Importer for GPTQ quantized LLaMA models (#301)

* [WIP, broken] Importer for GPTQ quantized LLaMA models

Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa

Current status: Something is busted.  The output starts out decent, but
quickly degrades into gibberish.  This doesn't happen with either the
original GPTQ-for-LLaMa using the same weights, or llama.cpp when using
weights quantized by its own quantizer.  Is there a bug in the
conversion script that somehow only comes into play with a large context
size?

I did notice one potential issue.  It's clearly not the main cause of
the gibberish, since it doesn't happen when using q4_1 weights quantized
by llama.cpp itself, but it seems concerning.  When doing a matrix
multiplication of f16 * f32 => f32 or q4_1 * f32 => f32, at least when
the multiplication is not done with BLAS, the intermediate results are
stored in the smaller format rather than f32.  This seems like an
unnecessary waste of precision, especially in the q4_1 case.

I was originally hoping to validate the results by matching the Python
implementation's output exactly, but precision and non-associativity
issues make this very difficult, including when performing matrix
multiplications and, especially, computing norms.

Anyway, design details:

The models being imported store per-layer weights in essentially q4_1
format, although the addend and scale are shared across an entire row
rather than every group of 32 weights.  This script duplicates the
addend and scale to match ggml's expectations, at the cost of wasting
some memory.

However, there are two differences which I accommodated changing the
output format (and adding corresponding support to main.cpp) rather than
having the script match the existing one:

- The tok_embeddings and output weights (i.e. the weights that aren't
  per-layer) are f16 instead of q4_1.  They could be converted to q4_1,
  and the impact of the loss of precision would probably be low, but
  this would rule out exactly matching the Python implementation's
  output for validation.

- There is no sharding, since the input doesn't have it, and for a
  CPU-only implementation it seems more useful to avoid having to deal
  with multiple files.

The new format is differentiated from existing q4_1 format by changing
the 'f16' header flag to a new value, 4.  That said, I think a cleaner
approach would be to change main.cpp to support loading each tensor with
an arbitrary sharding configuration and type rather than hardcoding
specific combinations of types.  So far I've wasted too much time
debugging to try implementing this...

* Add missing permutation.  Now it works.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
comex 2023-03-21 09:42:25 -07:00 committed by GitHub
parent 486ae645fd
commit 16ffc013c6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 189 additions and 9 deletions

172
convert-gptq-to-ggml.py Normal file
View File

@ -0,0 +1,172 @@
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
#
import os
import re
import sys
import json
import struct
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor
if len(sys.argv) != 4:
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
sys.exit(1)
fname_model = sys.argv[1]
fname_tokenizer = sys.argv[2]
dir_out = sys.argv[3]
model = torch.load(fname_model, map_location="cpu")
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
n_layer = 1 + max(int(m.group(1)) for name in model
if (m := re.match(r'model\.layers\.([0-9]+)', name)))
# hardcoded:
n_mult = 256
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
tokenizer = SentencePieceProcessor(fname_tokenizer)
assert tokenizer.vocab_size() == n_vocab
fname_out = sys.argv[3]
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", n_vocab))
fout.write(struct.pack("i", n_embd))
fout.write(struct.pack("i", n_mult))
fout.write(struct.pack("i", n_head))
fout.write(struct.pack("i", n_layer))
fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
fout.write(struct.pack("i", 4))
# This loop unchanged from convert-pth-to-ggml.py:
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
# "<unk>" token (translated as ??)
text = " \u2047 ".encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
elif tokenizer.is_control(i):
# "<s>"/"</s>" tokens
fout.write(struct.pack("i", 0))
elif tokenizer.is_byte(i):
# "<U+XX>" tokens (which may be invalid UTF-8)
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print("Invalid token: " + piece)
sys.exit(1)
byte_value = int(piece[3:-1], 16)
fout.write(struct.pack("i", 1))
fout.write(struct.pack("B", byte_value))
else:
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
def write_header(shape, dst_name, ftype_cur):
sname = dst_name.encode('utf-8')
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
def convert_non_q4(src_name, dst_name):
v = model[src_name]
shape = v.shape
print("Processing non-Q4 variable: " + src_name + " with shape: ", shape, " and type: ", v.dtype)
if len(shape) == 1:
print(" Converting to float32")
v = v.to(torch.float32)
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
# header
write_header(shape, dst_name, ftype_cur)
# data
v.numpy().tofile(fout)
def convert_q4(src_name, dst_name, permute=False):
zeros = model[f"{src_name}.zeros"].numpy()
scales = model[f"{src_name}.scales"].numpy()
bias = model[f"{src_name}.bias"].numpy()
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
# Q4_1 does not support bias; good thing the bias is always all zeros.
assert not np.any(bias)
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
shape = (qweight.shape[0], qweight.shape[1] * 8)
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
# The output format has the int4 weights in groups of 32 rather than 8.
# It looks like this:
# For each row:
# For each group of 32 columns:
# - addend (float32, 4 bytes)
# - scale (float32, 4 bytes)
# - weights (int4 * 32, 16 bytes)
# Note that in the input, the scales and addends are shared between all
# the columns in a row, so we end up wasting quite a bit of memory with
# repeated scales and addends.
addends = -zeros # flip sign
# Since the output format is mixed between integers and floats, we have
# to hackily view the floats as int32s just so numpy will let us
# concatenate them.
addends_view = addends.view(dtype=np.int32)
scales_view = scales.view(dtype=np.int32)
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
# Repeat addends and scales:
addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
if permute:
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
# This can be done after the above conversion because it doesn't affect column order/layout.
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
.swapaxes(1, 2)
.reshape(blob.shape))
# header
write_header(shape, dst_name, 3) # ftype = Q4_1
# data
blob.tofile(fout)
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
convert_non_q4("model.norm.weight", "norm.weight")
convert_non_q4("lm_head.weight", "output.weight")
for i in range(n_layer):
convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
fout.close()
print("Done. Output file: " + fname_out)
print("")

View File

@ -157,6 +157,12 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
n_parts = LLAMA_N_PARTS.at(hparams.n_embd); n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
} }
// temp warning to tell the user to use "--n_parts"
if (hparams.f16 == 4 && n_parts != 1) {
fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
}
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx); fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
@ -198,12 +204,14 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
// for the big tensors, we have the option to store the data in 16-bit floats or quantized // for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation // in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT; // wtype is for per-layer weights, while vtype is for other weights
ggml_type wtype, vtype;
switch (model.hparams.f16) { switch (model.hparams.f16) {
case 0: wtype = GGML_TYPE_F32; break; case 0: wtype = vtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break; case 1: wtype = vtype = GGML_TYPE_F16; break;
case 2: wtype = GGML_TYPE_Q4_0; break; case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
case 3: wtype = GGML_TYPE_Q4_1; break; case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
default: default:
{ {
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
@ -224,11 +232,11 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
const int n_ctx = hparams.n_ctx; const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab; const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
@ -275,10 +283,10 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
model.layers.resize(n_layer); model.layers.resize(n_layer);
model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
// map by name // map by name
model.tensors["tok_embeddings.weight"] = model.tok_embeddings; model.tensors["tok_embeddings.weight"] = model.tok_embeddings;