llama : skip token bounds check when evaluating embeddings (#9437)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run

This commit is contained in:
slaren 2024-09-11 17:52:13 +02:00 committed by GitHub
parent 8db003a19d
commit 1b28061400
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -16076,19 +16076,21 @@ static int llama_decode_internal(
return -1; return -1;
} }
for (uint32_t i = 0; i < n_tokens_all; ++i) {
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= lctx.model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
return -1;
}
}
const auto & model = lctx.model; const auto & model = lctx.model;
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams; const auto & cparams = lctx.cparams;
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
if (batch_all.token) {
for (uint32_t i = 0; i < n_tokens_all; ++i) {
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
return -1;
}
}
}
GGML_ASSERT(n_tokens_all <= cparams.n_batch); GGML_ASSERT(n_tokens_all <= cparams.n_batch);
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
@ -16375,19 +16377,21 @@ static int llama_encode_internal(
return -1; return -1;
} }
for (uint32_t i = 0; i < n_tokens; ++i) {
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= lctx.model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
return -1;
}
}
const auto & model = lctx.model; const auto & model = lctx.model;
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams; const auto & cparams = lctx.cparams;
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
if (batch.token) {
for (uint32_t i = 0; i < n_tokens; ++i) {
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
return -1;
}
}
}
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens"); GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");