mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
backend cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels (#9921)
* backend-cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
parent
ae8de6d50a
commit
1607a5e5b0
4
Makefile
4
Makefile
@ -940,6 +940,10 @@ ggml/src/ggml-cuda/%.o: \
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
|
||||
endif # GGML_MUSA
|
||||
|
||||
ifndef GGML_NO_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
|
||||
endif
|
||||
|
||||
ifdef GGML_METAL
|
||||
MK_CPPFLAGS += -DGGML_USE_METAL
|
||||
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
|
@ -92,6 +92,7 @@ else()
|
||||
endif()
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
|
||||
|
@ -169,6 +169,9 @@ extern "C" {
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
#endif
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
|
||||
GGML_BACKEND_API bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -236,6 +236,11 @@ else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_AARCH64)
|
||||
message(STATUS "Using runtime weight conversion of Q4_0 to Q4_0_x_x to enable optimized GEMM/GEMV kernels")
|
||||
add_compile_definitions(GGML_USE_CPU_AARCH64)
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
|
||||
|
||||
|
@ -3385,3 +3385,147 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: this code is duplicated from ggml-aarch64.c
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
|
||||
block_q4_0x4 out;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
for (int i = 0; i < QK4_0 * 2; i++) {
|
||||
int src_offset = (i / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (i % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (i % blck_size_interleave);
|
||||
|
||||
out.qs[i] = in[src_id].qs[src_offset] ^ xor_mask;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// interleave 8 block_q4_0s in blocks of blck_size_interleave
|
||||
// returns an interleaved block_q4_0x8
|
||||
// in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
|
||||
// first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
|
||||
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
|
||||
block_q4_0x8 out;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
for (int i = 0; i < QK4_0 * 4; i++) {
|
||||
int src_offset = (i / (8 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (i % (8 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (i % blck_size_interleave);
|
||||
|
||||
out.qs[i] = in[src_id].qs[src_offset] ^ xor_mask;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * restrict data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
|
||||
|
||||
block_q4_0x4 * dst = (block_q4_0x4 *)t->data;
|
||||
const block_q4_0 * src = (const block_q4_0 *)data;
|
||||
block_q4_0 dst_tmp[4];
|
||||
int nrow = t->ne[1]; // Number of rows
|
||||
int nrows_interleaved = 4;
|
||||
int nblocks = t->ne[0] / QK4_0;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
|
||||
|
||||
if (nrow % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int b = 0; b < nrow; b += nrows_interleaved) {
|
||||
for (int64_t x = 0; x < nblocks; x++) {
|
||||
for (int i = 0; i < nrows_interleaved; i++) {
|
||||
dst_tmp[i] = src[x + i * nblocks];
|
||||
}
|
||||
*dst++ = make_block_q4_0x4(dst_tmp, interleave_block, 0x88);
|
||||
}
|
||||
src += nrows_interleaved * nblocks;
|
||||
}
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor *t, int interleave_block, const void * restrict data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(interleave_block == 8);
|
||||
|
||||
block_q4_0x8 * dst = (block_q4_0x8*)t->data;
|
||||
const block_q4_0 * src = (const block_q4_0*) data;
|
||||
block_q4_0 dst_tmp[8];
|
||||
int nrow = t->ne[1]; // Number of rows
|
||||
int nrows_interleaved = 8;
|
||||
int nblocks = t->ne[0] / QK4_0;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
|
||||
|
||||
if (nrow % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int b = 0; b < nrow; b += nrows_interleaved) {
|
||||
for (int64_t x = 0; x < nblocks; x++) {
|
||||
for (int i = 0; i < nrows_interleaved; i++ ) {
|
||||
dst_tmp[i] = src[x + i * nblocks];
|
||||
}
|
||||
*dst++ = make_block_q4_0x8(dst_tmp, interleave_block, 0x88);
|
||||
}
|
||||
src += nrows_interleaved * nblocks;
|
||||
}
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
// Prepare for optimized kernels if applicable
|
||||
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * restrict data, size_t data_size) {
|
||||
if (cur->type == repack_type) {
|
||||
memcpy(cur->data, data, data_size);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(cur->type == GGML_TYPE_Q4_0);
|
||||
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
repack_q4_0_to_q4_0_8_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur) {
|
||||
if (cur->type == GGML_TYPE_Q4_0) {
|
||||
// TODO: enable for AVX2 - currently disabled due to bad gemv performance
|
||||
if (/* ggml_cpu_has_avx2() || */ (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
|
||||
return GGML_TYPE_Q4_0_8_8;
|
||||
}
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
|
||||
return GGML_TYPE_Q4_0_4_8;
|
||||
}
|
||||
if (ggml_cpu_has_neon()) {
|
||||
return GGML_TYPE_Q4_0_4_4;
|
||||
}
|
||||
}
|
||||
|
||||
return cur->type;
|
||||
}
|
||||
|
@ -21,6 +21,9 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * data, size_t data_size);
|
||||
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -7330,6 +7330,7 @@ static void ggml_compute_forward_group_norm(
|
||||
static void ggml_compute_forward_mul_mat_one_chunk(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const enum ggml_type type,
|
||||
const int64_t num_rows_per_vec_dot,
|
||||
const int64_t ir0_start,
|
||||
const int64_t ir0_end,
|
||||
@ -7341,8 +7342,6 @@ static void ggml_compute_forward_mul_mat_one_chunk(
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
const bool src1_cont = ggml_is_contiguous(src1);
|
||||
|
||||
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
|
||||
@ -7430,7 +7429,11 @@ static void ggml_compute_forward_mul_mat(
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
enum ggml_type type = src0->type;
|
||||
|
||||
if (src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
|
||||
