convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens

This commit is contained in:
klosax 2023-08-01 23:40:50 +02:00 committed by GitHub
parent 49380a23a3
commit 1b4f9c8eb9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -47,51 +47,35 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM":
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
list_vars = model.state_dict()
# count tensors to be converted
tensor_count = 0
for name in list_vars.keys():
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
tensor_count += 1
gguf_writer = gguf.GGUFWriter.open(fname_out)
# This must be changed when adding/deleting kv
kv_count = 17
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
print("write gguf header")
gguf_writer.write_header(tensor_count, kv_count)
print("write gguf hparams")
print("gguf: add key-values, metadata")
llm_arch = "gptneox"
gguf_writer.write_name("pythia-70b-deduped")
gguf_writer.write_description("gguf test model")
gguf_writer.write_architecture(llm_arch)
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.write_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
gguf_writer.write_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.write_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
gguf_writer.add_name("pythia-70b-deduped")
gguf_writer.add_description("gguf test model")
gguf_writer.add_architecture(llm_arch)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"])
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
# TOKENIZATION
print("write gguf tokenizer")
print("gguf: add key-values, tokenizer")
tokens: List[str] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# vocab type gpt2
print("Adding gpt2 tokenizer vocab")
print("gguf: adding gpt2 tokenizer vocab")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
@ -101,12 +85,12 @@ if Path(dir_model + "/tokenizer.json").is_file():
merges = tokenizer["model"]["merges"]
gguf_writer.write_tokenizer_model("gpt2")
gguf_writer.write_token_list(tokens)
gguf_writer.write_token_merges(merges)
gguf_writer.add_tokenizer_model("gpt2")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_merges(merges)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
print("Adding special token ids")
print("gguf: adding special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
@ -116,33 +100,33 @@ if Path(dir_model + "/tokenizer.json").is_file():
if "bos_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]:
gguf_writer.write_uint32("tokenizer.ggml.bos_token_id", key["id"] )
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]:
gguf_writer.write_uint32("tokenizer.ggml.eos_token_id", key["id"] )
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]:
gguf_writer.write_uint32("tokenizer.ggml.unknown_token_id", key["id"] )
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]:
gguf_writer.write_uint32("tokenizer.ggml.separator_token_id", key["id"] )
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]:
gguf_writer.write_uint32("tokenizer.ggml.padding_token_id", key["id"] )
gguf_writer.add_pad_token_id(key["id"])
# TENSORS
# tensor info
print("write gguf tensor info")
print("gguf: add gguf tensor info")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
@ -167,19 +151,25 @@ for name in list_vars.keys():
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor_info(name, data)
gguf_writer.add_tensor_info(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write key-values")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensor info")
gguf_writer.write_ti_data_to_file()
# tensor data
print("write gguf tensor data")
print("gguf: write tensor data")
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Process tensor: " + name + " with shape: ", data.shape)
# print("Process tensor: " + name + " with shape: ", data.shape)
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
print(" Skip tensor: " + name)
# print(" Skip tensor: " + name)
continue
n_dims = len(data.shape)
@ -188,23 +178,23 @@ for name in list_vars.keys():
ftype_cur = 0
if ftype != 0:
if name.endswith(".weight") and n_dims == 2:
print(" Converting to float16")
# print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
# print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
# print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
gguf_writer.write_tensor(data)
gguf_writer.write_tensor_to_file(data)
gguf_writer.close()
print("Done. Output file: " + fname_out)
print("gguf: conversion done, output file: " + fname_out)
print("")