mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
llama : fix t5 uses of n_head and n_ff
This commit is contained in:
parent
c6ac198424
commit
18e92879d5
@ -5139,13 +5139,13 @@ static void llm_load_hparams(
|
|||||||
case 6: model.type = e_model::MODEL_60M; break; // t5-small
|
case 6: model.type = e_model::MODEL_60M; break; // t5-small
|
||||||
case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
|
case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
|
||||||
case 12:
|
case 12:
|
||||||
switch (hparams.n_ff) {
|
switch (hparams.n_ff()) {
|
||||||
case 3072: model.type = e_model::MODEL_220M; break; // t5-base
|
case 3072: model.type = e_model::MODEL_220M; break; // t5-base
|
||||||
case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
|
case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
|
||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
} break;
|
} break;
|
||||||
case 24:
|
case 24:
|
||||||
switch (hparams.n_ff) {
|
switch (hparams.n_ff()) {
|
||||||
case 4096: model.type = e_model::MODEL_770M; break; // t5-large
|
case 4096: model.type = e_model::MODEL_770M; break; // t5-large
|
||||||
case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
|
case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
|
||||||
case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
|
case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
|
||||||
@ -7329,7 +7329,7 @@ static bool llm_load_tensors(
|
|||||||
auto & layer = model.layers[i];
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
|
||||||
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {hparams.n_head, hparams.n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {hparams.n_head(), hparams.n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
@ -7342,7 +7342,7 @@ static bool llm_load_tensors(
|
|||||||
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
|
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||||
|
|
||||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
|
||||||
layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {hparams.n_head, hparams.n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {hparams.n_head(), hparams.n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
@ -7351,7 +7351,7 @@ static bool llm_load_tensors(
|
|||||||
|
|
||||||
layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
|
||||||
// this tensor seems to be unused in HF transformers implementation
|
// this tensor seems to be unused in HF transformers implementation
|
||||||
layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {hparams.n_head, hparams.n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {hparams.n_head(), hparams.n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||||
|
Loading…
Reference in New Issue
Block a user