (new URL('.', document.baseURI).href).toString().replace(/\/$/, ''); // for production
const CONFIG_DEFAULT = {
// Note: in order not to introduce breaking changes, please keep the same data type (number, string, etc) if you want to change the default value. Do not use null or undefined for default value.
apiKey: '',
systemMessage: 'You are a helpful assistant.',
showTokensPerSecond: false,
// make sure these default values are in sync with `common.h`
samplers: 'dkypmxt',
temperature: 0.8,
@ -101,6 +105,48 @@ const SettingsModalShortInput = defineComponent({
},
});
// message bubble component
const MessageBubble = defineComponent({
components: {
VueMarkdown
},
template: document.getElementById('message-bubble').innerHTML,
props: {
config: Object,
msg: Object,
isGenerating: Boolean,
editUserMsgAndRegenerate: Function,
regenerateMsg: Function,
},
data() {
return {
editingContent: null,
};
},
computed: {
timings() {
if (!this.msg.timings) return null;
return {
...this.msg.timings,
prompt_per_second: this.msg.timings.prompt_n / (this.msg.timings.prompt_ms / 1000),
predicted_per_second: this.msg.timings.predicted_n / (this.msg.timings.predicted_ms / 1000),
};
}
},
methods: {
copyMsg() {
copyStr(this.msg.content);
},
editMsg() {
this.editUserMsgAndRegenerate({
...this.msg,
content: this.editingContent,
});
this.editingContent = null;
},
},
});
// coversations is stored in localStorage
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
// convId is a string prefixed with 'conv-'
@ -192,10 +238,29 @@ const chatScrollToBottom = (requiresNearBottom) => {
}
};
// wrapper for SSE
async function* sendSSEPostRequest(url, fetchOptions) {
const res = await fetch(url, fetchOptions);
const lines = res.body
.pipeThrough(new TextDecoderStream())
.pipeThrough(new TextLineStream());
for await (const line of lines) {
if (isDev) console.log({line});
if (line.startsWith('data:') && !line.endsWith('[DONE]')) {
const data = JSON.parse(line.slice(5));
yield data;
} else if (line.startsWith('error:')) {
const data = JSON.parse(line.slice(6));
throw new Error(data.message || 'Unknown error');
}
}
};
const mainApp = createApp({
components: {
VueMarkdown,
SettingsModalShortInput,
MessageBubble,
},
data() {
return {
@ -209,7 +274,6 @@ const mainApp = createApp({
selectedTheme: StorageUtils.getTheme(),
config: StorageUtils.getConfig(),
showConfigDialog: false,
editingMsg: null,
// const
themes: THEMES,
configDefault: {...CONFIG_DEFAULT},
@ -226,6 +290,15 @@ const mainApp = createApp({
});
resizeObserver.observe(pendingMsgElem);
},
watch: {
viewingConvId: function(val, oldVal) {
if (val != oldVal) {
this.fetchMessages();
chatScrollToBottom();
this.hideSidebar();
}
}
},
methods: {
hideSidebar() {
document.getElementById('toggle-drawer').checked = false;
@ -237,18 +310,10 @@ const mainApp = createApp({
newConversation() {
if (this.isGenerating) return;
this.viewingConvId = StorageUtils.getNewConvId();
this.editingMsg = null;
this.fetchMessages();
chatScrollToBottom();
this.hideSidebar();
},
setViewingConv(convId) {
if (this.isGenerating) return;
this.viewingConvId = convId;
this.editingMsg = null;
this.fetchMessages();
chatScrollToBottom();
this.hideSidebar();
},
deleteConv(convId) {
if (this.isGenerating) return;
@ -256,7 +321,6 @@ const mainApp = createApp({
StorageUtils.remove(convId);
if (this.viewingConvId === convId) {
this.viewingConvId = StorageUtils.getNewConvId();
this.editingMsg = null;
}
this.fetchConversation();
this.fetchMessages();
@ -291,7 +355,6 @@ const mainApp = createApp({
this.fetchConversation();
this.fetchMessages();
this.inputMsg = '';
this.editingMsg = null;
this.generateMessage(currConvId);
chatScrollToBottom();
},
@ -299,7 +362,6 @@ const mainApp = createApp({
if (this.isGenerating) return;
this.pendingMsg = { id: Date.now()+1, role: 'assistant', content: null };
this.isGenerating = true;
this.editingMsg = null;
try {
const abortController = new AbortController();
@ -330,17 +392,21 @@ const mainApp = createApp({
dry_allowed_length: this.config.dry_allowed_length,
dry_penalty_last_n: this.config.dry_penalty_last_n,
max_tokens: this.config.max_tokens,
timings_per_token: !!this.config.showTokensPerSecond,
...(this.config.custom.length ? JSON.parse(this.config.custom) : {}),
...(this.config.apiKey ? { api_key: this.config.apiKey } : {}),
};
const config = {
controller: abortController,
api_url: BASE_URL,
endpoint: '/chat/completions',
};
for await (const chunk of llama(prompt, params, config)) {
const stop = chunk.data.stop;
const addedContent = chunk.data.choices[0].delta.content;
const chunks = sendSSEPostRequest(`${BASE_URL}/v1/chat/completions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': this.config.apiKey ? `Bearer ${this.config.apiKey}` : undefined,
},
body: JSON.stringify(params),
signal: abortController.signal,
});
for await (const chunk of chunks) {
const stop = chunk.stop;
const addedContent = chunk.choices[0].delta.content;
const lastContent = this.pendingMsg.content || '';
if (addedContent) {
this.pendingMsg = {
@ -349,6 +415,16 @@ const mainApp = createApp({
content: lastContent + addedContent,
};
}
const timings = chunk.timings;
if (timings && this.config.showTokensPerSecond) {
// only extract what's really needed, to save some space
this.pendingMsg.timings = {
prompt_n: timings.prompt_n,
prompt_ms: timings.prompt_ms,
predicted_n: timings.predicted_n,
predicted_ms: timings.predicted_ms,
};
}
}
StorageUtils.appendMsg(currConvId, this.pendingMsg);
@ -387,14 +463,10 @@ const mainApp = createApp({
this.fetchMessages();
this.generateMessage(currConvId);
},
copyMsg(msg) {
copyStr(msg.content);
},
editUserMsgAndRegenerate(msg) {
if (this.isGenerating) return;
const currConvId = this.viewingConvId;
const newContent = msg.content;
this.editingMsg = null;
StorageUtils.filterAndKeepMsgs(currConvId, (m) => m.id < msg.id);
StorageUtils.appendMsg(currConvId, {
id: Date.now(),

