gritlm embeddings are back babeee

This commit is contained in:
Douglas Hanley 2024-03-07 01:37:08 -06:00
parent 97936078b7
commit 1ab6aeeeee
3 changed files with 13 additions and 2 deletions

View File

@ -1304,6 +1304,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.pooling_type = params.pooling_type;
cparams.defrag_thold = params.defrag_thold;
cparams.offload_kqv = !params.no_kv_offload;
cparams.causal_attn = !params.embedding;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);

View File

@ -47,11 +47,13 @@ static std::vector<std::vector<float>> encode(llama_context* ctx, const std::vec
auto inputs_instruct = llama_tokenize(mdl, instruction, true, false);
uint64_t n_inst = inputs_instruct.size();
/*
// debug tokens - these are matching as referenced in their sample so doesn't appear to be a token issue
std::for_each(inputs.begin(), inputs.end(), [&ctx](llama_token t) {
std::printf("[%u:%s]", t, llama_token_to_piece(ctx, t).c_str());
});
std::printf("\n");
*/
// add input to batch (this increments n_tokens)
for (uint64_t j = 0; j < n_toks; j++) {
@ -88,12 +90,14 @@ static std::vector<std::vector<float>> encode(llama_context* ctx, const std::vec
normalize(emb_unorm, emb_norm.data());
result.push_back(emb_norm);
/*
// print out emb_norm
std::printf("embedding %ld: ", i);
for (uint64_t j = 0; j < 20; j++) {
for (uint64_t j = 0; j < n_embd; j++) {
std::printf("%.5f ", emb_norm[j]);
}
std::printf("\n\n");
*/
llama_batch_free(batch);
}
@ -120,6 +124,7 @@ int main(int argc, char* argv[])
);
return true;
};
cparams.embeddings = true;
cparams.causal_attn = false;
cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;

View File

@ -8057,6 +8057,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
} else {
// non-causal attention attends only the tokens within the batch (i.e. the KV cache is not used)
const int64_t n_tokens = batch.n_tokens;
const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
@ -8075,7 +8076,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
}
}
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = f;
data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
}
for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
}
}
}