diff --git a/examples/common.cpp b/examples/common.cpp index b5810f28f..c37346214 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -9,6 +9,7 @@ #include #include #include +#include #if defined(__APPLE__) && defined(__MACH__) #include @@ -295,6 +296,40 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); #endif + } else if (arg == "--main-gpu" || arg == "-mg") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef GGML_USE_CUBLAS + params.main_gpu = std::stoi(argv[i]); +#else + fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); +#endif + } else if (arg == "--tensor-split" || arg == "-ts") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef GGML_USE_CUBLAS + std::string arg_next = argv[i]; + + // split string by , and / + const std::regex regex{R"([,/]+)"}; + std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; + std::vector split_arg{it, {}}; + GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); + + for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { + if (i < split_arg.size()) { + params.tensor_split[i] = std::stof(split_arg[i]); + } else { + params.tensor_split[i] = 0.0f; + } + } +#else + fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); +#endif // GGML_USE_CUBLAS } else if (arg == "--no-mmap") { params.use_mmap = false; } else if (arg == "--mtest") { @@ -438,6 +473,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); fprintf(stderr, " number of layers to store in VRAM\n"); + fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); + fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); + fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" ); #endif fprintf(stderr, " --mtest compute maximum memory usage\n"); fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n"); @@ -483,7 +521,10 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) { auto lparams = llama_context_default_params(); lparams.n_ctx = params.n_ctx; + lparams.n_batch = params.n_batch; lparams.n_gpu_layers = params.n_gpu_layers; + lparams.main_gpu = params.main_gpu; + memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float)); lparams.seed = params.seed; lparams.f16_kv = params.memory_f16; lparams.use_mmap = params.use_mmap; diff --git a/examples/common.h b/examples/common.h index 66bdeb5e9..12b497349 100644 --- a/examples/common.h +++ b/examples/common.h @@ -21,13 +21,15 @@ int32_t get_num_physical_cores(); struct gpt_params { - int32_t seed = -1; // RNG seed - int32_t n_threads = get_num_physical_cores(); - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 512; // context size - int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_gpu_layers = 0; // number of layers to store in VRAM + int32_t seed = -1; // RNG seed + int32_t n_threads = get_num_physical_cores(); + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 512; // context size + int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_gpu_layers = 0; // number of layers to store in VRAM + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs // sampling parameters std::unordered_map logit_bias; // logit bias for specific tokens diff --git a/examples/main/README.md b/examples/main/README.md index dd0874977..149d507a8 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -286,5 +286,7 @@ These options provide extra functionality and customization when running the LLa - `--verbose-prompt`: Print the prompt before generating text. - `--mtest`: Test the model's functionality by running a series of tests to ensure it's working properly. - `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. +- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. +- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. diff --git a/examples/server/README.md b/examples/server/README.md index bba513c7e..b011302fc 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -287,6 +287,8 @@ Test(); - `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). - `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. - `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. +- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. +- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. - `--embedding`: Enable the embedding mode. **Completion function doesn't work in this mode**. - `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`; - `--port`: Set the port to listen. Default: `8080`. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 9aa7db255..31d8087ef 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -401,6 +401,10 @@ void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms) #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); fprintf(stderr, " number of layers to store in VRAM\n"); + fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); + fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); + fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); + fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" ); #endif fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); @@ -502,6 +506,50 @@ bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_para #else fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); +#endif + } + else if (arg == "--tensor-split" || arg == "-ts") + { + if (++i >= argc) + { + invalid_param = true; + break; + } +#ifdef GGML_USE_CUBLAS + std::string arg_next = argv[i]; + + // split string by , and / + const std::regex regex{R"([,/]+)"}; + std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; + std::vector split_arg{it, {}}; + GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); + + for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) + { + if (i < split_arg.size()) + { + params.tensor_split[i] = std::stof(split_arg[i]); + } + else + { + params.tensor_split[i] = 0.0f; + } + } +#else + fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); +#endif // GGML_USE_CUBLAS + } + else if (arg == "--main-gpu" || arg == "-mg") + { + if (++i >= argc) + { + invalid_param = true; + break; + } +#ifdef GGML_USE_CUBLAS + params.main_gpu = std::stoi(argv[i]); +#else + fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); #endif } else diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5385e0120..c7008905e 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -24,19 +24,35 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); } \ } while (0) +#if CUDART_VERSION >= 12 #define CUBLAS_CHECK(err) \ do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ - fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ + fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ + err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ exit(1); \ } \ } while (0) +#else +#define CUBLAS_CHECK(err) \ + do { \ + cublasStatus_t err_ = (err); \ + if (err_ != CUBLAS_STATUS_SUCCESS) { \ + fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) +#endif // CUDART_VERSION >= 11 typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); -typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream); typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v); +typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); +typedef void (*ggml_cuda_op_t)( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, + float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main); // QK = number of values after dequantization // QR = QK / number of values before dequantization @@ -132,8 +148,10 @@ static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define WARP_SIZE 32 +#define CUDA_ADD_BLOCK_SIZE 256 #define CUDA_MUL_BLOCK_SIZE 256 - +#define CUDA_SILU_BLOCK_SIZE 256 +#define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec @@ -144,6 +162,15 @@ static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define GGML_CUDA_DMMV_Y 1 #endif +static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + dst[i] = x[i] + y[i]; +} + static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -153,6 +180,45 @@ static __global__ void mul_f32(const float * x, const float * y, float * dst, co dst[i] = x[i] * y[i%ky]; } +static __global__ void silu_f32(const float * x, float * dst, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + dst[i] = x[i] / (1.0f + expf(-x[i])); +} + +static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) { + const int row = blockIdx.x*blockDim.y + threadIdx.y; + const int tid = threadIdx.x; + + const float eps = 1e-6; + + float tmp = 0.0f; // partial sum for thread in warp + + for (int i = 0; i < ncols; i += WARP_SIZE) { + const int col = i + tid; + const float xi = x[row*ncols + col]; + tmp += xi * xi; + } + + // sum up partial sums + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + const float mean = tmp / ncols; + const float scale = 1.0f / sqrtf(mean + eps); + + for (int i = 0; i < ncols; i += WARP_SIZE) { + const int col = i + tid; + dst[row*ncols + col] = scale * x[row*ncols + col]; + } +} + static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const block_q4_0 * x = (const block_q4_0 *) vx; @@ -565,8 +631,8 @@ static __device__ void vec_dot_q6_k(const void * vx, const int ib, const int iqs static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const half * x = (const half *) vx; - v0 = __half2float(x[ib + 0]); - v1 = __half2float(x[ib + 1]); + v0 = __half2float(x[ib + iqs + 0]); + v1 = __half2float(x[ib + iqs + 1]); } template @@ -599,7 +665,7 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter const int y_offset = qr == 1 ? 