View File

@ -228,6 +228,7 @@ extern "C" {
GGML_API void ggml_backend_unload(ggml_backend_reg_t reg);
// Load all known backends from dynamic libraries
GGML_API void ggml_backend_load_all(void);
GGML_API void ggml_backend_load_all_from_path(const char * dir_path);
//
// Backend scheduler

View File

@ -449,11 +449,21 @@ static std::string backend_filename_suffix() {
#endif
}
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent) {
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths
std::vector<std::string> search_paths = { "./", get_executable_path() };
std::string file_prefix = backend_filename_prefix() + name + "-";
std::vector<std::string> search_paths;
if (user_search_path == nullptr) {
search_paths.push_back("./");
search_paths.push_back(get_executable_path());
} else {
#if defined(_WIN32)
search_paths.push_back(std::string(user_search_path) + "\\");
#else
search_paths.push_back(std::string(user_search_path) + "/");
#endif
}
int best_score = 0;
std::string best_path;
@ -509,21 +519,25 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent)
}
void ggml_backend_load_all() {
ggml_backend_load_all_from_path(nullptr);
}
void ggml_backend_load_all_from_path(const char * dir_path) {
#ifdef NDEBUG
bool silent = true;
#else
bool silent = false;
#endif
ggml_backend_load_best("blas", silent);
ggml_backend_load_best("cann", silent);
ggml_backend_load_best("cuda", silent);
ggml_backend_load_best("hip", silent);
ggml_backend_load_best("kompute", silent);
ggml_backend_load_best("metal", silent);
ggml_backend_load_best("rpc", silent);
ggml_backend_load_best("sycl", silent);
ggml_backend_load_best("vulkan", silent);
ggml_backend_load_best("musa", silent);
ggml_backend_load_best("cpu", silent);
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
}

