diff --git a/README.md b/README.md index a83a3c128..7b72290e4 100644 --- a/README.md +++ b/README.md @@ -9,13 +9,13 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ -**Hot topics:** +### 🚧 Incoming breaking change + refactoring: -- Simple web chat example: https://github.com/ggerganov/llama.cpp/pull/1998 -- k-quants now support super-block size of 64: https://github.com/ggerganov/llama.cpp/pull/2001 -- New roadmap: https://github.com/users/ggerganov/projects/7 -- Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985 -- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1 +See PR https://github.com/ggerganov/llama.cpp/pull/2398 for more info. + +To devs: avoid making big changes to `llama.h` / `llama.cpp` until merged + +----
Table of Contents @@ -99,6 +99,7 @@ as the main playground for developing new features for the [ggml](https://github - Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) +- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj) **UI:** diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 9eadbeaa9..f3c045aec 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -5,6 +5,7 @@ #include #include #include +#include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data @@ -121,6 +122,27 @@ void perplexity(llama_context * ctx, const gpt_params & params) { printf("\n"); } +std::vector hellaswag_evaluate_tokens(llama_context * ctx, const std::vector& tokens, int n_past, int n_batch, + int n_vocab, int n_thread) { + std::vector result; + result.reserve(tokens.size() * n_vocab); + size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch; + for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) { + size_t n_tokens = tokens.size() - i_chunk * n_batch; + n_tokens = std::min(n_tokens, size_t(n_batch)); + if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return {}; + } + + const auto logits = llama_get_logits(ctx); + result.insert(result.end(), logits, logits + n_tokens * n_vocab); + + n_past += n_tokens; + } + return result; +} + void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // @@ -209,50 +231,93 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { double acc = 0.0f; const int n_vocab = llama_n_vocab(ctx); + std::vector tok_logits(n_vocab); + for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { // Tokenize the context to count tokens std::vector context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos); size_t context_size = context_embd.size(); - for (size_t ending_idx=0;ending_idx<4;ending_idx++) { + // Do the 1st ending + // In this case we include the context when evaluating + auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], prepend_bos); + auto query_size = query_embd.size(); + //printf("First query: %d\n",(int)query_size); + + // Stop if query wont fit the ctx window + if (query_size > (size_t)params.n_ctx) { + fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); + return; + } + + // Speedup small evaluations by evaluating atleast 32 tokens + if (query_size < 32) { + query_embd.resize(32); + } + + auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads); + if (logits.empty()) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return; + } + + std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float)); + const auto first_probs = softmax(tok_logits); + + hs_data[task_idx].ending_logprob_count[0] = 1; + hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]); + + // Calculate the logprobs over the ending + for (size_t j = context_size; j < query_size - 1; j++) { + + std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float)); + + const float prob = softmax(tok_logits)[query_embd[j + 1]]; + + hs_data[task_idx].ending_logprob[0] += std::log(prob); + hs_data[task_idx].ending_logprob_count[0]++; + } + + // Calculate the mean token logprob for acc_norm + hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0]; + + // Do the remaining endings + // For these, we use the bare ending with n_past = context_size + // + for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) { // Tokenize the query - std::vector query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos); - size_t query_size = query_embd.size(); + query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false); + query_size = query_embd.size(); // Stop if query wont fit the ctx window - if (query_size > (size_t)params.n_ctx) { + if (context_size + query_size > (size_t)params.n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } // Speedup small evaluations by evaluating atleast 32 tokens - if (query_size < 32) { - query_embd.resize(32); - } + // No, resizing to 32 is actually slightly slower (at least on CUDA) + //if (query_size < 32) { + // query_embd.resize(32); + //} // Evaluate the query - if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) { + logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads); + if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } - const auto query_logits = llama_get_logits(ctx); - std::vector