type = (enum ggml_type)(intptr_t)src0->extra;
|
||||
}
|
||||
|
||||
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||||
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
|
||||
@ -7469,15 +7472,15 @@ static void ggml_compute_forward_mul_mat(
|
||||
if (src1_cont) {
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
|
||||
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||||
nb01/ggml_type_size(src0->type),
|
||||
nb01/ggml_type_size(type),
|
||||
(const char *)src1->data + i12*nb12 + i13*nb13,
|
||||
nb11/ggml_type_size(src1->type),
|
||||
(char *)dst->data + i12*nb2 + i13*nb3,
|
||||
nb1/ggml_type_size(dst->type),
|
||||
ith, nth,
|
||||
src0->type,
|
||||
type,
|
||||
src1->type,
|
||||
dst->type))
|
||||
goto UseGgmlGemm1;
|
||||
@ -7530,15 +7533,15 @@ UseGgmlGemm1:;
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++)
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++)
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
|
||||
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
|
||||
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
|
||||
nb01/ggml_type_size(src0->type),
|
||||
nb01/ggml_type_size(type),
|
||||
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
|
||||
row_size/ggml_type_size(vec_dot_type),
|
||||
(char *)dst->data + i12*nb2 + i13*nb3,
|
||||
nb1/ggml_type_size(dst->type),
|
||||
ith, nth,
|
||||
src0->type,
|
||||
type,
|
||||
vec_dot_type,
|
||||
dst->type))
|
||||
goto UseGgmlGemm2;
|
||||
@ -7623,7 +7626,7 @@ UseGgmlGemm2:;
|
||||
const int64_t ir1_start = dr1 * ith1;
|
||||
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
|
||||
|
||||
ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
|
||||
ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
|
||||
|
||||
if (nth >= nchunk0 * nchunk1) {
|
||||
break;
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-aarch64.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <cctype>
|
||||
#include <string>
|
||||
@ -69,15 +70,84 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
|
||||
static ggml_backend_buffer_type_t bufts[] = {
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
ggml_backend_cpu_hbm_buffer_type(),
|
||||
#endif
|
||||
NULL
|
||||
// buffer type AARCH64
|
||||
|
||||
static void ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *)ggml_aarch64_get_optimal_repack_type(tensor); // NOLINT
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_aarch64_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
|
||||
enum ggml_type repack_type = (enum ggml_type)(intptr_t)tensor->extra;
|
||||
|
||||
ggml_aarch64_repack_tensor(tensor, repack_type, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_aarch64_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_AARCH64";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_aarch64_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
auto * buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||
|
||||
if (buffer == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
buffer->buft = buft;
|
||||
buffer->iface.init_tensor = ggml_backend_cpu_aarch64_buffer_init_tensor;
|
||||
buffer->iface.set_tensor = ggml_backend_cpu_aarch64_buffer_set_tensor;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_aarch64 = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_aarch64_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_aarch64_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ NULL,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return bufts;
|
||||
return &ggml_backend_cpu_buffer_type_aarch64;
|
||||
}
|
||||
|
||||
bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft) {
|
||||
return buft == ggml_backend_cpu_aarch64_buffer_type();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
|
||||
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
|
||||
std::vector<ggml_backend_buffer_type_t> bufts;
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
bufts.push_back(ggml_backend_cpu_hbm_buffer_type());
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
#endif
|
||||
|
||||
bufts.push_back(NULL);
|
||||
|
||||
return bufts;
|
||||
}();
|
||||
|
||||
return bufts.data();
|
||||
|
||||
GGML_UNUSED(device);
|
||||
}
|
||||
@ -383,6 +453,21 @@ static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_b
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
if (src0 && src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
|
||||
if (op->op != GGML_OP_MUL_MAT || src0->type != GGML_TYPE_Q4_0 || ggml_aarch64_get_optimal_repack_type(src0) == GGML_TYPE_Q4_0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 1; i < GGML_MAX_SRC; i++) {
|
||||
if (op->src[i] && op->src[i]->buffer && ggml_backend_cpu_buft_is_aarch64(op->src[i]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return
|
||||
@ -391,13 +476,13 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[1]->type == GGML_TYPE_F32;// FIXME || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
|
||||
return src1->type == GGML_TYPE_F32 || src1->type == ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
|
||||
return (src0->type == GGML_TYPE_F32 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
@ -406,7 +491,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
return ggml_backend_buft_is_host(buft) || ggml_backend_cpu_buft_is_aarch64(buft);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
@ -566,6 +651,9 @@ static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_cpu_reg(void) {
|
||||
// init CPU feature detection
|
||||
ggml_cpu_init();
|
||||
|
||||
static struct ggml_backend_reg ggml_backend_cpu_reg = {
|
||||
/* .iface = */ ggml_backend_cpu_reg_i,
|
||||
/* .context = */ NULL,
|
||||
|
@ -7254,7 +7254,7 @@ static llama_model::buft_list_t make_cpu_buft_list(llama_model & model) {
|
||||
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
||||
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
||||
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_cpu_get_extra_bufts");
|
||||
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
|
||||
if (ggml_backend_dev_get_extra_bufts_fn) {
|
||||
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
|
||||
while (extra_bufts && *extra_bufts) {
|
||||
|
Loading…
Reference in New Issue
Block a user