View File

@ -473,7 +473,7 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128)
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
GGML_TABLE_END()
//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
//#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics
GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,

View File

@ -41,28 +41,28 @@
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
#define CC_PASCAL 600
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700
#define CC_TURING 750
#define CC_AMPERE 800
#define CC_OFFSET_AMD 1000000
#define GGML_CUDA_CC_PASCAL 600
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define GGML_CUDA_CC_VOLTA 700
#define GGML_CUDA_CC_TURING 750
#define GGML_CUDA_CC_AMPERE 800
#define GGML_CUDA_CC_OFFSET_AMD 1000000
// GCN/CNDA, wave size is 64
#define CC_GCN4 (CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define CC_VEGA (CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
#define CC_VEGA20 (CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
#define CC_CDNA (CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
#define CC_CDNA2 (CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
#define CC_CDNA3 (CC_OFFSET_AMD + 942) // MI300
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 942) // MI300
// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
#define CC_RDNA1 (CC_OFFSET_AMD + 1010) // RX 5000
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
#define CC_RDNA3 (CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
#define CC_QY1 210
#define CC_QY2 220
#define GGML_CUDA_CC_QY1 210
#define GGML_CUDA_CC_QY2 220
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
@ -131,36 +131,36 @@ typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define INT8_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
#define FLASH_ATTN_AVAILABLE
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
static constexpr bool fast_fp16_available(const int cc) {
return cc >= CC_PASCAL && cc != 610;
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
}
static constexpr bool fp16_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
}
static constexpr bool int8_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_TURING;
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
}
[[noreturn]]
@ -187,7 +187,7 @@ static __device__ void no_device_code(
#endif // __CUDA_ARCH__
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
@ -195,7 +195,7 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
}
static __device__ __forceinline__ float warp_reduce_sum(float x) {
@ -284,7 +284,7 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
}
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
@ -293,7 +293,7 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
}
#if CUDART_VERSION < CUDART_HMASK
@ -333,13 +333,13 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if __CUDA_ARCH__ >= MIN_CC_DP4A
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
return __dp4a(a, b, c);
#else // __CUDA_ARCH__ >= MIN_CC_DP4A
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
const int8_t * a8 = (const int8_t *) &a;
const int8_t * b8 = (const int8_t *) &b;
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}

View File

@ -26,7 +26,7 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __
template <bool need_check>
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) {
#if __CUDA_ARCH__ >= CC_PASCAL
#if __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
@ -64,7 +64,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
GGML_UNUSED(y);
GGML_UNUSED(k);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= CC_PASCAL
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
}
template<typename dst_t>
@ -599,7 +599,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
case GGML_TYPE_Q5_1:
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
case GGML_TYPE_Q8_0:
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= GGML_CUDA_CC_PASCAL) {
return dequantize_block_q8_0_f16_cuda;
}
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;

View File

@ -304,7 +304,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) {
if (cc >= GGML_CUDA_CC_OFFSET_AMD) {
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {

View File

@ -177,7 +177,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].smpb = prop.sharedMemPerBlock;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
info.devices[id].cc = 100*prop.major + 10*prop.minor + GGML_CUDA_CC_OFFSET_AMD;
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
@ -1081,7 +1081,7 @@ static void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = ggml_cuda_info().devices[id].cc;
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
@ -1108,7 +1108,7 @@ static void ggml_cuda_op_mul_mat_cublas(
const half beta_f16 = 0.0f;
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}
@ -1612,7 +1612,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}
@ -2357,7 +2357,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
@ -3028,7 +3028,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return true;
}
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
return cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:

View File

@ -171,7 +171,7 @@ struct mma_int_C_I16J8 {
__device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) {
#ifdef INT8_MMA_AVAILABLE
#if __CUDA_ARCH__ >= CC_AMPERE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0]));
@ -183,7 +183,7 @@ struct mma_int_C_I16J8 {
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
#endif // __CUDA_ARCH__ >= CC_AMPERE
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
@ -193,7 +193,7 @@ struct mma_int_C_I16J8 {
__device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) {
#ifdef INT8_MMA_AVAILABLE
#if __CUDA_ARCH__ >= CC_AMPERE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1]));
@ -211,7 +211,7 @@ struct mma_int_C_I16J8 {
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[3]), "r"(mma_B.x[1]));
#endif // __CUDA_ARCH__ >= CC_AMPERE
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);

View File

@ -27,7 +27,7 @@ void ggml_cuda_op_mul_mat_q(
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11;
const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
switch (src0->type) {
@ -136,7 +136,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return true;
}
if (cc < MIN_CC_DP4A) {
if (cc < GGML_CUDA_CC_DP4A) {
return false;
}
@ -144,9 +144,9 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return true;
#endif //GGML_CUDA_FORCE_MMQ
if (cc < CC_OFFSET_AMD) {
return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
if (cc < GGML_CUDA_CC_OFFSET_AMD) {
return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return (cc < CC_RDNA3 && cc != CC_CDNA && cc != CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (cc < GGML_CUDA_CC_RDNA3 && cc != GGML_CUDA_CC_CDNA && cc != GGML_CUDA_CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@ -89,9 +89,9 @@ struct tile_x_sizes {
static constexpr int get_mmq_x_max_host(const int cc) {
return int8_mma_available(cc) ? 128 :
#ifdef GGML_CUDA_FORCE_MMQ
cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? 128 : 64;
#else
cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64;
cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64;
#endif // GGML_CUDA_FORCE_MMQ
}
@ -104,23 +104,23 @@ static constexpr __device__ int get_mmq_x_max_device() {
return 128;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if __CUDA_ARCH__ >= CC_VOLTA
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#ifdef GGML_CUDA_FORCE_MMQ
return MMQ_DP4A_MAX_BATCH_SIZE;
#else // GGML_CUDA_FORCE_MMQ
return 128;
#endif // GGML_CUDA_FORCE_MMQ
#else // __CUDA_ARCH__ >= CC_VOLTA
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
return 64;
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // INT8_MMA_AVAILABLE
}
static constexpr int get_mmq_y_host(const int cc) {
return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64);
return cc >= GGML_CUDA_CC_OFFSET_AMD ? (cc == GGML_CUDA_CC_RDNA1 ? 64 : 128) : (cc >= GGML_CUDA_CC_VOLTA ? 128 : 64);
}
static constexpr __device__ int get_mmq_y_device() {
@ -131,11 +131,11 @@ static constexpr __device__ int get_mmq_y_device() {
return 128;
#endif // defined RDNA1
#else
#if __CUDA_ARCH__ >= CC_VOLTA
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
return 128;
#else
return 64;
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
@ -2574,11 +2574,11 @@ template <ggml_type type, int mmq_x, int nwarps, bool need_check>
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= CC_VOLTA
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)
#else
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static __global__ void mul_mat_q(
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
@ -2594,7 +2594,7 @@ static __global__ void mul_mat_q(
constexpr int mmq_y = get_mmq_y_device();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
{
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
@ -2602,7 +2602,7 @@ static __global__ void mul_mat_q(
blockIdx.x, blockIdx.y, 0, ne00/qk);
return;
}
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
const int64_t blocks_per_ne00 = ne00 / qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
@ -2825,7 +2825,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
const int mmq_x_max = get_mmq_x_max_host(cc);
const int mmq_y = get_mmq_y_host(cc);
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
const bool use_stream_k = cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD;
int mmq_x_best = 0;
int nparts_best = INT_MAX;