1 : qk/2; - float tmp = 0; // partial sum for thread in warp + float tmp = 0.0f; // partial sum for thread in warp for (int i = 0; i < ncols; i += iter_stride) { const int col = i + vals_per_iter*tid; @@ -671,11 +737,48 @@ static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y } } +static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) { + const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x); + + if (col >= ncols) { + return; + } + + const int row = blockDim.y*blockIdx.y + threadIdx.y; + const int i = row*ncols + col; + + const float theta = p*powf(theta_scale, col/2); + const float sin_theta = sinf(theta); + const float cos_theta = cosf(theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + 1]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + 1] = x0*sin_theta + x1*cos_theta; +} + +static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE; + add_f32<<>>(x, y, dst, k); +} + static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE; mul_f32<<>>(x, y, dst, kx, ky); } +static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; + silu_f32<<>>(x, dst, k); +} + +static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % WARP_SIZE == 0); + const dim3 block_dims(WARP_SIZE, 1, 1); + rms_norm_f32<<>>(x, dst, ncols); +} + static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<<>>(vx, y, k); @@ -799,7 +902,7 @@ static void dequantize_mul_mat_vec_q6_k_cuda(const void * vx, const float * y, f static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; - dequantize_block<32, 1, convert_f16><<>>(vx, y, k); + dequantize_block<1, 1, convert_f16><<>>(vx, y, k); } static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { @@ -839,33 +942,12 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { } } -static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) { - switch (type) { - case GGML_TYPE_Q4_0: - return dequantize_mul_mat_vec_q4_0_cuda; - case GGML_TYPE_Q4_1: - return dequantize_mul_mat_vec_q4_1_cuda; - case GGML_TYPE_Q5_0: - return dequantize_mul_mat_vec_q5_0_cuda; - case GGML_TYPE_Q5_1: - return dequantize_mul_mat_vec_q5_1_cuda; - case GGML_TYPE_Q8_0: - return dequantize_mul_mat_vec_q8_0_cuda; - case GGML_TYPE_Q2_K: - return dequantize_mul_mat_vec_q2_k_cuda; - case GGML_TYPE_Q3_K: - return dequantize_mul_mat_vec_q3_k_cuda; - case GGML_TYPE_Q4_K: - return dequantize_mul_mat_vec_q4_k_cuda; - case GGML_TYPE_Q5_K: - return dequantize_mul_mat_vec_q5_k_cuda; - case GGML_TYPE_Q6_K: - return dequantize_mul_mat_vec_q6_k_cuda; - case GGML_TYPE_F16: - return convert_mul_mat_vec_f16_cuda; - default: - return nullptr; - } +static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) { + GGML_ASSERT(nrows % 2 == 0); + const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1); + const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(num_blocks_x, nrows, 1); + rope_f32<<>>(x, dst, ncols, p, theta_scale); } // buffer pool for cuda @@ -890,14 +972,16 @@ struct cuda_buffer { size_t size = 0; }; -static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; +static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS]; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); + int id; + CUDA_CHECK(cudaGetDevice(&id)); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { - cuda_buffer& b = g_cuda_buffer_pool[i]; + cuda_buffer& b = g_cuda_buffer_pool[id][i]; if (b.size >= size && b.ptr != nullptr) { void * ptr = b.ptr; *actual_size = b.size; @@ -914,9 +998,11 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); + int id; + CUDA_CHECK(cudaGetDevice(&id)); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { - cuda_buffer& b = g_cuda_buffer_pool[i]; + cuda_buffer& b = g_cuda_buffer_pool[id][i]; if (b.ptr == nullptr) { b.ptr = ptr; b.size = size; @@ -927,31 +1013,87 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) { CUDA_CHECK(cudaFree(ptr)); } + +static void * g_scratch_buffer = nullptr; +static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default +static size_t g_scratch_offset = 0; + #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication. #define GGML_CUDA_MAX_EVENTS 64 -static cublasHandle_t g_cublasH = nullptr; -static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr }; -static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr }; -static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr }; + +static int g_device_count = -1; +static int g_main_device = 0; +static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; + +static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; + +static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr }; + +static cudaStream_t g_cudaStreams_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr }; +static cudaEvent_t g_cudaEvents_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_EVENTS] = { nullptr }; void ggml_init_cublas() { - if (g_cublasH == nullptr) { - // create streams - for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking)); - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking)); + static bool initialized = false; + + if (!initialized) { + CUDA_CHECK(cudaGetDeviceCount(&g_device_count)); + GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); + int64_t total_vram = 0; + fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count); + for (int id = 0; id < g_device_count; ++id) { + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); + fprintf(stderr, " Device %d: %s\n", id, prop.name); + g_tensor_split[id] = total_vram; + total_vram += prop.totalGlobalMem; } - // create events - for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { - CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming)); + for (int id = 0; id < g_device_count; ++id) { + g_tensor_split[id] /= total_vram; } - // create cublas handle - CUBLAS_CHECK(cublasCreate(&g_cublasH)); - CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH)); + for (int id = 0; id < g_device_count; ++id) { + CUDA_CHECK(cudaSetDevice(id)); + + // create streams + for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id][i], cudaStreamNonBlocking)); + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_memcpy_src1[id][i], cudaStreamNonBlocking)); + } + // create events + for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { + CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents_memcpy_src1[id][i], cudaEventDisableTiming)); + } + + // create cublas handle + CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); + CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH)); + } // configure logging to stdout // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); + + initialized = true; + } +} + +void ggml_cuda_set_tensor_split(const float * tensor_split) { + bool all_zero = true; + for (int i = 0; i < g_device_count; ++i) { + if (tensor_split[i] != 0.0f) { + all_zero = false; + break; + } + } + if (all_zero) { + return; + } + float split_sum = 0.0f; + for (int i = 0; i < g_device_count; ++i) { + g_tensor_split[i] = split_sum; + split_sum += tensor_split[i]; + } + for (int i = 0; i < g_device_count; ++i) { + g_tensor_split[i] /= split_sum; } } @@ -975,26 +1117,29 @@ void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); } -static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { - const uint64_t ne0 = src->ne[0]; - const uint64_t ne1 = src->ne[1]; - const uint64_t nb0 = src->nb[0]; - const uint64_t nb1 = src->nb[1]; - const uint64_t nb2 = src->nb[2]; - const uint64_t nb3 = src->nb[3]; - const enum ggml_type type = src->type; - const size_t ts = ggml_type_size(type); - const size_t bs = ggml_blck_size(type); +static cudaError_t ggml_cuda_h2d_tensor_2d( + void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { - const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); + char * dst_char = (char *) dst; + const int64_t ne0 = src->ne[0]; + const int64_t nb0 = src->nb[0]; + const int64_t nb1 = src->nb[1]; + const int64_t nb2 = src->nb[2]; + const int64_t nb3 = src->nb[3]; + const enum ggml_type type = src->type; + const int64_t ts = ggml_type_size(type); + const int64_t bs = ggml_blck_size(type); + int64_t i1_diff = i1_high - i1_low; + + const void * x = (const void *) ((const char *) src->data + i1_low*nb1 + i2*nb2 + i3*nb3); if (nb0 == ts && nb1 == ts*ne0/bs) { - return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); + return cudaMemcpyAsync(dst_char, x, i1_diff*nb1, cudaMemcpyHostToDevice, stream); } else if (nb0 == ts) { - return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); + return cudaMemcpy2DAsync(dst_char, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyHostToDevice, stream); } else { - for (uint64_t i1 = 0; i1 < ne1; i1++) { + for (int64_t i1 = 0; i1 < i1_diff; i1++) { const void * rx = (const void *) ((const char *) x + i1*nb1); - void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); + void * rd = (void *) (dst_char + i1*ts*ne0/bs); // pretend the row is a matrix with cols=1 cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); if (r != cudaSuccess) return r; @@ -1003,446 +1148,760 @@ static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor } } -static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[2]; - const int64_t ne0 = ne00 * ne01 * ne02 * ne03; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - size_t x_size, d_size; +inline void ggml_cuda_op_add( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ - float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0 - float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted. - float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(src1_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - const int i0 = i03*ne02 + i02; - float * c_X2 = d_X + i0*ne01*ne00; - float * c_D2 = d_D + i0*ne01*ne00; + const int64_t ne0 = src0->ne[0]; + const int64_t i01_diff = i01_high - i01_low; - cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS]; - cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS]; - cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS]; + // compute + add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); - // copy src0 to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2)); - CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); - - // wait for data - CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); - - for (int64_t i01 = 0; i01 < ne01; i01++) { - const int64_t i13 = i03%ne13; - const int64_t i12 = i02%ne12; - const int64_t i11 = i01%ne11; - const int i1 = i13*ne12*ne11 + i12*ne11 + i11; - - float * c_X1 = c_X2 + i01*ne00; - float * c_Y = d_Y + i1*ne10; - float * c_D1 = c_D2 + i01*ne00; - - // compute - mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream); - CUDA_CHECK(cudaGetLastError()); - } - - // copy dst to host - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream)); - } - } - CUDA_CHECK(cudaDeviceSynchronize()); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_D, d_size); + (void) src1; + (void) dst; + (void) src0_ddq_i; + (void) i02; + (void) i1; } -static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +inline void ggml_cuda_op_mul( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(src1_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + for (int64_t i01 = i01_low; i01 < i01_high; i01++) { + const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0 + + float * src0_ddf_i01 = src0_ddf_i + i01*ne00; + float * src1_ddf_i01 = src1_ddf_i + i11*ne10; + float * dst_ddf_i01 = dst_ddf_i + i01*ne00; + + // compute + mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + } + + (void) dst; + (void) src0_ddq_i; + (void) i02; +} + +inline void ggml_cuda_op_silu( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t i01_diff = i01_high - i01_low; + + // compute + silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src0_ddq_i; + (void) src1_ddf_i; + (void) i02; + (void) i1; +} + +inline void ggml_cuda_op_rms_norm( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t i01_diff = i01_high - i01_low; + + // compute + rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src0_ddq_i; + (void) src1_ddf_i; + (void) i02; + (void) i1; +} + +inline void ggml_cuda_op_dequantize_mul_mat_vec( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddq_i != nullptr); + GGML_ASSERT(src1_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows = i01_high - i01_low; + + switch (src0->type) { + case GGML_TYPE_Q4_0: + dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q4_1: + dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_0: + dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_1: + dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q8_0: + dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q2_K: + dequantize_mul_mat_vec_q2_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q3_K: + dequantize_mul_mat_vec_q3_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q4_K: + dequantize_mul_mat_vec_q4_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q5_K: + dequantize_mul_mat_vec_q5_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_Q6_K: + dequantize_mul_mat_vec_q6_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + case GGML_TYPE_F16: + convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); + break; + default: + GGML_ASSERT(false); + break; + } + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src0_ddf_i; + (void) i02; + (void) i1; +} + +inline void ggml_cuda_op_mul_mat_cublas( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(src1_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const float alpha = 1.0f; + const float beta = 0.0f; + + const int64_t ne00 = src0->ne[0]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int64_t ne0 = dst->ne[0]; + const int64_t i01_diff = i01_high - i01_low; + + int id; + CUDA_CHECK(cudaGetDevice(&id)); + + // the main device has a larger memory buffer to hold the results from all GPUs + // ldc == nrows of the matrix that cuBLAS writes into + int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff; + + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main)); + CUBLAS_CHECK( + cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + i01_diff, ne11, ne10, + &alpha, src0_ddf_i, ne00, + src1_ddf_i, ne10, + &beta, dst_ddf_i, ldc)); + + (void) dst; + (void) src0_ddq_i; + (void) i02; + (void) i1; +} + +inline void ggml_cuda_op_rope( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, + float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, + cudaStream_t & cudaStream_main){ + + GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(dst_ddf_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t i01_diff = i01_high - i01_low; + + const int n_past = ((int32_t *) src1->data)[0]; + const int n_dims = ((int32_t *) src1->data)[1]; + const int mode = ((int32_t *) src1->data)[2]; + GGML_ASSERT(mode == 0); + + const float theta_scale = powf(10000.0, -2.0f/n_dims); + const float p = ((mode & 1) == 0 ? n_past + i02 : i02); + + // compute + rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + + (void) dst; + (void) src0_ddq_i; + (void) src1_ddf_i; + (void) i1; +} + +static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + ggml_cuda_op_t op, bool src0_needs_f32) { const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; + const int64_t nrows0 = ggml_nrows(src0); - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; + const bool use_src1 = src1 != nullptr; + const int64_t ne10 = use_src1 ? src1->ne[0] : 1; + const int64_t ne11 = use_src1 ? src1->ne[1] : 1; + const int64_t ne12 = use_src1 ? src1->ne[2] : 1; + const int64_t ne13 = use_src1 ? src1->ne[3] : 1; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; const int nb2 = dst->nb[2]; const int nb3 = dst->nb[3]; - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - const int n_mm = ne03 * ne02; + GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); - size_t x_size, y_size, d_size; - float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); - float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); - float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + // strides for iteration over dims 3 and 2 + const int64_t src0_stride = ne00 * ne01; + const int64_t src1_stride = ne10 * ne11; + const int64_t dst_stride = ne0 * ne1; + const int64_t num_iters = ne02 * ne03; - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - int i = i03*ne02 + i02; - cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + const size_t src0_ts = ggml_type_size(src0->type); + const size_t src0_bs = ggml_blck_size(src0->type); - float * c_X = d_X + i * x_ne; - float * c_Y = d_Y + i * y_ne; - float * c_D = d_D + i * d_ne; + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; + struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; - // copy data to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); + const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool src0_is_f32 = src0->type == GGML_TYPE_F32; - // compute - CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); - CUBLAS_CHECK( - cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, c_X, ne00, - c_Y, ne10, - &beta, c_D, ne01)); + const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; - // copy dst to host - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); + + // dd = data device + char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized + float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float + float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; + float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; + + // asq = actual size quantized, asf = actual size float + size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0}; + size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0}; + size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; + size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; + + for (int id = 0; id < g_device_count; ++id) { + if (!split && id != g_main_device) { + continue; } - } - CUDA_CHECK(cudaDeviceSynchronize()); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); -} + const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; -static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - const int n_mm = ne03 * ne02; - - size_t x_size, y_size, d_size; - half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size); - half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size); - float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); - - bool src1_cont_rows = nb10 == sizeof(float); - bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - int i = i03*ne02 + i02; - cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; - - half * c_X = d_X + i * x_ne; - half * c_Y = d_Y + i * y_ne; - float * c_D = d_D + i * d_ne; - - // copy src0 to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); - - // convert src1 to fp16 - // TODO: use multiple threads - ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); - char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; - if (src1_cont_rows) { - if (src1_cont_cols) { - ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); - } - else { - for (int64_t i01 = 0; i01 < ne11; i01++) { - ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); - } - } - } - else { - for (int64_t i01 = 0; i01 < ne11; i01++) { - for (int64_t i00 = 0; i00 < ne10; i00++) { - // very slow due to no inlining - tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); - } - } - } - - // copy src1 to device - CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream)); - - // compute - CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); - CUBLAS_CHECK( - cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, c_X, CUDA_R_16F, ne00, - c_Y, CUDA_R_16F, ne10, - &beta, c_D, CUDA_R_32F, ne01, - CUBLAS_COMPUTE_32F_FAST_16F, - CUBLAS_GEMM_DEFAULT)); - - // copy dst to host - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + int64_t row_low, row_high; + if (split) { + row_low = id == 0 ? 0 : nrows0*g_tensor_split[id]; + row_low -= row_low % GGML_CUDA_DMMV_Y; + row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1]; + row_high -= row_high % GGML_CUDA_DMMV_Y; + } else { + row_low = 0; + row_high = nrows0; + } + if (row_low == row_high) { + continue; } - } - CUDA_CHECK(cudaDeviceSynchronize()); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); -} + int64_t row_diff = row_high - row_low; -static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; + cudaSetDevice(id); - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - const ggml_type type = src0->type; - const bool mul_mat_vec = ne11 == 1; - - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - const int n_mm = ne03 * ne02; - const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); - - size_t x_size, y_size, d_size, q_size; - float * d_X = nullptr; - if (!mul_mat_vec) { - d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); - } - float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); - float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); - char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size); - - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type); - dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type); - GGML_ASSERT(to_fp32_cuda != nullptr); - - for (int64_t i03 = 0; i03 < ne03; i03++) { - for (int64_t i02 = 0; i02 < ne02; i02++) { - int i = i03*ne02 + i02; - cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; - cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS]; - cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS]; - - float * c_Y = d_Y + i * y_ne; - float * c_D = d_D + i * d_ne; - char * c_Q = d_Q + i * q_sz; - - // copy src0 to device if necessary - if (src0->backend == GGML_BACKEND_CPU) { - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2)); - } else if (src0->backend == GGML_BACKEND_CUDA) { - c_Q = ((char *) src0->data) + i * q_sz; + if (src0_on_device) { + if (src0_is_f32) { + src0_ddf[id] = (float *) src0_extra->data_device[id]; } else { - GGML_ASSERT(false); + src0_ddq[id] = (char *) src0_extra->data_device[id]; } - if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel - CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); - - // copy src1 to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); - - // wait for data - CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); - - // compute - //printf("Calling dmmv\n"); - dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream); - CUDA_CHECK(cudaGetLastError()); - - } else { // general dequantization kernel + cuBLAS matrix matrix multiplication - float * c_X = d_X + i * x_ne; - -//typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); - // convert src0 to fp32 on device - to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); - CUDA_CHECK(cudaGetLastError()); - CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); - - // copy src1 to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); - - // wait for conversion - CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); - - // compute - CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); - CUBLAS_CHECK( - cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, c_X, ne00, - c_Y, ne10, - &beta, c_D, ne01)); + } else { + if (src0_is_f32) { + src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); + } else { + src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]); } + } - // copy dst to host - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + if (src0_needs_f32 && !src0_is_f32) { + src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); + } + + if (use_src1) { + if (src1_on_device) { + src1_ddf[id] = (float *) src1_extra->data_device[id]; + } else { + src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]); + } + } + if (dst_on_device) { + dst_ddf[id] = (float *) dst_extra->data_device[id]; + } else { + size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float); + dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]); + } + + for (int64_t i03 = 0; i03 < ne03; i03++) { + const int64_t i13 = i03 % ne13; + for (int64_t i02 = 0; i02 < ne02; i02++) { + const int64_t i12 = i02 % ne12; + + const int64_t i0 = i03*ne02 + i02; + const int64_t i0_offset_low = row_low/ne01; + const int64_t i0_offset_high = row_high/ne01; + + int64_t i01_low = 0; + int64_t i01_high = ne01; + if (split) { + if (i0 < i0_offset_low || i0 > i0_offset_high) { + continue; + } + if (i0 == i0_offset_low) { + i01_low = row_low % ne01; + } + if (i0 == i0_offset_high) { + i01_high = row_high % ne01; + } + } + const int64_t i01_diff = i01_high - i01_low; + if (i01_diff == 0) { + continue; + } + const int64_t i11 = i13*ne12 + i12; + + cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS]; + cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS]; + cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS]; + + // for split tensors the data begins at i0 == i0_offset_low + char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs; + float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride; + float * src1_ddf_i = src1_ddf[id] + i11*src1_stride; + float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride; + + // for split tensors the data pointer needs