mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
[Fix] Reenable server embedding endpoint (#1937)
* Add back embedding feature * Update README
This commit is contained in:
parent
18b35625c3
commit
20568fe60f
@ -21,6 +21,7 @@ Command line options:
|
|||||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||||
- `--port`: Set the port to listen. Default: `8080`.
|
- `--port`: Set the port to listen. Default: `8080`.
|
||||||
|
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||||
|
|
||||||
## Build
|
## Build
|
||||||
|
|
||||||
@ -119,14 +120,14 @@ node .
|
|||||||
|
|
||||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).
|
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).
|
||||||
|
|
||||||
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. (default: 128, -1 = infinity).
|
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: 128, -1 = infinity).
|
||||||
|
|
||||||
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
|
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
|
||||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
|
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
|
||||||
|
|
||||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||||
|
|
||||||
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate.
|
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. A space is inserted in the front like main.cpp does.
|
||||||
|
|
||||||
`stop`: Specify a JSON array of stopping strings.
|
`stop`: Specify a JSON array of stopping strings.
|
||||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
||||||
@ -163,6 +164,14 @@ node .
|
|||||||
|
|
||||||
`content`: Set the text to tokenize.
|
`content`: Set the text to tokenize.
|
||||||
|
|
||||||
|
Note that the special `BOS` token is not added in fron of the text and also a space character is not inserted automatically as it is for `/completion`.
|
||||||
|
|
||||||
|
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
|
||||||
|
|
||||||
|
*Options:*
|
||||||
|
|
||||||
|
`content`: Set the text to process.
|
||||||
|
|
||||||
## More examples
|
## More examples
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
@ -254,6 +254,11 @@ struct llama_server_context {
|
|||||||
n_past += n_eval;
|
n_past += n_eval;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (params.n_predict == 0) {
|
||||||
|
has_next_token = false;
|
||||||
|
return llama_token_eos();
|
||||||
|
}
|
||||||
|
|
||||||
// out of user input, sample next token
|
// out of user input, sample next token
|
||||||
const float temp = params.temp;
|
const float temp = params.temp;
|
||||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||||
@ -419,6 +424,19 @@ struct llama_server_context {
|
|||||||
|
|
||||||
return token_text;
|
return token_text;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<float> getEmbedding() {
|
||||||
|
static const int n_embd = llama_n_embd(ctx);
|
||||||
|
if (!params.embedding) {
|
||||||
|
LOG_WARNING("embedding disabled", {
|
||||||
|
{ "params.embedding", params.embedding },
|
||||||
|
});
|
||||||
|
return std::vector<float>(n_embd, 0.0f);
|
||||||
|
}
|
||||||
|
const float * data = llama_get_embeddings(ctx);
|
||||||
|
std::vector<float> embedding(data, data + n_embd);
|
||||||
|
return embedding;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
static void server_print_usage(const char * argv0, const gpt_params & params,
|
static void server_print_usage(const char * argv0, const gpt_params & params,
|
||||||
@ -457,6 +475,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params,
|
|||||||
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||||
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
|
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||||
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||||
|
fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -603,6 +622,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
|||||||
params.use_mlock = true;
|
params.use_mlock = true;
|
||||||
} else if (arg == "--no-mmap") {
|
} else if (arg == "--no-mmap") {
|
||||||
params.use_mmap = false;
|
params.use_mmap = false;
|
||||||
|
} else if (arg == "--embedding") {
|
||||||
|
params.embedding = true;
|
||||||
} else {
|
} else {
|
||||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
server_print_usage(argv[0], default_params, default_sparams);
|
server_print_usage(argv[0], default_params, default_sparams);
|
||||||
@ -646,6 +667,12 @@ static json format_generation_settings(llama_server_context & llama) {
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static json format_embedding_response(llama_server_context & llama) {
|
||||||
|
return json {
|
||||||
|
{ "embedding", llama.getEmbedding() },
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
static json format_final_response(llama_server_context & llama, const std::string & content) {
|
static json format_final_response(llama_server_context & llama, const std::string & content) {
|
||||||
return json {
|
return json {
|
||||||
{ "content", content },
|
{ "content", content },
|
||||||
@ -881,12 +908,27 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
|
svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
|
||||||
const json body = json::parse(req.body);
|
const json body = json::parse(req.body);
|
||||||
const std::string content = body["content"].get<std::string>();
|
const std::string content = body.value("content", "");
|
||||||
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
|
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
|
||||||
const json data = format_tokenizer_response(tokens);
|
const json data = format_tokenizer_response(tokens);
|
||||||
return res.set_content(data.dump(), "application/json");
|
return res.set_content(data.dump(), "application/json");
|
||||||
});
|
});
|
||||||
|
|
||||||
|
svr.Post("/embedding", [&llama](const Request & req, Response & res) {
|
||||||
|
const json body = json::parse(req.body);
|
||||||
|
|
||||||
|
llama.rewind();
|
||||||
|
llama_reset_timings(llama.ctx);
|
||||||
|
llama.params.prompt = body.value("content", "");
|
||||||
|
llama.params.n_predict = 0;
|
||||||
|
llama.loadPrompt();
|
||||||
|
llama.beginCompletion();
|
||||||
|
llama.doCompletion();
|
||||||
|
|
||||||
|
const json data = format_embedding_response(llama);
|
||||||
|
return res.set_content(data.dump(), "application/json");
|
||||||
|
});
|
||||||
|
|
||||||
svr.set_logger(log_server_request);
|
svr.set_logger(log_server_request);
|
||||||
|
|
||||||
svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
|
svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
|
||||||
|
Loading…
Reference in New Issue
Block a user