View File

@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
int64_t nwarps = 1;
int64_t rows_per_cuda_block = 1;
if (ggml_cuda_info().devices[id].cc < CC_CDNA || ggml_cuda_info().devices[id].cc == CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
switch(ncols_y) {
case 1:
nwarps = 4;

View File

@ -3,8 +3,6 @@
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
#ifdef USE_CUB
// On Windows CUB uses libraries with variables called CC_PASCAL which conflict with the define in common.cuh.
// For this reason CUB must be included BEFORE anything else.
#include <cub/cub.cuh>
using namespace cub;
#endif // USE_CUB

View File

@ -81,7 +81,7 @@ if (Vulkan_FOUND)
--target-cpp ${_ggml_vk_source}
--no-clean
DEPENDS ${_ggml_vk_shader_deps}
DEPENDS ${_ggml_vk_shader_deps} ${_ggml_vk_genshaders_cmd}
COMMENT "Generate vulkan shaders"
)

View File

@ -44,12 +44,6 @@
#define MAX_VK_BUFFERS 256
#ifndef K_QUANTS_PER_ITERATION
#define K_QUANTS_PER_ITERATION 1
#else
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
#endif
#define VK_CHECK(err, msg) \
do { \
vk::Result err_ = (err); \
@ -168,6 +162,7 @@ struct vk_device_struct {
uint32_t subgroup_size;
uint32_t shader_core_count;
bool uma;
bool float_controls_rte_fp16;
bool coopmat2;
bool coopmat_support;
@ -1792,10 +1787,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
@ -1806,10 +1801,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1, true);
@ -1820,10 +1815,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
@ -1922,17 +1917,26 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
}
ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
}
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
@ -2013,11 +2017,13 @@ static vk_device ggml_vk_get_device(size_t idx) {
vk::PhysicalDeviceDriverProperties driver_props;
vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props;
vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props;
vk::PhysicalDeviceVulkan12Properties vk12_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
driver_props.pNext = &vk12_props;
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&driver_props;
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_props;
if (maintenance4_support) {
last_struct->pNext = (VkBaseOutStructure *)&props4;
@ -2063,6 +2069,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
} else {
device->shader_core_count = 0;
}
device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16;
const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr;
@ -2425,9 +2432,11 @@ static void ggml_vk_print_gpu_info(size_t idx) {
} else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT")) {
coopmat_support = true;
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
coopmat2_support = true;
#endif
}
}

View File

@ -1,6 +1,11 @@
#version 450
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_spirv_intrinsics: enable
#if RTE16
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif
layout (push_constant) uniform parameter
{

View File

@ -2,8 +2,6 @@
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require
#define K_QUANTS_PER_ITERATION 2
#ifdef MUL_MAT_ID
#define EXPERT_COUNT 8
#endif

View File

@ -3,9 +3,11 @@
#include "mul_mat_vec_base.comp"
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
@ -20,22 +22,25 @@ void main() {
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const uint step = 8;
const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = tid - step*v_im; // 0...15 or 0...7
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - step*v_im; // 0...15 or 0...7
const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
const uint l0 = 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
f16vec2 d = data_a[ib0 + i].d;
@ -71,7 +76,7 @@ void main() {
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
@ -96,7 +101,7 @@ void main() {
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}