to be rounded down + // to the bin edge for i03, i02 bins beyond the first + if (i0 - i0_offset_low > 0) { + src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs; + src0_ddf_i -= (row_low % ne01)*ne00; + } + if (i0 - i0_offset_low > 0) { + dst_ddf_i -= (row_low % ne0)*ne1; + } + + // the main device memory buffer can be on VRAM scratch, with space for all partial results + // in that case an offset on dst_ddf_i is needed + if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) { + dst_ddf_i += i01_low; // offset is 0 if no tensor split + } + + // copy src0, src1 to device if necessary + if (use_src1) { + if (src1->backend == GGML_BACKEND_CPU) { + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_memcpy_src1)); + } else if (src1->backend == GGML_BACKEND_GPU) { + if (id != g_main_device) { + float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; + src1_ddf_i_source += i11*src1_stride; + CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float), + cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1)); + } + } else { + GGML_ASSERT(false); + } + } + CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1)); + if (!src0_on_device) { + if (src0_is_f32) { + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); + } else { + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main)); + } + } + + // convert src0 to f32 if it's necessary for the ggml_cuda_op + if (src0_needs_f32 && !src0_is_f32) { + to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main); + CUDA_CHECK(cudaGetLastError()); + } + + // wait with main stream until src1 memcpy is done + CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, cudaEvent_memcpy_src1, 0)); + + // do the computation + op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main); + + // copy dst to host or other device if necessary + if (!dst_on_device) { + void * dst_off_device; + cudaMemcpyKind kind; + if (dst->backend == GGML_BACKEND_CPU) { + dst_off_device = dst->data; + kind = cudaMemcpyDeviceToHost; + } else if (dst->backend == GGML_BACKEND_GPU) { + dst_off_device = dst_extra->data_device[g_main_device]; + kind = cudaMemcpyDeviceToDevice; + } else { + GGML_ASSERT(false); + } + if (split) { + // src0 = weight matrix is saved as a transposed matrix for better memory layout. + // dst is NOT transposed. + // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. + // Instead they need to be copied to the correct slice in ne0 = dst row index. + // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. + for (int64_t j = 0; j < ne1; ++j) { + float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main)); + } + } else { + float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main)); + } + } + } } } - CUDA_CHECK(cudaDeviceSynchronize()); - if (!mul_mat_vec) { - ggml_cuda_pool_free(d_X, x_size); + // wait until each device is finished, then free their buffers + for (int id = 0; id < g_device_count; ++id) { + CUDA_CHECK(cudaSetDevice(id)); + CUDA_CHECK(cudaDeviceSynchronize()); + if (src0_asq[id] > 0) { + ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]); + } + if (src0_asf[id] > 0) { + ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]); + } + if (src1_asf[id] > 0) { + ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]); + } + if (dst_asf[id] > 0) { + ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]); + } } - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); - ggml_cuda_pool_free(d_Q, q_size); } -void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { +void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_mul_f32(src0, src1, dst); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true); +} + +void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true); +} + +void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true); +} + +void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true); } bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + GGML_ASSERT(src0->backend != GGML_BACKEND_GPU); const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; + // if (strcmp(dst->name, "KQ") == 0 || strcmp(dst->name, "KQV") == 0) { + // fprintf(stderr, "(%ld, %ld, %ld, %ld) + (%ld, %ld, %ld, %ld) -> (%ld, %ld, %ld, %ld)\n", + // src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], + // src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], + // dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3]); + // return false; + // } + // TODO: find the optimal values for these if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && - ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) { + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { return true; } return false; } -bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { - size_t src0_sz = ggml_nbytes(src0); - size_t src1_sz = ggml_nbytes(src1); - - // mul_mat_q: src0 is converted to fp32 on device - size_t mul_mat_q_transfer = src0_sz + src1_sz; - - // mul_mat_f16: src1 is converted to fp16 on cpu - size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1); - - // choose the smaller one to transfer to the device - // TODO: this is not always the best choice due to the overhead of converting to fp16 - return mul_mat_f16_transfer < mul_mat_q_transfer; -} - -void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { - GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst)); - +void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { if (src0->type == GGML_TYPE_F32) { - ggml_cuda_mul_mat_f32(src0, src1, dst); - } - else if (src0->type == GGML_TYPE_F16) { - if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { - ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true); + } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { + if (src1->ne[1] == 1) { + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false); + } else { + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true); } - else { - ggml_cuda_mul_mat_q_f32(src0, src1, dst); - } - } - else if (ggml_is_quantized(src0->type)) { - ggml_cuda_mul_mat_q_f32(src0, src1, dst); - } - else { + } else { GGML_ASSERT(false); } } -size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { - return ggml_nelements(src1) * sizeof(ggml_fp16_t); - } - else { - return 0; - } +void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true); } -void ggml_cuda_transform_tensor(ggml_tensor * tensor) { - const int64_t ne0 = tensor->ne[0]; - const int64_t ne1 = tensor->ne[1]; - const int64_t ne2 = tensor->ne[2]; - const int64_t ne3 = tensor->ne[3]; - - const ggml_type type = tensor->type; - const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); - - size_t q_size; - char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size); - - cudaStream_t cudaStream2 = g_cudaStreams2[0]; - - // copy tensor to device - for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = 0; i2 < ne2; i2++) { - int i = i3*ne2 + i2; - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2)); - } - } - - tensor->data = dst; - tensor->backend = GGML_BACKEND_CUDA; +void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + (void) src0; + (void) src1; + (void) dst; } void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { FILE * fp = fopen(fname, "rb"); + int nrows = ggml_nrows(tensor); + const size_t nb1 = tensor->nb[1]; + ggml_backend backend = tensor->backend; + struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; - const size_t size = ggml_nbytes(tensor); + for (int id = 0; id < g_device_count; ++id) { + extra->data_device[id] = nullptr; - void * buf; - CUDA_CHECK(cudaMalloc(&buf, size)); - void * buf_host = malloc(size); + if (backend == GGML_BACKEND_GPU && id != g_main_device) { + continue; + } + + cudaSetDevice(id); + + int row_low, row_high; + if (backend == GGML_BACKEND_GPU) { + row_low = 0; + row_high = nrows; + } else if (backend == GGML_BACKEND_GPU_SPLIT) { + row_low = id == 0 ? 