Update vulkan rope implementation to support frequency factors (#7475)

This commit is contained in:
0cc4m 2024-05-23 08:59:59 +02:00 committed by GitHub
parent fbf777d2b9
commit 1b1e27cb49
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 825 additions and 676 deletions

File diff suppressed because it is too large Load Diff

View File

@ -290,6 +290,7 @@ struct vk_op_rope_neox_push_constants {
float corr_dims[4];
float theta_scale;
float inv_ndims;
uint32_t has_freq_facs;
};
struct vk_op_soft_max_push_constants {
@ -1522,8 +1523,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
}
@ -3732,7 +3733,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
}
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
switch (op) {
case GGML_OP_ADD:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
@ -3853,6 +3854,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
default:
return nullptr;
}
GGML_UNUSED(src2);
}
static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
@ -3880,12 +3883,15 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
}
template<typename PC>
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) {
#ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
if (src1 != nullptr) {
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
}
if (src2 != nullptr) {
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
}
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
#endif
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
@ -3896,6 +3902,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne0 = ne00 * ne01;
const bool use_src1 = src1 != nullptr;
const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
@ -3904,7 +3911,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
const uint64_t ne1 = ne10 * ne11;
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op);
const bool use_src2 = src2 != nullptr;
const uint64_t ne20 = use_src2 ? src2->ne[0] : 0;
const uint64_t ne21 = use_src2 ? src2->ne[1] : 0;
const uint64_t ne22 = use_src2 ? src2->ne[2] : 0;
const uint64_t ne23 = use_src2 ? src2->ne[3] : 0;
const uint64_t ne2 = ne20 * ne21;
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
ggml_vk_func_t op_func;
if (pipeline == nullptr) {
@ -3927,15 +3941,18 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
vk_buffer d_X = nullptr;
size_t x_buf_offset = 0;
vk_buffer d_Y = nullptr;
size_t y_buf_offset = 0;
vk_buffer d_Z = nullptr;
size_t z_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
bool src2_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
@ -3944,10 +3961,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
src1_uma = d_Y != nullptr;
}
if (use_src2) {
ggml_vk_host_get(ctx, src2->data, d_Z, z_buf_offset);
src2_uma = d_Z != nullptr;
}
}
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
vk_buffer d_D = extra->buffer_gpu.lock();
@ -3970,10 +3992,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
y_buf_offset = extra_src1->offset;
GGML_ASSERT(d_Y != nullptr);
}
if (use_src2 && !src2_uma) {
d_Z = extra_src2->buffer_gpu.lock();
z_buf_offset = extra_src2->offset;
GGML_ASSERT(d_Z != nullptr);
}
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0);
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) : 0;
d_sz = ggml_nbytes(dst);
if (x_buf_offset + x_sz >= d_X->size) {
@ -3982,6 +4010,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
y_sz = VK_WHOLE_SIZE;
}
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
z_sz = VK_WHOLE_SIZE;
}
if (d_buf_offset + d_sz >= d_D->size) {
d_sz = VK_WHOLE_SIZE;
}
@ -4021,13 +4052,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
y_sz *= ne12 * ne13;
}
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
z_sz *= ne22 * ne23;
}
if (d_sz != VK_WHOLE_SIZE) {
d_sz *= ne02 * ne03;
}
}
if (op == GGML_OP_SOFT_MAX) {
// Empty src1 is possible on soft_max, but the shader needs a buffer
// Empty src1 is possible in soft_max, but the shader needs a buffer
vk_subbuffer subbuf_y;
if (use_src1) {
subbuf_y = { d_Y, y_buf_offset, y_sz };
@ -4037,6 +4071,28 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (op == GGML_OP_ROPE) {
const int mode = ((int32_t *) dst->op_params)[2];
const bool is_neox = mode & 2;
if (is_neox) {
// Empty src2 is possible in rope, but the shader needs a buffer
vk_subbuffer subbuf_z;
if (use_src2) {
subbuf_z = { d_Z, z_buf_offset, z_sz };
} else {
subbuf_z = { d_X, 0, d_X->size };
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
}
} else if (use_src2) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (use_src1) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
@ -4047,6 +4103,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
} else {
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
GGML_ASSERT(op != GGML_OP_ARGSORT);
GGML_ASSERT(!use_src2);
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
@ -4088,7 +4145,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
}
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
}
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -4096,7 +4153,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx,
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -4111,7 +4168,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -4126,7 +4183,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -4141,7 +4198,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4154,7 +4211,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4168,7 +4225,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4183,7 +4240,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t dst_type_size = ggml_type_size(dst->type);
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4195,21 +4252,21 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
}
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
}
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
}
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
int32_t * op_params = (int32_t *)dst->op_params;
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
}
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -4228,7 +4285,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, {
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, {
ncols,
src1 != nullptr ? nrows_y : (uint32_t)0,
scale, max_bias,
@ -4237,11 +4294,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
});
}
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
#pragma message("TODO: implement phi3 frequency factors support")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
@ -4264,12 +4317,13 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
if (is_neox) {
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.0f / n_dims;
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims,
src2 != nullptr,
});
} else {
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
(uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1],
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}
});
@ -4292,7 +4346,7 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx,
std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl;
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, {
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
ncols,
ncols_pad,
op_params[0],
@ -5408,6 +5462,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
const ggml_tensor * src0 = node->src[0];
const ggml_tensor * src1 = node->src[1];
const ggml_tensor * src2 = node->src[2];
switch (node->op) {
case GGML_OP_UNARY:
@ -5524,7 +5579,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
break;
case GGML_OP_ROPE:
ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, node);
ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, src2, node);
break;
case GGML_OP_ARGSORT:
@ -6500,7 +6555,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<c
for (int j = 0; j < level; j++) {
std::cerr << " ";
}
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl;
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl;
done.push_back(tensor);
@ -6550,7 +6605,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
void * tensor_data = tensor->data;
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
const size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
@ -6561,12 +6616,12 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
}
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
if (tensor->src[0] != nullptr) {
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
}
if (tensor->src[1] != nullptr) {
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
@ -6577,43 +6632,11 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
free(tensor_data);
}
}
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
return;
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
return;
}
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float val = 0.0f;
if (tensor->type == GGML_TYPE_F32) {
val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
} else if (tensor->type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
}
if (std::isnan(val)) {
std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl;
std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
std::cerr << std::endl;
ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
GGML_ASSERT(false);
}
}
}
}
}
}
void * comp_result;
size_t comp_size;
size_t comp_nb[GGML_MAX_DIMS];
@ -6637,6 +6660,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
ggml_tensor * src2 = tensor->src[2];
struct ggml_init_params iparams = {
/*.mem_size =*/ 1024*1024*1024,
@ -6666,10 +6690,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src0_buffer = malloc(src0_size);
src0_clone->data = src0_buffer;
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
if (ggml_backend_buffer_is_host(src0->buffer)) {
memcpy(src0_clone->data, src0->data, src0_size);
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
} else if (ggml_backend_buffer_is_vk(src0->buffer)) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
uint64_t offset = extra->offset;
@ -6700,8 +6724,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, src0, "src0");
}
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone);
}
if (src1 != nullptr) {
src1_clone = ggml_dup_tensor(ggml_ctx, src1);
@ -6710,10 +6732,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src1_buffer = malloc(src1_size);
src1_clone->data = src1_buffer;
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
if (ggml_backend_buffer_is_host(src1->buffer)) {
memcpy(src1_clone->data, src1->data, src1_size);
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
} else if (ggml_backend_buffer_is_vk(src1->buffer)) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
uint64_t offset = extra->offset;
@ -6744,12 +6766,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, src1, "src1");
std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
std::cerr << "src1_clone=" << tensor << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
if (src1->src[0] != nullptr) {
std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
}
if (src1->src[1] != nullptr) {
std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
@ -6760,8 +6782,64 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(src1_clone, done);
}
}
if (src2 != nullptr) {
src2_clone = ggml_dup_tensor(ggml_ctx, src2);
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
src2_size = ggml_nbytes(src2);
src2_buffer = malloc(src2_size);
src2_clone->data = src2_buffer;
if (ggml_backend_buffer_is_host(src2->buffer)) {
memcpy(src2_clone->data, src2->data, src2_size);
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (ggml_backend_buffer_is_vk(src2->buffer)) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
uint64_t offset = extra->offset;
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
const int idx = i3*src2->ne[2] + i2;
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
}
}
src2_clone->nb[0] = src2->nb[0];
src2_clone->nb[1] = src2->nb[1];
for (int i = 2; i < GGML_MAX_DIMS; i++) {
src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1];
}
} else {
if (offset + src2_size >= buffer_gpu->size) {
src2_size = buffer_gpu->size - offset;
}
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src2_clone->data, src2_size);
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
}
} else {
GGML_ASSERT(false);
}
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, src2, "src2");
std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "src2_clone=" << tensor << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl;
if (src2->src[0] != nullptr) {
std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl;
}
if (src2->src[1] != nullptr) {
std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0);
std::cerr << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(src2_clone, done);
}
}
if (tensor->op == GGML_OP_MUL_MAT) {
@ -6799,7 +6877,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
float attn_factor = ((float *) tensor->op_params)[8];
float beta_fast = ((float *) tensor->op_params)[9];
float beta_slow = ((float *) tensor->op_params)[10];
tensor_clone = ggml_rope_custom(ggml_ctx, src0_clone, src1_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
} else if (tensor->op == GGML_OP_UNARY) {
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_SILU:
@ -6847,7 +6925,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
}
@ -6888,7 +6965,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
void * tensor_data = tensor->data;
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
@ -6936,12 +7013,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
@ -6977,12 +7054,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
@ -7001,12 +7078,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if (avg_err > 0.05 || std::isnan(avg_err)) {
std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
@ -7018,14 +7095,14 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
ggml_vk_print_graph_origin(tensor, done);
GGML_ASSERT(false);
} else {
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl;
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
}
free(comp_result);
comp_result = nullptr;
comp_size = 0;
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
free(tensor_data);
}
}

View File

@ -2609,7 +2609,8 @@ layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {int data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
layout (binding = 2) readonly buffer Z {float data_freq_factors[];};
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
layout (push_constant) uniform parameter {
uint ncols;
@ -2622,6 +2623,7 @@ layout (push_constant) uniform parameter {
float corr_dims[4];
float theta_scale;
float inv_ndims;
uint has_freq_facs;
} p;
float rope_yarn_ramp(const float low, const float high, const uint i0) {
@ -2671,7 +2673,8 @@ void main() {
const float cur_rot = p.inv_ndims * ic - ib;
const int pos = data_b[i2];
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f);
const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f;
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor;
float cos_theta, sin_theta;
rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);