View File

@ -3,9 +3,11 @@
#include "mul_mat_vec_base.comp"
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
@ -20,17 +22,20 @@ void main() {
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const uint step = 8;
const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = tid - step*v_im; // 0...15 or 0...7
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - step*v_im; // 0...15 or 0...7
const uint8_t m = uint8_t(1 << (4 * v_im));
const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
const uint l0 = 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint y_offset = 128*v_im + l0;
@ -38,7 +43,7 @@ void main() {
const uint s_shift = 4 * v_im;
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
@ -66,7 +71,7 @@ void main() {
u8vec2 s10 = unpack8(s10_16);
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
[[unroll]] for (int l = 0; l < 2; ++l) {
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
@ -83,7 +88,7 @@ void main() {
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}

View File

@ -4,11 +4,12 @@
#include "mul_mat_vec_base.comp"
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
// This shader assumes K_QUANTS_PER_ITERATION == 2 for alignment of loads
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
@ -22,14 +23,17 @@ void main() {
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
const uint step = 4;
const uint il = tid/step; // 0...3
const uint ir = tid - step*il; // 0...7 or 0...3
const uint n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
const uint il = itid/step; // 0...3
const uint ir = itid - step*il; // 0...7 or 0...3
const uint n = 4;
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const uint v_in = il % 2;
@ -40,7 +44,7 @@ void main() {
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
@ -115,7 +119,7 @@ void main() {
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}

View File

@ -4,9 +4,11 @@
#include "mul_mat_vec_base.comp"
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
@ -21,11 +23,14 @@ void main() {
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/2; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%2; // 0 or 0, 1
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint il = tid/4; // 0...3
const uint ir = tid - 4*il; // 0...7 or 0...3
const uint il = itid/4; // 0...3
const uint ir = itid - 4*il; // 0...7 or 0...3
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const uint v_in = il % 2;
@ -36,7 +41,7 @@ void main() {
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) {
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
@ -143,7 +148,7 @@ void main() {
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}

View File

@ -1,6 +1,11 @@
#include "types.comp"
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_spirv_intrinsics: enable
#if RTE16
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif
layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;

View File

@ -206,10 +206,13 @@ void string_to_spv_func(const std::string& _name, const std::string& in_fname, c
std::string target_env = (name.find("_cm2") != std::string::npos) ? "--target-env=vulkan1.3" : "--target-env=vulkan1.2";
// disable spirv-opt for coopmat shaders for https://github.com/ggerganov/llama.cpp/issues/10734
std::string opt_level = coopmat ? "" : "-O";
#ifdef _WIN32
std::vector<std::string> cmd = {GLSLC, "-fshader-stage=compute", target_env, "-O", "\"" + in_path + "\"", "-o", "\"" + out_fname + "\""};
std::vector<std::string> cmd = {GLSLC, "-fshader-stage=compute", target_env, opt_level, "\"" + in_path + "\"", "-o", "\"" + out_fname + "\""};
#else
std::vector<std::string> cmd = {GLSLC, "-fshader-stage=compute", target_env, "-O", in_path, "-o", out_fname};
std::vector<std::string> cmd = {GLSLC, "-fshader-stage=compute", target_env, opt_level, in_path, "-o", out_fname};
#endif
#ifdef GGML_VULKAN_SHADER_DEBUG_INFO
@ -458,9 +461,11 @@ void process_shaders() {
string_to_spv("rope_norm_f32", "rope_norm.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("rope_norm_f16", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("rope_norm_f16_rte", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}});
string_to_spv("rope_neox_f32", "rope_neox.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("rope_neox_f16", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("rope_neox_f16_rte", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}});
string_to_spv("argsort_f32", "argsort.comp", {{"A_TYPE", "float"}});
@ -468,6 +473,7 @@ void process_shaders() {
string_to_spv("im2col_f32", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("im2col_f32_f16", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}}));
string_to_spv("im2col_f32_f16_rte", "im2col.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"RTE16", "1"}}));
string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.10.0"
version = "0.11.0"
description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [

View File

@ -456,6 +456,7 @@ extern "C" {
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
// - The output string is always null-terminated and cleared on failure
// - When retrieving a string, an extra byte must be allocated to account for the null terminator
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name