0 : nrows*g_tensor_split[id]; + row_low -= row_low % GGML_CUDA_DMMV_Y; + row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1]; + row_high -= row_high % GGML_CUDA_DMMV_Y; + } else { + GGML_ASSERT(false); + } + if (row_low == row_high) { + continue; + } + + int64_t nrows_split = row_high - row_low; + + const size_t offset_split = offset + row_low*nb1; + const size_t size = ggml_nbytes_split(tensor, nrows_split); + + void * buf; + CUDA_CHECK(cudaMalloc(&buf, size)); + void * buf_host = malloc(size); #ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, SEEK_SET); + int ret = _fseeki64(fp, (__int64) offset_split, SEEK_SET); #else - int ret = fseek(fp, (long) offset, SEEK_SET); + int ret = fseek(fp, (long) offset_split, SEEK_SET); #endif - GGML_ASSERT(ret == 0); // same + GGML_ASSERT(ret == 0); // same - size_t ret2 = fread(buf_host, size, 1, fp); - if (ret2 != 1) { - fprintf(stderr, "unexpectedly reached end of file"); - exit(1); + size_t ret2 = fread(buf_host, size, 1, fp); + if (ret2 != 1) { + fprintf(stderr, "unexpectedly reached end of file"); + exit(1); + } + + cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); + cudaDeviceSynchronize(); + + free(buf_host); + extra->data_device[id] = buf; } - cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); - cudaDeviceSynchronize(); - - tensor->data = buf; - free(buf_host); + tensor->extra = extra; fclose(fp); } + +void ggml_cuda_free_data(struct ggml_tensor * tensor) { + if (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) { + return; + } + + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; + + for (int id = 0; id < g_device_count; ++id) { + if (extra->data_device[id] == nullptr) { + continue; + } + + CUDA_CHECK(cudaSetDevice(id)); + CUDA_CHECK(cudaFree(extra->data_device[id])); + } + + delete extra; +} + +void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { + if (tensor->src0 != nullptr && tensor->src0->op == GGML_OP_RESHAPE) { + ggml_cuda_assign_buffers(tensor); + } + + const size_t size = ggml_nbytes(tensor); + GGML_ASSERT(size <= g_scratch_size); + if (g_scratch_offset + size > g_scratch_size) { + g_scratch_offset = 0; + } + + tensor->backend = GGML_BACKEND_GPU; + struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu; + + bool inplace = tensor->src0 != nullptr && tensor->src0->data == tensor->data; + + CUDA_CHECK(cudaSetDevice(g_main_device)); + if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) { + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra; + extra->data_device[g_main_device] = src0_extra->data_device; + GGML_ASSERT(false); + } else { + char * data = (char *) g_scratch_buffer; + if (data == nullptr) { + CUDA_CHECK(cudaMalloc(&data, g_scratch_size)); + g_scratch_buffer = data; + } + extra->data_device[g_main_device] = data + g_scratch_offset; + } + + // fprintf(stderr, "data=%p offset=%ld data_device=%p\n", data, g_scratch_offset, extra->data_device[0]); + g_scratch_offset += size; + // fprintf(stderr, "%s: scratch %d, %p - %p\n", + // tensor->name, g_scratch_index, data + g_scratch_offset, data + g_scratch_offset + size); + + GGML_ASSERT(g_scratch_offset <= g_scratch_size); + tensor->extra = extra; +} + +void ggml_cuda_set_main_device(int main_device) { + if (main_device > g_device_count) { + fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", + main_device, g_device_count, g_main_device); + return; + } + g_main_device = main_device; + if (g_device_count > 1) { + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device)); + fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name); + } +} + +void ggml_cuda_set_scratch_size(size_t scratch_size) { + g_scratch_size = scratch_size; +} + +bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){ + ggml_cuda_func_t func; + const bool any_on_device = tensor->backend == GGML_BACKEND_GPU + || tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT + || (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU); + + switch (tensor->op) { + case GGML_OP_ADD: + if (!any_on_device) { + return false; + } + func = ggml_cuda_add; + break; + case GGML_OP_MUL: + if (!any_on_device) { + return false; + } + func = ggml_cuda_mul; + break; + case GGML_OP_SILU: + if (!any_on_device) { + return false; + } + func = ggml_cuda_silu; + break; + case GGML_OP_RMS_NORM: + if (!any_on_device) { + return false; + } + func = ggml_cuda_rms_norm; + break; + case GGML_OP_MUL_MAT: + if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src0, tensor->src1, tensor)) { + return false; + } + func = ggml_cuda_mul_mat; + break; + case GGML_OP_RESHAPE: + if (!any_on_device) { + return false; + } + func = ggml_cuda_nop; + break; + case GGML_OP_ROPE: + if (!any_on_device) { + return false; + } + func = ggml_cuda_rope; + break; + default: + return false; + } + + if (params->ith != 0) { + return true; + } + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return true; + } + func(tensor->src0, tensor->src1, tensor); + return true; +} diff --git a/ggml-cuda.h b/ggml-cuda.h index 6a04dde6c..3b74e32e2 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -1,10 +1,19 @@ +#pragma once + #include "ggml.h" #ifdef __cplusplus extern "C" { #endif +#define GGML_CUDA_MAX_DEVICES 16 + +struct ggml_tensor_extra_gpu { + void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors +}; + void ggml_init_cublas(void); +void ggml_cuda_set_tensor_split(const float * tensor_split); void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); @@ -15,8 +24,12 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens void * ggml_cuda_host_malloc(size_t size); void ggml_cuda_host_free(void * ptr); -void ggml_cuda_transform_tensor(struct ggml_tensor * tensor); -void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset); +void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset); +void ggml_cuda_free_data(struct ggml_tensor * tensor); +void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); +void ggml_cuda_set_main_device(int main_device); +void ggml_cuda_set_scratch_size(size_t scratch_size); +bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); #ifdef __cplusplus } diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 7b9cbd9fc..81a975cf8 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -700,7 +700,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o } static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src1->backend == GGML_BACKEND_CL); + GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; @@ -814,7 +814,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr size_t y_size; size_t d_size; cl_mem d_X; - if (src0->backend == GGML_BACKEND_CL) { + if (src0->backend == GGML_BACKEND_GPU) { // NOLINT d_X = (cl_mem) src0->data; } else { d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); @@ -825,7 +825,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { // copy data to device - if (src0->backend != GGML_BACKEND_CL) { + if (src0->backend != GGML_BACKEND_GPU) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); } CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); @@ -854,7 +854,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr } } - if (src0->backend != GGML_BACKEND_CL) { + if (src0->backend != GGML_BACKEND_GPU) { ggml_cl_pool_free(d_X, x_size); } ggml_cl_pool_free(d_Y, y_size); @@ -890,7 +890,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr size_t y_size; size_t d_size; cl_mem d_X; - if (src0->backend == GGML_BACKEND_CL) { + if (src0->backend == GGML_BACKEND_GPU) { // NOLINT d_X = (cl_mem) src0->data; } else { d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); @@ -904,7 +904,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { // copy src0 to device - if (src0->backend != GGML_BACKEND_CL) { + if (src0->backend != GGML_BACKEND_GPU) { CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); } @@ -961,7 +961,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr } } - if (src0->backend != GGML_BACKEND_CL) { + if (src0->backend != GGML_BACKEND_GPU) { ggml_cl_pool_free(d_X, x_size); } ggml_cl_pool_free(d_Y, y_size); @@ -1017,7 +1017,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * if (src0->backend == GGML_BACKEND_CPU) { events.emplace_back(); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); - } else if (src0->backend == GGML_BACKEND_CL) { + } else if (src0->backend == GGML_BACKEND_GPU) { d_Q = (cl_mem) src0->data; } else { GGML_ASSERT(false); @@ -1102,7 +1102,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && - ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) { + ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) { return true; } @@ -1181,7 +1181,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) { CL_CHECK(clFinish(queue)); tensor->data = dst; - tensor->backend = GGML_BACKEND_CL; + tensor->backend = GGML_BACKEND_GPU; } void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { diff --git a/ggml.c b/ggml.c index 8308dd991..05889d154 100644 --- a/ggml.c +++ b/ggml.c @@ -3726,26 +3726,6 @@ struct ggml_context_container { struct ggml_context context; }; -// -// compute types -// - -enum ggml_task_type { - GGML_TASK_INIT = 0, - GGML_TASK_COMPUTE, - GGML_TASK_FINALIZE, -}; - -struct ggml_compute_params { - enum ggml_task_type type; - - int ith, nth; - - // work buffer for all threads - size_t wsize; - void * wdata; -}; - // // ggml state // @@ -3821,6 +3801,12 @@ size_t ggml_nbytes(const struct ggml_tensor * tensor) { return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]); } +size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]; +} + int ggml_blck_size(enum ggml_type type) { return GGML_BLCK_SIZE[type]; } @@ -4248,6 +4234,7 @@ struct ggml_tensor * ggml_new_tensor_impl( /*.perf_time_us =*/ 0, /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, /*.name =*/ { 0 }, + /*.extra =*/ NULL, /*.pad =*/ { 0 }, }; @@ -8265,15 +8252,8 @@ static void ggml_compute_forward_mul_f32( const int ith = params->ith; const int nth = params->nth; -#ifdef GGML_USE_CUBLAS - if (src1->backend == GGML_BACKEND_CUDA) { - if (ith == 0) { - ggml_cuda_mul(src0, src1, dst); - } - return; - } -#elif defined(GGML_USE_CLBLAST) - if (src1->backend == GGML_BACKEND_CL) { +#ifdef GGML_USE_CLBLAST + if (src1->backend == GGML_BACKEND_GPU) { if (ith == 0) { ggml_cl_mul(src0, src1, dst); } @@ -9713,14 +9693,7 @@ static void ggml_compute_forward_mul_mat_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_CUBLAS) - if (ggml_cuda_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) if (ggml_cl_can_mul_mat(src0, src1, dst)) { if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); @@ -9885,14 +9858,7 @@ static void ggml_compute_forward_mul_mat_f16_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_CUBLAS) - if (ggml_cuda_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) if (ggml_cl_can_mul_mat(src0, src1, dst)) { if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); @@ -10097,14 +10063,7 @@ static void ggml_compute_forward_mul_mat_q_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_CUBLAS) - if (ggml_cuda_can_mul_mat(src0, src1, dst)) { - if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { - ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); - } - return; - } -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) if (ggml_cl_can_mul_mat(src0, src1, dst)) { if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); @@ -13057,6 +13016,15 @@ static void ggml_compute_forward_map_binary( static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { GGML_ASSERT(params); +#ifdef GGML_USE_CUBLAS + bool skip_cpu = ggml_cuda_compute_forward(params, tensor); + if (skip_cpu) { + return; + } + GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU); + GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU); +#endif // GGML_USE_CUBLAS + switch (tensor->op) { case GGML_OP_DUP: { @@ -14363,7 +14331,6 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { node->n_tasks = 1; // TODO: this actually is doing nothing // the threads are still spinning - cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node); } else #elif defined(GGML_USE_CLBLAST) diff --git a/ggml.h b/ggml.h index d1ba15f6a..1b26da3ad 100644 --- a/ggml.h +++ b/ggml.h @@ -256,8 +256,8 @@ extern "C" { enum ggml_backend { GGML_BACKEND_CPU = 0, - GGML_BACKEND_CUDA = 1, - GGML_BACKEND_CL = 2, + GGML_BACKEND_GPU = 10, + GGML_BACKEND_GPU_SPLIT = 20, }; // model file types @@ -387,7 +387,9 @@ extern "C" { char name[GGML_MAX_NAME]; - char padding[16]; + void * extra; // extra things e.g. for ggml-cuda.cu + + char padding[4]; }; static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); @@ -425,6 +427,25 @@ extern "C" { bool no_alloc; // don't allocate memory for the tensor data }; + + // compute types + enum ggml_task_type { + GGML_TASK_INIT = 0, + GGML_TASK_COMPUTE, + GGML_TASK_FINALIZE, + }; + + struct ggml_compute_params { + enum ggml_task_type type; + + // ith = thread index, nth = number of threads + int ith, nth; + + // work buffer for all threads + size_t wsize; + void * wdata; + }; + // misc GGML_API void ggml_time_init(void); // call this once at the beginning of the program @@ -436,9 +457,10 @@ extern "C" { GGML_API void ggml_print_object (const struct ggml_object * obj); GGML_API void ggml_print_objects(const struct ggml_context * ctx); - GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor); - GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); - GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); + GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor); + GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); + GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); + GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split); GGML_API int ggml_blck_size (enum ggml_type type); GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block diff --git a/llama.cpp b/llama.cpp index 73f686003..b992321e4 100644 --- a/llama.cpp +++ b/llama.cpp @@ -59,6 +59,12 @@ static const size_t MB = 1024*1024; // TODO: dynamically determine these sizes // needs modifications in ggml +typedef void (*offload_func_t)(struct ggml_tensor * tensor); + +void llama_nop(struct ggml_tensor * tensor) { // don't offload by default + (void) tensor; +} + static const std::map & MEM_REQ_SCRATCH0() { static std::map k_sizes = { @@ -173,6 +179,7 @@ struct llama_model { struct ggml_tensor * output; std::vector layers; + int n_gpu_layers; // context struct ggml_context * ctx = NULL; @@ -198,6 +205,12 @@ struct llama_model { if (ctx) { ggml_free(ctx); } + +#ifdef GGML_USE_CUBLAS + for (size_t i = 0; i < tensors_by_name.size(); ++i) { + ggml_cuda_free_data(tensors_by_name[i].second); + } +#endif // GGML_USE_CUBLAS } }; @@ -698,6 +711,7 @@ struct llama_model_loader { } ggml_set_name(tensor, lt.name.c_str()); LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor + tensor->backend = backend; lt.ggml_tensor = tensor; num_ggml_tensors_created++; @@ -850,7 +864,10 @@ static bool kv_cache_init( struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.n_ctx =*/ 512, + /*.n_batch =*/ 512, /*.gpu_layers =*/ 0, + /*.main_gpu =*/ 0, + /*.tensor_split =*/ {0}, /*.seed =*/ -1, /*.f16_kv =*/ true, /*.logits_all =*/ false, @@ -944,7 +961,10 @@ static void llama_model_load_internal( const std::string & fname, llama_context & lctx, int n_ctx, + int n_batch, int n_gpu_layers, + int main_gpu, + const float * tensor_split, ggml_type memory_type, bool use_mmap, bool use_mlock, @@ -959,6 +979,7 @@ static void llama_model_load_internal( lctx.vocab = std::move(ml->file_loaders.at(0)->vocab); auto & model = lctx.model; model.hparams = ml->file_loaders.at(0)->hparams; + model.n_gpu_layers = n_gpu_layers; llama_file_version file_version = ml->file_loaders.at(0)->file_version; auto & hparams = model.hparams; @@ -1039,17 +1060,22 @@ static void llama_model_load_internal( } #if defined(GGML_USE_CUBLAS) -#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); + ggml_cuda_set_main_device(main_gpu); +#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU +#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) -#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CL fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); +#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU +#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU #else #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU +#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU #endif // prepare memory for the weights - size_t vram_total = 0; + size_t vram_weights = 0; + size_t vram_scratch = 0; { const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; @@ -1064,7 +1090,7 @@ static void llama_model_load_internal( { ggml_backend backend_output; if (n_gpu_layers > int(n_layer)) { // NOLINT - backend_output = LLAMA_BACKEND_OFFLOAD; + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_output = GGML_BACKEND_CPU; } @@ -1076,7 +1102,8 @@ static void llama_model_load_internal( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -1084,19 +1111,19 @@ static void llama_model_load_internal( layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); - layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend); - layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend); - layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend); - layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend); + layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split); + layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split); + layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split); + layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); - layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend); - layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend); - layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend); + layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split); + layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split); + layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split); - if (backend == LLAMA_BACKEND_OFFLOAD) { - vram_total += + if (backend == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); @@ -1113,7 +1140,7 @@ static void llama_model_load_internal( // this is the total memory required to run the inference const size_t mem_required = ctx_size + - mmapped_size - vram_total + // weights in VRAM not in memory + mmapped_size - vram_weights + // weights in VRAM not in memory MEM_REQ_SCRATCH0().at(model.type) + MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_EVAL().at (model.type); @@ -1127,12 +1154,21 @@ static void llama_model_load_internal( const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); +#ifdef GGML_USE_CUBLAS + vram_scratch = n_batch * MB; + ggml_cuda_set_scratch_size(vram_scratch); + if (n_gpu_layers > 0) { + fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n", + __func__, vram_scratch / MB); + } +#endif // GGML_USE_CUBLAS #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { fprintf(stderr, "%s: offloading output layer to GPU\n", __func__); } - fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); + fprintf(stderr, "%s: total VRAM used: %zu MB\n", + __func__, (vram_weights + vram_scratch + MB - 1) / MB); // round up #else (void) n_gpu_layers; #endif @@ -1147,6 +1183,8 @@ static void llama_model_load_internal( #if defined(GGML_USE_CUBLAS) { + ggml_cuda_set_tensor_split(tensor_split); + size_t done_size = 0; size_t data_size = 0; for (llama_load_tensor & lt : ml->tensors_map.tensors) { @@ -1156,7 +1194,8 @@ static void llama_model_load_internal( } } for (llama_load_tensor & lt : ml->tensors_map.tensors) { - if (lt.ggml_tensor->backend != GGML_BACKEND_CUDA) { + ggml_backend backend = lt.ggml_tensor->backend; + if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) { continue; } if (progress_callback) { @@ -1177,7 +1216,7 @@ static void llama_model_load_internal( } } for (llama_load_tensor & lt : ml->tensors_map.tensors) { - if (lt.ggml_tensor->backend != GGML_BACKEND_CL) { + if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) { continue; } if (progress_callback) { @@ -1187,6 +1226,9 @@ static void llama_model_load_internal( done_size += lt.size; } } +#else + (void) n_batch; + (void) tensor_split; #endif if (progress_callback) { @@ -1204,7 +1246,10 @@ static bool llama_model_load( const std::string & fname, llama_context & lctx, int n_ctx, + int n_batch, int n_gpu_layers, + int main_gpu, + float * tensor_split, ggml_type memory_type, bool use_mmap, bool use_mlock, @@ -1212,8 +1257,8 @@ static bool llama_model_load( llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - llama_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, memory_type, use_mmap, use_mlock, - vocab_only, progress_callback, progress_callback_user_data); + llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type, + use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { fprintf(stderr, "error loading model: %s\n", err.what()); @@ -1254,12 +1299,13 @@ static bool llama_eval_internal( LLAMA_ASSERT(!!kv_self.ctx); - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; - const int n_head = hparams.n_head; - const int n_vocab = hparams.n_vocab; - const int n_rot = hparams.n_embd/hparams.n_head; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_head = hparams.n_head; + const int n_vocab = hparams.n_vocab; + const int n_rot = hparams.n_embd/hparams.n_head; + const int n_gpu_layers = model.n_gpu_layers; auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; @@ -1284,7 +1330,17 @@ static bool llama_eval_internal( struct ggml_tensor * cur; struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); + const int i_gpu_start = n_layer - n_gpu_layers; + for (int il = 0; il < n_layer; ++il) { + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (il >= i_gpu_start) { + offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU + } +#endif // GGML_USE_CUBLAS + struct ggml_tensor * inpSA = inpL; lctx.use_buf(ctx0, 0); @@ -1292,20 +1348,32 @@ static bool llama_eval_internal( // norm { cur = ggml_rms_norm(ctx0, inpL); + offload_func(cur); + ggml_set_name(cur, "rms_norm_0"); // cur = cur*attention_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm); + offload_func(cur); + ggml_set_name(cur, "attention_norm_0"); } // self-attention { // compute Q and K and RoPE them + struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + // offload_func(tmpq); + ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0); - ggml_set_name(Qcur, "Qcur"); + struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + // offload_func(tmpk); + ggml_set_name(tmpk, "tmpk"); + + struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0); ggml_set_name(Kcur, "Kcur"); + struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0); + ggml_set_name(Qcur, "Qcur"); + // store key and value to memory { // compute the transposed [N, n_embd] V matrix @@ -1313,9 +1381,11 @@ static bool llama_eval_internal( ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); + ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); + ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); @@ -1390,63 +1460,104 @@ static bool llama_eval_internal( cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + offload_func(cur); + ggml_set_name(cur, "result_wo"); } lctx.use_buf(ctx0, 1); + //ggml_cuda_set_scratch(1); struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); + offload_func(inpFF); + ggml_set_name(inpFF, "inpFF"); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF); + offload_func(cur); + ggml_set_name(cur, "rms_norm_1"); // cur = cur*ffn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + offload_func(cur); + ggml_set_name(cur, "ffn_norm"); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); + offload_func(tmp); + ggml_set_name(tmp, "result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); + offload_func(cur); + ggml_set_name(cur, "result_w2"); // SILU activation cur = ggml_silu(ctx0, cur); + offload_func(cur); + ggml_set_name(cur, "silu"); cur = ggml_mul(ctx0, cur, tmp); + offload_func(cur); + ggml_set_name(cur, "silu_x_result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); + offload_func(cur); + ggml_set_name(cur, "result_w2"); } cur = ggml_add(ctx0, cur, inpFF); + offload_func(cur); + ggml_set_name(cur, "inpFF_+_result_w2"); // input for next layer inpL = cur; + } lctx.use_buf(ctx0, 0); + //ggml_cuda_set_scratch(0); // used at the end to optionally extract the embeddings struct ggml_tensor * embeddings = NULL; + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU + } +#endif // GGML_USE_CUBLAS + // norm { cur = ggml_rms_norm(ctx0, inpL); + offload_func(cur); + ggml_set_name(cur, "rms_norm_inpL"); + + cur = ggml_rms_norm(ctx0, cur); + offload_func(cur); + ggml_set_name(cur, "rms_norm_after"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.norm); + offload_func(cur); + ggml_set_name(cur, "result_norm"); embeddings = cur; } + // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); lctx.use_buf(ctx0, -1); @@ -2366,9 +2477,9 @@ struct llama_context * llama_init_from_file( ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; - if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, memory_type, - params.use_mmap, params.use_mlock, params.vocab_only, - params.progress_callback, params.progress_callback_user_data)) { + if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, + params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock, + params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { fprintf(stderr, "%s: failed to load model\n", __func__); llama_free(ctx); return nullptr; diff --git a/llama.h b/llama.h index 7a6419738..dc033b71d 100644 --- a/llama.h +++ b/llama.h @@ -1,6 +1,13 @@ #ifndef LLAMA_H #define LLAMA_H +#include "ggml.h" +#ifdef GGML_USE_CUBLAS +#include "ggml-cuda.h" +#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES +#else +#define LLAMA_MAX_DEVICES 1 +#endif // GGML_USE_CUBLAS #include #include #include @@ -65,9 +72,12 @@ extern "C" { typedef void (*llama_progress_callback)(float progress, void *ctx); struct llama_context_params { - int n_ctx; // text context - int n_gpu_layers; // number of layers to store in VRAM - int seed; // RNG seed, -1 for random + int n_ctx; // text context + int n_batch; // prompt processing batch size + int n_gpu_layers; // number of layers to store in VRAM + int main_gpu; // the GPU that is used for scratch and small tensors + float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs + int seed; // RNG seed, -1 for random bool f16_kv; // use fp16 for KV cache bool logits_all; // the llama_eval() call computes all logits, not just the last one