logits; - logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab); - - hs_data[task_idx].ending_logprob_count[ending_idx] = 0; - hs_data[task_idx].ending_logprob[ending_idx] = 0.0f; + hs_data[task_idx].ending_logprob_count[ending_idx] = 1; + hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]); // Calculate the logprobs over the ending - for (size_t j = context_size-1; j < query_size - 1; j++) { - // Calculate probability of next token, given the previous ones. - const std::vector tok_logits( - logits.begin() + (j + 0) * n_vocab, - logits.begin() + (j + 1) * n_vocab); + for (size_t j = 0; j < query_size - 1; j++) { + std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float)); - const float prob = softmax(tok_logits)[query_embd[ j + 1]]; + const float prob = softmax(tok_logits)[query_embd[j + 1]]; hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob); hs_data[task_idx].ending_logprob_count[ending_idx]++; @@ -267,9 +332,9 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { } // Find the ending with maximum logprob - size_t ending_logprob_max_idx = -1; - double ending_logprob_max_val = -INFINITY; - for (size_t j=0; j < 4; j++) { + size_t ending_logprob_max_idx = 0; + double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0]; + for (size_t j = 1; j < 4; j++) { if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) { ending_logprob_max_idx = j; ending_logprob_max_val = hs_data[task_idx].ending_logprob[j]; diff --git a/examples/server/deps.sh b/examples/server/deps.sh index 1e9fe964b..ea23e6450 100755 --- a/examples/server/deps.sh +++ b/examples/server/deps.sh @@ -11,8 +11,10 @@ echo >> $PUBLIC/index.js # add newline FILES=$(ls $PUBLIC) +cd $PUBLIC for FILE in $FILES; do - func=$(echo $FILE | tr '.' '_') - echo "generate $FILE.hpp ($func)" - xxd -n $func -i $PUBLIC/$FILE > $DIR/$FILE.hpp + echo "generate $FILE.hpp" + + # use simple flag for old version of xxd + xxd -i $FILE > $DIR/$FILE.hpp done diff --git a/examples/server/public/index.html b/examples/server/public/index.html index f204fff18..5eedb0b28 100644 --- a/examples/server/public/index.html +++ b/examples/server/public/index.html @@ -144,12 +144,12 @@ import { SchemaConverter } from '/json-schema-to-grammar.mjs'; const session = signal({ - prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.", + prompt: "This is a conversation between User and Llama, a friendly chatbot. Llama is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision.", template: "{{prompt}}\n\n{{history}}\n{{char}}:", historyTemplate: "{{name}}: {{message}}", transcript: [], type: "chat", - char: "llama", + char: "Llama", user: "User", }) diff --git a/ggml-metal.metal b/ggml-metal.metal index 3f3125236..88d48f6c6 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -1898,10 +1898,11 @@ kernel void kernel_mul_mm(device const uchar * src0, threadgroup float *temp_str = ((threadgroup float *)shared_memory) \ + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; for (int i = 0; i < 8; i++) { + threadgroup_barrier(mem_flags::mem_device); simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); } - threadgroup_barrier(mem_flags::mem_threadgroup); + threadgroup_barrier(mem_flags::mem_device); device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0; if (sgitg==0) { for (int i = 0; i < n_rows; i++) { diff --git a/ggml.c b/ggml.c index 228271fc2..c917d73c7 100644 --- a/ggml.c +++ b/ggml.c @@ -1643,11 +1643,37 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { + [GGML_TYPE_I8] = { + .type_name = "i8", + .blck_size = 1, + .type_size = sizeof(int8_t), + .is_quantized = false, + }, + [GGML_TYPE_I16] = { + .type_name = "i16", + .blck_size = 1, + .type_size = sizeof(int16_t), + .is_quantized = false, + }, + [GGML_TYPE_I32] = { + .type_name = "i32", + .blck_size = 1, + .type_size = sizeof(int32_t), + .is_quantized = false, + }, [GGML_TYPE_F32] = { + .type_name = "f32", + .blck_size = 1, + .type_size = sizeof(float), + .is_quantized = false, .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, .vec_dot_type = GGML_TYPE_F32, }, [GGML_TYPE_F16] = { + .type_name = "f16", + .blck_size = 1, + .type_size = sizeof(ggml_fp16_t), + .is_quantized = false, .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row, @@ -1655,6 +1681,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_F16, }, [GGML_TYPE_Q4_0] = { + .type_name = "q4_0", + .blck_size = QK4_0, + .type_size = sizeof(block_q4_0), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q4_0, .from_float = quantize_row_q4_0, .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference, @@ -1662,6 +1692,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q4_1] = { + .type_name = "q4_1", + .blck_size = QK4_1, + .type_size = sizeof(block_q4_1), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q4_1, .from_float = quantize_row_q4_1, .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference, @@ -1669,6 +1703,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_1, }, [GGML_TYPE_Q5_0] = { + .type_name = "q5_0", + .blck_size = QK5_0, + .type_size = sizeof(block_q5_0), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q5_0, .from_float = quantize_row_q5_0, .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference, @@ -1676,6 +1714,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q5_1] = { + .type_name = "q5_1", + .blck_size = QK5_1, + .type_size = sizeof(block_q5_1), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q5_1, .from_float = quantize_row_q5_1, .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference, @@ -1683,6 +1725,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_1, }, [GGML_TYPE_Q8_0] = { + .type_name = "q8_0", + .blck_size = QK8_0, + .type_size = sizeof(block_q8_0), + .is_quantized = true, .to_float = dequantize_row_q8_0, .from_float = quantize_row_q8_0, .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference, @@ -1690,12 +1736,20 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_0, }, [GGML_TYPE_Q8_1] = { + .type_name = "q8_1", + .blck_size = QK8_1, + .type_size = sizeof(block_q8_1), + .is_quantized = true, .from_float = quantize_row_q8_1, .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference, .vec_dot_type = GGML_TYPE_Q8_1, }, #ifdef GGML_USE_K_QUANTS [GGML_TYPE_Q2_K] = { + .type_name = "q2_K", + .blck_size = QK_K, + .type_size = sizeof(block_q2_K), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q2_K, .from_float = quantize_row_q2_K, .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference, @@ -1703,6 +1757,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q3_K] = { + .type_name = "q3_K", + .blck_size = QK_K, + .type_size = sizeof(block_q3_K), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q3_K, .from_float = quantize_row_q3_K, .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference, @@ -1710,6 +1768,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q4_K] = { + .type_name = "q4_K", + .blck_size = QK_K, + .type_size = sizeof(block_q4_K), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q4_K, .from_float = quantize_row_q4_K, .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference, @@ -1717,6 +1779,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q5_K] = { + .type_name = "q5_K", + .blck_size = QK_K, + .type_size = sizeof(block_q5_K), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q5_K, .from_float = quantize_row_q5_K, .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference, @@ -1724,6 +1790,10 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q6_K] = { + .type_name = "q6_K", + .blck_size = QK_K, + .type_size = sizeof(block_q6_K), + .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_q6_K, .from_float = quantize_row_q6_K, .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference, @@ -1731,15 +1801,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .vec_dot_type = GGML_TYPE_Q8_K, }, [GGML_TYPE_Q8_K] = { + .type_name = "q8_K", + .blck_size = QK_K, + .type_size = sizeof(block_q8_K), + .is_quantized = true, .from_float = quantize_row_q8_K, } #endif }; // For internal test use -ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) { - GGML_ASSERT(i < GGML_TYPE_COUNT); - return type_traits[i]; +ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { + GGML_ASSERT(type < GGML_TYPE_COUNT); + return type_traits[type]; } @@ -3648,98 +3722,6 @@ inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) { *s = idx; } -// -// data types -// - -static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { - [GGML_TYPE_F32] = 1, - [GGML_TYPE_F16] = 1, - [GGML_TYPE_Q4_0] = QK4_0, - [GGML_TYPE_Q4_1] = QK4_1, - [GGML_TYPE_Q5_0] = QK5_0, - [GGML_TYPE_Q5_1] = QK5_1, - [GGML_TYPE_Q8_0] = QK8_0, - [GGML_TYPE_Q8_1] = QK8_1, -#ifdef GGML_USE_K_QUANTS - [GGML_TYPE_Q2_K] = QK_K, - [GGML_TYPE_Q3_K] = QK_K, - [GGML_TYPE_Q4_K] = QK_K, - [GGML_TYPE_Q5_K] = QK_K, - [GGML_TYPE_Q6_K] = QK_K, - [GGML_TYPE_Q8_K] = QK_K, -#endif - [GGML_TYPE_I8] = 1, - [GGML_TYPE_I16] = 1, - [GGML_TYPE_I32] = 1, -}; -static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated"); - -static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { - [GGML_TYPE_F32] = sizeof(float), - [GGML_TYPE_F16] = sizeof(ggml_fp16_t), - [GGML_TYPE_Q4_0] = sizeof(block_q4_0), - [GGML_TYPE_Q4_1] = sizeof(block_q4_1), - [GGML_TYPE_Q5_0] = sizeof(block_q5_0), - [GGML_TYPE_Q5_1] = sizeof(block_q5_1), - [GGML_TYPE_Q8_0] = sizeof(block_q8_0), - [GGML_TYPE_Q8_1] = sizeof(block_q8_1), -#ifdef GGML_USE_K_QUANTS - [GGML_TYPE_Q2_K] = sizeof(block_q2_K), - [GGML_TYPE_Q3_K] = sizeof(block_q3_K), - [GGML_TYPE_Q4_K] = sizeof(block_q4_K), - [GGML_TYPE_Q5_K] = sizeof(block_q5_K), - [GGML_TYPE_Q6_K] = sizeof(block_q6_K), - [GGML_TYPE_Q8_K] = sizeof(block_q8_K), -#endif - [GGML_TYPE_I8] = sizeof(int8_t), - [GGML_TYPE_I16] = sizeof(int16_t), - [GGML_TYPE_I32] = sizeof(int32_t), -}; -static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated"); - -static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { - [GGML_TYPE_F32] = "f32", - [GGML_TYPE_F16] = "f16", - [GGML_TYPE_Q4_0] = "q4_0", - [GGML_TYPE_Q4_1] = "q4_1", - [GGML_TYPE_Q5_0] = "q5_0", - [GGML_TYPE_Q5_1] = "q5_1", - [GGML_TYPE_Q8_0] = "q8_0", - [GGML_TYPE_Q8_1] = "q8_1", - [GGML_TYPE_Q2_K] = "q2_K", - [GGML_TYPE_Q3_K] = "q3_K", - [GGML_TYPE_Q4_K] = "q4_K", - [GGML_TYPE_Q5_K] = "q5_K", - [GGML_TYPE_Q6_K] = "q6_K", - [GGML_TYPE_Q8_K] = "q8_K", - [GGML_TYPE_I8] = "i8", - [GGML_TYPE_I16] = "i16", - [GGML_TYPE_I32] = "i32", -}; -static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated"); - -static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { - [GGML_TYPE_F32] = false, - [GGML_TYPE_F16] = false, - [GGML_TYPE_Q4_0] = true, - [GGML_TYPE_Q4_1] = true, - [GGML_TYPE_Q5_0] = true, - [GGML_TYPE_Q5_1] = true, - [GGML_TYPE_Q8_0] = true, - [GGML_TYPE_Q8_1] = true, - [GGML_TYPE_Q2_K] = true, - [GGML_TYPE_Q3_K] = true, - [GGML_TYPE_Q4_K] = true, - [GGML_TYPE_Q5_K] = true, - [GGML_TYPE_Q6_K] = true, - [GGML_TYPE_Q8_K] = true, - [GGML_TYPE_I8] = false, - [GGML_TYPE_I16] = false, - [GGML_TYPE_I32] = false, -}; -static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated"); - static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "NONE", @@ -4109,7 +4091,7 @@ size_t ggml_nbytes(const struct ggml_tensor * tensor) { // // is enough, but just in case, adding the second part - return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]); + return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type)); } size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { @@ -4119,23 +4101,27 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); - return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]; + return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type); } int ggml_blck_size(enum ggml_type type) { - return GGML_BLCK_SIZE[type]; + return type_traits[type].blck_size; } size_t ggml_type_size(enum ggml_type type) { - return GGML_TYPE_SIZE[type]; + return type_traits[type].type_size; } float ggml_type_sizef(enum ggml_type type) { - return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type]; + return ((float)(type_traits[type].type_size))/type_traits[type].blck_size; } const char * ggml_type_name(enum ggml_type type) { - return GGML_TYPE_NAME[type]; + return type_traits[type].type_name; +} + +bool ggml_is_quantized(enum ggml_type type) { + return type_traits[type].is_quantized; } const char * ggml_op_name(enum ggml_op op) { @@ -4147,7 +4133,7 @@ const char * ggml_op_symbol(enum ggml_op op) { } size_t ggml_element_size(const struct ggml_tensor * tensor) { - return GGML_TYPE_SIZE[tensor->type]; + return ggml_type_size(tensor->type); } static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) { @@ -4185,10 +4171,6 @@ static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct (t0->ne[3] == t1->ne[3]); } -bool ggml_is_quantized(enum ggml_type type) { - return GGML_IS_QUANTIZED[type]; -} - enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { enum ggml_type wtype = GGML_TYPE_COUNT; @@ -4226,8 +4208,8 @@ bool ggml_is_contiguous(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return - tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && - tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] && + tensor->nb[0] == ggml_type_size(tensor->type) && + tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } @@ -4236,7 +4218,7 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return - tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && + tensor->nb[0] == ggml_type_size(tensor->type) && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } @@ -4251,7 +4233,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return - tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] && + tensor->nb[0] == ggml_type_size(tensor->type) && tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } @@ -4570,7 +4552,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( size_t data_size = 0; if (data == NULL && !ctx->no_alloc) { - data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]); + data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type)); for (int i = 1; i < n_dims; i++) { data_size *= ne[i]; } @@ -4625,8 +4607,8 @@ static struct ggml_tensor * ggml_new_tensor_impl( result->ne[i] = ne[i]; } - result->nb[0] = GGML_TYPE_SIZE[type]; - result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]); + result->nb[0] = ggml_type_size(type); + result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type)); for (int i = 2; i < GGML_MAX_DIMS; i++) { result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; } @@ -7748,7 +7730,7 @@ static void ggml_compute_forward_dup_same_cont( memcpy( ((char *) dst->data + ie0*nb0), ((char *) src0->data + ie0*nb00), - (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]); + (ie1 - ie0) * ggml_type_size(src0->type)); } } @@ -7782,7 +7764,7 @@ static void ggml_compute_forward_dup_f16( if (src0->type == dst->type && ne00 == ne0 && - nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) { + nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { // copy by rows const size_t rs = ne00*nb00; for (int64_t i03 = 0; i03 < ne03; i03++) { @@ -7840,7 +7822,7 @@ static void ggml_compute_forward_dup_f16( float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; size_t id = 0; - size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); + size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { @@ -8053,7 +8035,7 @@ static void ggml_compute_forward_dup_f32( if (src0->type == dst->type && ne00 == ne0 && - nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) { + nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { // copy by rows const size_t rs = ne00*nb00; for (int64_t i03 = 0; i03 < ne03; i03++) { @@ -8092,7 +8074,7 @@ static void ggml_compute_forward_dup_f32( ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; size_t id = 0; - size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); + size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); char * dst_ptr = (char *) dst->data; for (int i03 = 0; i03 < ne03; i03++) { @@ -8504,7 +8486,7 @@ static void ggml_compute_forward_add_q_f32( ggml_from_float_t const quantize_row_q = type_traits[type].from_float; // we don't support permuted src0 or src1 - GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == sizeof(float)); // dst cannot be transposed or permuted @@ -8778,7 +8760,7 @@ static void ggml_compute_forward_add1_q_f32( ggml_from_float_t const quantize_row_q = type_traits[type].from_float; // we don't support permuted src0 - GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb00 == ggml_type_size(type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 <= nb1); @@ -10634,7 +10616,7 @@ static void ggml_compute_forward_mul_mat( GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 - GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == sizeof(float)); // dst cannot be transposed or permuted @@ -10717,7 +10699,7 @@ static void ggml_compute_forward_mul_mat( if (params->type == GGML_TASK_INIT) { if (src1->type != vec_dot_type) { char * wdata = params->wdata; - const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; + const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type); for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { @@ -10737,7 +10719,7 @@ static void ggml_compute_forward_mul_mat( } const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; - const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; + const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type); const int64_t nr0 = ne01; // src0 rows const int64_t nr1 = ne11*ne12*ne13; // src1 rows @@ -11210,7 +11192,7 @@ static void ggml_compute_forward_get_rows_q( assert( dst->ne[0] == nc); assert( dst->ne[1] == nr); - assert(src0->nb[0] == GGML_TYPE_SIZE[type]); + assert(src0->nb[0] == ggml_type_size(type)); for (int i = 0; i < nr; ++i) { const int r = ((int32_t *) src1->data)[i]; @@ -16387,7 +16369,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { size_t cur = 0; if (ggml_is_quantized(node->type)) { - cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks; + cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; } work_size = MAX(work_size, cur); @@ -16400,7 +16382,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { size_t cur = 0; if (ggml_is_quantized(node->src[0]->type)) { - cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks; + cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; } work_size = MAX(work_size, cur); @@ -16412,7 +16394,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { size_t cur = 0; if (ggml_is_quantized(node->src[0]->type)) { - cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks; + cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; } work_size = MAX(work_size, cur); @@ -16495,12 +16477,12 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { // the threads are still spinning if (node->src[0]->type != GGML_TYPE_F32) { // here we need memory just for single 2D matrix from src0 - cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]); + cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]); } } else #endif if (node->src[1]->type != vec_dot_type) { - cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type]; + cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type); } else { cur = 0; } @@ -18306,8 +18288,8 @@ enum ggml_opt_result ggml_opt_resume( struct ggml_tensor * f) { // build forward + backward compute graphs - struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0)); - struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0)); + struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); + struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; diff --git a/ggml.h b/ggml.h index 27f4b0ed8..544ad2d11 100644 --- a/ggml.h +++ b/ggml.h @@ -1856,6 +1856,10 @@ extern "C" { typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y); typedef struct { + const char * type_name; + int blck_size; + size_t type_size; + bool is_quantized; ggml_to_float_t to_float; ggml_from_float_t from_float; ggml_from_float_t from_float_reference; @@ -1863,7 +1867,7 @@ extern "C" { enum ggml_type vec_dot_type; } ggml_type_traits_t; - ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i); + ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type); #ifdef __cplusplus }