mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 13:30:35 +00:00
readme : update models, cuda + ppl instructions (#3510)
This commit is contained in:
parent
cb13d73a72
commit
1faaae8c2b
27
README.md
27
README.md
@ -95,6 +95,7 @@ as the main playground for developing new features for the [ggml](https://github
|
|||||||
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
||||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||||
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||||
|
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||||
|
|
||||||
**Bindings:**
|
**Bindings:**
|
||||||
|
|
||||||
@ -377,7 +378,7 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
|
|
||||||
- #### cuBLAS
|
- #### cuBLAS
|
||||||
|
|
||||||
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||||
- Using `make`:
|
- Using `make`:
|
||||||
```bash
|
```bash
|
||||||
make LLAMA_CUBLAS=1
|
make LLAMA_CUBLAS=1
|
||||||
@ -613,6 +614,18 @@ For more information, see [https://huggingface.co/docs/transformers/perplexity](
|
|||||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||||
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
||||||
|
|
||||||
|
#### How to run
|
||||||
|
|
||||||
|
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||||
|
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
||||||
|
3. Output:
|
||||||
|
```
|
||||||
|
perplexity : calculating perplexity over 655 chunks
|
||||||
|
24.43 seconds per pass - ETA 4.45 hours
|
||||||
|
[1]4.5970,[2]5.1807,[3]6.0382,...
|
||||||
|
```
|
||||||
|
And after 4.45 hours, you will have the final perplexity.
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
|
||||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||||
@ -775,18 +788,6 @@ If your issue is with model generation quality, then please at least scan the fo
|
|||||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||||
|
|
||||||
#### How to run
|
|
||||||
|
|
||||||
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
||||||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
|
||||||
3. Output:
|
|
||||||
```
|
|
||||||
perplexity : calculating perplexity over 655 chunks
|
|
||||||
24.43 seconds per pass - ETA 4.45 hours
|
|
||||||
[1]4.5970,[2]5.1807,[3]6.0382,...
|
|
||||||
```
|
|
||||||
And after 4.45 hours, you will have the final perplexity.
|
|
||||||
|
|
||||||
### Android
|
### Android
|
||||||
|
|
||||||
#### Building the Project using Android NDK
|
#### Building the Project using Android NDK
|
||||||
|
Loading…
Reference in New Issue
Block a user