CUDA: launch_bounds, small q4_K, q5_K mmq refactor (#2596)

This commit is contained in:
Johannes Gäßler 2023-08-14 10:41:22 +02:00 committed by GitHub
parent 2feb8934eb
commit 1cd06fa25e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1753,7 +1753,6 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
}
// contiguous u/y values
// also used for q5_K
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
@ -1763,19 +1762,18 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
float sumf_m = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < VDR_Q4_K_Q8_1_MMQ; i0 += (QI8_1/QR4_K)) {
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int i = i0; i < i0 + (QI8_1/QR4_K); ++i) {
sumi_d = __dp4a(v[2*i+0], u[2*i+0], sumi_d); // SIMD dot product
sumi_d = __dp4a(v[2*i+1], u[2*i+1], sumi_d); // SIMD dot product
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i0 / 4]);
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i0/4] * sumi_d);
sumf_m += ds8f.y * m[i0/4]; // sum of q8_1 block * q4_K min val
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
@ -1792,7 +1790,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
#define VDR_Q5_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
@ -1829,6 +1827,40 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
#define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ 8
@ -2824,18 +2856,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
int v[QR4_K*VDR_Q4_K_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_K_Q8_1_MMQ; ++l) {
v[l + 0] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 0) & 0x0F0F0F0F;
v[l + (QI4_K/4)] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 4) & 0x0F0F0F0F;
}
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(v, &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
@ -2882,7 +2907,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
u[2*i+1] = q8[4];
}
return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, bq5_K->dm, d8);
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
#else
@ -3025,7 +3050,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
@ -3301,7 +3327,11 @@ template <bool need_check> static __global__ void mul_mat_q4_0(
#define MMQ_Y_Q4_1_PASCAL 64
#define NWARPS_Q4_1_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q4_1(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q4_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3471,7 +3501,11 @@ template <bool need_check> static __global__ void mul_mat_q2_K(
#define MMQ_Y_Q3_K_PASCAL 64
#define NWARPS_Q3_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q3_K(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q3_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3501,11 +3535,15 @@ template <bool need_check> static __global__ void mul_mat_q3_K(
#define MMQ_X_Q4_K_AMPERE 64
#define MMQ_Y_Q4_K_AMPERE 128
#define NWARPS_Q4_K_AMPERE 4
#define MMQ_X_Q4_K_PASCAL 32
#define MMQ_X_Q4_K_PASCAL 64
#define MMQ_Y_Q4_K_PASCAL 64
#define NWARPS_Q4_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q4_K(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q4_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
@ -3569,11 +3607,15 @@ template <bool need_check> static __global__ void mul_mat_q5_K(
#define MMQ_X_Q6_K_AMPERE 64
#define MMQ_Y_Q6_K_AMPERE 64
#define NWARPS_Q6_K_AMPERE 4
#define MMQ_X_Q6_K_PASCAL 32
#define MMQ_X_Q6_K_PASCAL 64
#define MMQ_Y_Q6_K_PASCAL 64
#define NWARPS_Q6_K_PASCAL 8
template <bool need_check> static __global__ void mul_mat_q6_K(
template <bool need_check> static __global__ void
#if __CUDA_ARCH__ < CC_TURING
__launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
#endif // __CUDA_ARCH__ < CC_TURING
mul_mat_q6_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {