Merge commit '4760e7cc0b68570d58f55e8dda469805d1759d0d' into nomic-vulkan

This commit is contained in:
Jared Van Bortel 2023-11-23 12:12:38 -05:00
commit 23f6d51f68
22 changed files with 1994 additions and 864 deletions

View File

@ -32,6 +32,7 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context; state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL; state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f; state->opt->loss_after = 0.0f;
return state; return state;

View File

@ -9,6 +9,8 @@
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#define LLAMA_TRAIN_MAX_NODES 16384
typedef std::string mt19937_state; typedef std::string mt19937_state;
struct train_state { struct train_state {

View File

@ -171,7 +171,8 @@ int main(int argc, char ** argv) {
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
// printf("Creating compute graph\n"); // printf("Creating compute graph\n");
struct ggml_cgraph gf = ggml_build_forward(m11xm2); struct ggml_cgraph * gf = ggml_new_graph(ctx);
ggml_build_forward_expand(gf, m11xm2);
printf("n_threads=%i\n", benchmark_params.n_threads); printf("n_threads=%i\n", benchmark_params.n_threads);
@ -180,9 +181,9 @@ int main(int argc, char ** argv) {
std::vector<uint8_t> work_buffer; std::vector<uint8_t> work_buffer;
ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads); ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
TENSOR_DUMP(gf.nodes[0]); TENSOR_DUMP(gf->nodes[0]);
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype)); printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
@ -200,7 +201,8 @@ int main(int argc, char ** argv) {
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
// printf("Creating compute graph\n"); // printf("Creating compute graph\n");
struct ggml_cgraph gf31 = ggml_build_forward(q31); struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
ggml_build_forward_expand(gf31, q31);
// Set up a second graph computation to make sure we override the CPU cache lines // Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n"); // printf("Creating new tensor q12 & Running quantize\n");
@ -211,7 +213,8 @@ int main(int argc, char ** argv) {
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
//printf("Creating compute graph\n"); //printf("Creating compute graph\n");
struct ggml_cgraph gf32 = ggml_build_forward(q32); struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
ggml_build_forward_expand(gf32, q32);
printf("n_threads=%i\n", benchmark_params.n_threads); printf("n_threads=%i\n", benchmark_params.n_threads);
const int dimx = sizex; const int dimx = sizex;
@ -223,7 +226,7 @@ int main(int argc, char ** argv) {
// Let's use the F32 result from above as a reference for the quantized multiplication // Let's use the F32 result from above as a reference for the quantized multiplication
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n"); printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
printf("=====================================================================================\n"); printf("=====================================================================================\n");
@ -233,7 +236,7 @@ int main(int argc, char ** argv) {
long long int start = ggml_time_us(); long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n"); //printf("Running ggml_graph_compute\n");
ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads); ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
long long int stop = ggml_time_us(); long long int stop = ggml_time_us();
long long int usec = stop-start; long long int usec = stop-start;
@ -251,7 +254,7 @@ int main(int argc, char ** argv) {
// Check that the matrix multiplication result is in the right ballpark // Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]); float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference); float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
@ -266,7 +269,7 @@ int main(int argc, char ** argv) {
} }
// Running a different graph computation to make sure we override the CPU cache lines // Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads); ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
} }
printf("\n"); printf("\n");
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations)); printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));

View File

@ -240,7 +240,7 @@ static struct lora_data * load_lora(struct lora_info * info) {
} }
struct ggml_init_params params_ggml; struct ggml_init_params params_ggml;
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES; params_ggml.mem_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
params_ggml.mem_buffer = NULL; params_ggml.mem_buffer = NULL;
params_ggml.no_alloc = true; params_ggml.no_alloc = true;
result->ctx = ggml_init(params_ggml); result->ctx = ggml_init(params_ggml);
@ -334,7 +334,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r; float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
struct ggml_init_params params; struct ggml_init_params params;
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5; params.mem_size = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
params.mem_buffer = NULL; params.mem_buffer = NULL;
params.no_alloc = true; params.no_alloc = true;
struct ggml_context * ctx = NULL; struct ggml_context * ctx = NULL;

View File

@ -772,7 +772,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
if (enable_checkpointing) { if (enable_checkpointing) {
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
} else { } else {
*gb = *gf; ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, gf, gb, true); ggml_build_backward_expand(ctx, gf, gb, true);
} }
@ -1615,6 +1615,7 @@ int main(int argc, char ** argv) {
opt->params = ggml_opt_default_params(GGML_OPT_ADAM); opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params.print_forward_graph = false; opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false; opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
opt->params.n_threads = params.common.n_threads; opt->params.n_threads = params.common.n_threads;
opt->params.past = params.common.opt_past; opt->params.past = params.common.opt_past;
opt->params.delta = params.common.opt_delta; opt->params.delta = params.common.opt_delta;
@ -1741,11 +1742,9 @@ int main(int argc, char ** argv) {
ggml_allocr_free(alloc); ggml_allocr_free(alloc);
// context for compute tensors without their data // context for compute tensors without their data
size_t estimated_compute_size_wo_data = ( const size_t estimated_compute_size_wo_data = (
ggml_tensor_overhead()*GGML_MAX_NODES*2 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
params.common.use_checkpointing ? 3 : 2
)
); );
struct ggml_init_params ctx_compute_params = { struct ggml_init_params ctx_compute_params = {
estimated_compute_size_wo_data, // mem_size estimated_compute_size_wo_data, // mem_size
@ -1768,11 +1767,11 @@ int main(int argc, char ** argv) {
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params); ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment); alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph(ctx_compute); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order; gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph(ctx_compute); gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute) ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL; : NULL;
loss = llama_build_lora_finetune_graphs( loss = llama_build_lora_finetune_graphs(
&model, &lora, alloc, ctx_compute, &model, &lora, alloc, ctx_compute,
@ -1801,11 +1800,11 @@ int main(int argc, char ** argv) {
mem_compute_data.resize(max_compute_size); mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params); ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph(ctx_compute); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order; gf->order = best_order;
gb = ggml_new_graph(ctx_compute); gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute) ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL; : NULL;
loss = llama_build_lora_finetune_graphs( loss = llama_build_lora_finetune_graphs(
&model, &lora, alloc, ctx_compute, &model, &lora, alloc, ctx_compute,

View File

@ -664,7 +664,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
// measure mem requirement and allocate // measure mem requirement and allocate
{ {
static const size_t tensor_alignment = 32; static const size_t tensor_alignment = 32;
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead()); new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead());
new_clip->alloc = ggml_allocr_new_measure(tensor_alignment); new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
clip_image_f32_batch batch; clip_image_f32_batch batch;
batch.size = 1; batch.size = 1;

View File

@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
struct ggml_context * ctx_data = NULL; struct ggml_context * ctx_data = NULL;
struct ggml_context * ctx_eval = NULL; struct ggml_context * ctx_eval = NULL;
struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval); struct ggml_cgraph * gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
// this allocates all Metal resources and memory buffers // this allocates all Metal resources and memory buffers
auto * ctx_metal = ggml_metal_init(1); auto * ctx_metal = ggml_metal_init(1);
@ -46,13 +46,13 @@ int main(int argc, char ** argv) {
// main // main
{ {
struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "embd"); struct ggml_tensor * input = ggml_graph_get_tensor(gf, "embd");
*(int32_t *) input->data = 1; // BOS *(int32_t *) input->data = 1; // BOS
ggml_metal_set_tensor(ctx_metal, input); ggml_metal_set_tensor(ctx_metal, input);
// warmup // warmup
ggml_metal_graph_compute(ctx_metal, &gf); ggml_metal_graph_compute(ctx_metal, gf);
const int n_iter = 16; const int n_iter = 16;
@ -60,7 +60,7 @@ int main(int argc, char ** argv) {
// the actual inference happens here // the actual inference happens here
for (int i = 0; i < n_iter; ++i) { for (int i = 0; i < n_iter; ++i) {
ggml_metal_graph_compute(ctx_metal, &gf); ggml_metal_graph_compute(ctx_metal, gf);
} }
const int64_t t1 = ggml_time_us(); const int64_t t1 = ggml_time_us();
@ -70,7 +70,7 @@ int main(int argc, char ** argv) {
// debug output // debug output
{ {
struct ggml_tensor * logits = gf.nodes[gf.n_nodes - 1]; struct ggml_tensor * logits = gf->nodes[gf->n_nodes - 1];
ggml_metal_get_tensor(ctx_metal, logits); ggml_metal_get_tensor(ctx_metal, logits);
float * ptr = (float *) ggml_get_data(logits); float * ptr = (float *) ggml_get_data(logits);

View File

@ -436,7 +436,7 @@ static struct ggml_tensor * llama_build_train_graphs(
if (enable_checkpointing) { if (enable_checkpointing) {
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
} else { } else {
*gb = *gf; ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, gf, gb, true); ggml_build_backward_expand(ctx, gf, gb, true);
} }
@ -1006,6 +1006,7 @@ int main(int argc, char ** argv) {
opt->params = ggml_opt_default_params(GGML_OPT_ADAM); opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params.print_forward_graph = false; opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false; opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
opt->params.n_threads = params.common.n_threads; opt->params.n_threads = params.common.n_threads;
opt->params.past = params.common.opt_past; opt->params.past = params.common.opt_past;
opt->params.delta = params.common.opt_delta; opt->params.delta = params.common.opt_delta;
@ -1108,11 +1109,9 @@ int main(int argc, char ** argv) {
ggml_allocr_free(alloc); ggml_allocr_free(alloc);
// context for compute tensors without their data // context for compute tensors without their data
size_t estimated_compute_size_wo_data = ( const size_t estimated_compute_size_wo_data = (
ggml_tensor_overhead()*GGML_MAX_NODES*2 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
params.common.use_checkpointing ? 3 : 2
)
); );
struct ggml_init_params ctx_compute_params = { struct ggml_init_params ctx_compute_params = {
estimated_compute_size_wo_data, // mem_size estimated_compute_size_wo_data, // mem_size
@ -1135,11 +1134,11 @@ int main(int argc, char ** argv) {
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params); ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment); alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph(ctx_compute); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order; gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph(ctx_compute); gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute) ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL; : NULL;
loss = llama_build_train_graphs( loss = llama_build_train_graphs(
&model, alloc, ctx_compute, &model, alloc, ctx_compute,
@ -1168,11 +1167,11 @@ int main(int argc, char ** argv) {
mem_compute_data.resize(max_compute_size); mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params); ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph(ctx_compute); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order; gf->order = best_order;
gb = ggml_new_graph(ctx_compute); gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute) ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL; : NULL;
loss = llama_build_train_graphs( loss = llama_build_train_graphs(
&model, alloc, ctx_compute, &model, alloc, ctx_compute,

View File

@ -1,51 +1,21 @@
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "ggml-backend.h" #include "ggml-backend-impl.h"
#include "ggml.h" #include "ggml.h"
#include "ggml-impl.h"
#include <assert.h> #include <assert.h>
#include <limits.h>
#include <stdarg.h> #include <stdarg.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES) #define MAX_FREE_BLOCKS 256
//#define GGML_ALLOCATOR_DEBUG //#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF printf //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#define AT_PRINTF(...) ((void)0) #define AT_PRINTF(...)
struct hash_node {
struct ggml_tensor * t;
int n_children;
int n_views;
};
static size_t hash(void * p) {
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
size_t h = hash(t);
// linear probing
size_t i = h;
while (hash_table[i].t != NULL) {
if (hash_table[i].t == t) {
return &hash_table[i];
}
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
if (i == h) {
// hash table is full
GGML_ASSERT(false);
}
}
hash_table[i].t = t;
return &hash_table[i];
}
// TODO: GGML_PAD ? // TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
@ -59,20 +29,18 @@ struct free_block {
size_t size; size_t size;
}; };
#define MAX_FREE_BLOCKS 256 struct ggml_tallocr {
struct ggml_allocr {
struct ggml_backend_buffer * buffer; struct ggml_backend_buffer * buffer;
bool buffer_owned; bool buffer_owned;
void * data; void * base;
size_t alignment; size_t alignment;
int n_free_blocks; int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS]; struct free_block free_blocks[MAX_FREE_BLOCKS];
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size; size_t max_size;
bool measure; bool measure;
int parse_seq[GGML_MAX_CONCUR];
int parse_seq_len;
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024]; struct ggml_tensor * allocated_tensors[1024];
@ -80,7 +48,7 @@ struct ggml_allocr {
}; };
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) { for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) { if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor; alloc->allocated_tensors[i] = tensor;
@ -89,7 +57,7 @@ static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor
} }
GGML_ASSERT(!"out of allocated_tensors"); GGML_ASSERT(!"out of allocated_tensors");
} }
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) { for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor || if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
@ -103,7 +71,7 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
#endif #endif
// check if a tensor is allocated by this buffer // check if a tensor is allocated by this buffer
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) { static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
return tensor->buffer == alloc->buffer; return tensor->buffer == alloc->buffer;
} }
@ -111,7 +79,7 @@ static bool ggml_is_view(struct ggml_tensor * t) {
return t->view_src != NULL; return t->view_src != NULL;
} }
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
@ -162,9 +130,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
} }
tensor->data = addr; tensor->data = addr;
AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
tensor->buffer = alloc->buffer; tensor->buffer = alloc->buffer;
ggml_backend_buffer_init_tensor(alloc->buffer, tensor); if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor); add_allocated_tensor(alloc, tensor);
@ -180,16 +149,16 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
} }
#endif #endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size); alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
} }
// this is a very naive implementation, but for our case the number of free blocks should be very small // this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
if (ggml_allocr_is_own(alloc, tensor) == false) { if (ggml_tallocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer // the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers // this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it // the easiest way to deal with this is just to ignore it
AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer); // AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
return; return;
} }
@ -199,7 +168,9 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
size = aligned_offset(NULL, size, alloc->alignment); size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
ggml_backend_buffer_free_tensor(alloc->buffer, tensor); if (!alloc->measure) {
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor); remove_allocated_tensor(alloc, tensor);
@ -253,91 +224,180 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
alloc->n_free_blocks++; alloc->n_free_blocks++;
} }
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) { void ggml_tallocr_reset(ggml_tallocr_t alloc) {
for (int i = 0; i < n; i++) {
alloc->parse_seq[i] = list[i];
}
alloc->parse_seq_len = n;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
alloc->n_free_blocks = 1; alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
if (alloc->measure) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
}
} }
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size); struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr)); ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_allocr){ *alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer, /*.buffer = */ buffer,
/*.buffer_owned = */ true, /*.buffer_owned = */ true,
/*.base = */ ggml_backend_buffer_get_base(buffer), /*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ alignment, /*.alignment = */ alignment,
/*.n_free_blocks = */ 0, /*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}}, /*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0, /*.max_size = */ 0,
/*.measure = */ false, /*.measure = */ false,
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0}, /*.allocated_tensors = */ {0},
#endif #endif
}; };
ggml_allocr_reset(alloc); ggml_tallocr_reset(alloc);
return alloc; return alloc;
} }
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment); ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
alloc->measure = true; alloc->measure = true;
return alloc; return alloc;
} }
struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) { ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr)); // create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
*alloc = (struct ggml_allocr){ // TODO: move alloc initialization to a common ggml_tallocr_new_impl function
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
alloc->measure = true;
ggml_tallocr_reset(alloc);
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer, /*.buffer = */ buffer,
/*.buffer_owned = */ false, /*.buffer_owned = */ false,
/*.base = */ ggml_backend_buffer_get_base(buffer), /*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer), /*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
/*.n_free_blocks = */ 0, /*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}}, /*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0, /*.max_size = */ 0,
/*.measure = */ false, /*.measure = */ false,
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0}, /*.allocated_tensors = */ {0},
#endif #endif
}; };
ggml_allocr_reset(alloc); ggml_tallocr_reset(alloc);
return alloc; return alloc;
} }
void ggml_allocr_free(struct ggml_allocr * alloc) { struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
return alloc->buffer;
}
void ggml_tallocr_free(ggml_tallocr_t alloc) {
if (alloc == NULL) {
return;
}
if (alloc->buffer_owned) { if (alloc->buffer_owned) {
ggml_backend_buffer_free(alloc->buffer); ggml_backend_buffer_free(alloc->buffer);
} }
free(alloc); free(alloc);
} }
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
return alloc->measure; return alloc->measure;
} }
//////////// compute graph allocator size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
return alloc->max_size;
}
// graph allocator
struct hash_node {
int n_children;
int n_views;
};
struct ggml_gallocr {
ggml_tallocr_t talloc;
struct ggml_hash_set hash_set;
struct hash_node * hash_values;
size_t hash_values_size;
ggml_tallocr_t * hash_allocs;
int * parse_seq;
int parse_seq_len;
};
ggml_gallocr_t ggml_gallocr_new(void) {
ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
*galloc = (struct ggml_gallocr) {
/*.talloc = */ NULL,
/*.hash_set = */ {0},
/*.hash_values = */ NULL,
/*.hash_values_size = */ 0,
/*.hash_allocs = */ NULL,
/*.parse_seq = */ NULL,
/*.parse_seq_len = */ 0,
};
return galloc;
}
void ggml_gallocr_free(ggml_gallocr_t galloc) {
if (galloc == NULL) {
return;
}
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
if (galloc->hash_allocs != NULL) {
free(galloc->hash_allocs);
}
if (galloc->parse_seq != NULL) {
free(galloc->parse_seq);
}
free(galloc);
}
void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
free(galloc->parse_seq);
galloc->parse_seq = malloc(sizeof(int) * n);
for (int i = 0; i < n; i++) {
galloc->parse_seq[i] = list[i];
}
galloc->parse_seq_len = n;
}
static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
return &galloc->hash_values[i];
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) { if (a->type != b->type) {
@ -378,27 +438,40 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
} }
} }
static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view, bool update_backend) { static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
assert(view->view_src != NULL && view->view_src->data != NULL); if (galloc->talloc != NULL) {
return galloc->talloc;
}
return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
}
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
ggml_tallocr_t alloc = node_tallocr(galloc, view);
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
if (update_backend) { if (update_backend) {
view->backend = view->view_src->backend; view->backend = view->view_src->backend;
} }
view->buffer = view->view_src->buffer; view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs; view->data = (char *)view->view_src->data + view->view_offs;
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend); assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
ggml_backend_buffer_init_tensor(alloc->buffer, view);
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, view);
}
} }
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
struct hash_node * ht = alloc->hash_table; ggml_tallocr_t alloc = node_tallocr(galloc, node);
if (node->data == NULL) { if (node->data == NULL) {
if (ggml_is_view(node)) { if (ggml_is_view(node)) {
init_view(alloc, node, true); init_view(galloc, node, true);
} else { } else {
// see if we can reuse a parent's buffer (inplace) // see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) { if (ggml_op_can_inplace(node->op)) {
@ -409,16 +482,16 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
} }
// if the node's data is external, then we cannot re-use it // if the node's data is external, then we cannot re-use it
if (ggml_allocr_is_own(alloc, parent) == false) { if (ggml_tallocr_is_own(alloc, parent) == false) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue; continue;
} }
struct hash_node * p_hn = hash_get(ht, parent); struct hash_node * p_hn = hash_get(galloc, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) { if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src; struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src); struct hash_node * view_src_hn = hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
// the parent's data that it will need later (same layout requirement). the problem is that then // the parent's data that it will need later (same layout requirement). the problem is that then
@ -428,170 +501,267 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
node->view_src = view_src; node->view_src = view_src;
view_src_hn->n_views += 1; view_src_hn->n_views += 1;
init_view(alloc, node, false); init_view(galloc, node, false);
return; return;
} }
} else { } else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->view_src = parent; node->view_src = parent;
p_hn->n_views += 1; p_hn->n_views += 1;
init_view(alloc, node, false); init_view(galloc, node, false);
return; return;
} }
} }
} }
} }
ggml_allocr_alloc(alloc, node); ggml_tallocr_alloc(alloc, node);
} }
} }
} }
size_t ggml_allocr_alloc_graph_n( static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
struct ggml_allocr * alloc, ggml_tallocr_t alloc = node_tallocr(galloc, node);
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
// reset hash table ggml_tallocr_free_tensor(alloc, node);
struct hash_node * ht = alloc->hash_table; }
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
const int * parse_seq = galloc->parse_seq;
int parse_seq_len = galloc->parse_seq_len;
// count number of children and views // count number of children and views
for (int g = 0; g < n_graphs; g++) { for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_cgraph * gf = graphs[g]; struct ggml_tensor * node = gf->nodes[i];
for (int i = 0; i < gf->n_nodes; i++) {
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = node->view_src;
hash_get(galloc, view_src)->n_views += 1;
if (node->buffer == NULL && node->data != NULL) {
// view of a pre-allocated tensor, didn't call init_view() yet
init_view(galloc, node, true);
}
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
hash_get(galloc, parent)->n_children += 1;
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
init_view(galloc, parent, true);
}
}
}
// allocate tensors
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int last_barrier_pos = 0;
int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
for (int ind = 0; ind < n_nodes; ind++) {
// allocate a node if there is no parse_seq or this is not a barrier
if (parse_seq_len == 0 || parse_seq[ind] != -1) {
int i = parse_seq_len ? parse_seq[ind] : ind;
struct ggml_tensor * node = gf->nodes[i]; struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) { // allocate parents (leafs)
struct ggml_tensor * view_src = node->view_src;
hash_get(ht, view_src)->n_views += 1;
if (node->buffer == NULL && node->data != NULL) {
// view of a pre-allocated tensor, didn't call init_view() yet
init_view(alloc, node, true);
}
}
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j]; struct ggml_tensor * parent = node->src[j];
if (parent == NULL) { if (parent == NULL) {
break; break;
} }
hash_get(ht, parent)->n_children += 1; allocate_node(galloc, parent);
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) { }
init_view(alloc, parent, true);
// allocate node
allocate_node(galloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
} }
} }
AT_PRINTF("\n");
} }
}
// allocate tensors // update parents
for (int g = 0; g < n_graphs; g++) { // update immediately if there is no parse_seq
struct ggml_cgraph * gf = graphs[g]; // update only at barriers if there is parse_seq
AT_PRINTF("####### graph %d/%d\n", g, n_graphs); if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
// graph inputs are allocated first to ensure that they are not overwritten by each other int update_start = parse_seq_len ? last_barrier_pos : ind;
if (inputs != NULL && inputs[g] != NULL) { int update_end = parse_seq_len ? ind : ind + 1;
for (int i = 0; inputs[g][i] != NULL; i++) { for (int i = update_start; i < update_end; i++) {
struct ggml_tensor * input = inputs[g][i]; int node_i = parse_seq_len ? parse_seq[i] : i;
AT_PRINTF("input: %s\n", input->name); struct ggml_tensor * node = gf->nodes[node_i];
allocate_node(alloc, input);
}
}
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int last_barrier_pos = 0;
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
for (int ind = 0; ind < n_nodes; ind++) {
// allocate a node if there is no parse_seq or this is not a barrier
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j]; struct ggml_tensor * parent = node->src[j];
if (parent == NULL) { if (parent == NULL) {
break; break;
} }
allocate_node(alloc, parent); struct hash_node * p_hn = hash_get(galloc, parent);
} p_hn->n_children -= 1;
// allocate node //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
allocate_node(alloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); if (p_hn->n_children == 0 && p_hn->n_views == 0) {
for (int j = 0; j < GGML_MAX_SRC; j++) { if (ggml_is_view(parent)) {
struct ggml_tensor * parent = node->src[j]; struct ggml_tensor * view_src = parent->view_src;
if (parent == NULL) { struct hash_node * view_src_hn = hash_get(galloc, view_src);
break; view_src_hn->n_views -= 1;
} AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
AT_PRINTF("%s", parent->name); if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { free_node(galloc, view_src);
AT_PRINTF(", "); }
}
}
AT_PRINTF("\n");
}
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
struct ggml_tensor * node = gf->nodes[node_i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
} }
struct hash_node * p_hn = hash_get(ht, parent); else {
p_hn->n_children -= 1; free_node(galloc, parent);
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocr_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocr_free_tensor(alloc, parent);
}
}
} }
} }
} }
AT_PRINTF("\n");
if (alloc->parse_seq_len) {
last_barrier_pos = ind + 1;
}
} }
} AT_PRINTF("\n");
// free graph outputs here that wouldn't be freed otherwise because they have no children if (parse_seq_len) {
if (outputs != NULL && outputs[g] != NULL) { last_barrier_pos = ind + 1;
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_allocr_free_tensor(alloc, output);
} }
} }
} }
return alloc->max_size;
} }
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL); size_t hash_size = graph->visited_hash_table.size;
// check if the hash table is initialized and large enough
if (galloc->hash_set.size < hash_size) {
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
galloc->hash_set.size = hash_size;
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
}
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->talloc = talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
galloc->talloc = NULL;
size_t max_size = ggml_tallocr_max_size(talloc);
return max_size;
} }
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) { void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
return alloc->max_size; const size_t hash_size = hash_set.size;
GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
galloc->talloc = NULL;
// alloc hash_values if needed
if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
free(galloc->hash_values);
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
galloc->hash_values_size = hash_size;
}
// free hash_set.keys if needed
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
galloc->hash_set = hash_set;
// reset hash values
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->hash_allocs = hash_node_talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
// remove unowned resources
galloc->hash_set.keys = NULL;
galloc->hash_allocs = NULL;
}
// legacy API wrapper
struct ggml_allocr {
ggml_tallocr_t talloc;
ggml_gallocr_t galloc;
};
static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
*alloc = (struct ggml_allocr) {
/*.talloc = */ talloc,
/*.galloc = */ ggml_gallocr_new(),
};
return alloc;
}
ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
}
ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
}
ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
}
ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
}
ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
}
struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
return ggml_tallocr_get_buffer(alloc->talloc);
}
void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
}
void ggml_allocr_free(ggml_allocr_t alloc) {
ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc);
free(alloc);
}
bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
return ggml_tallocr_is_measure(alloc->talloc);
}
void ggml_allocr_reset(ggml_allocr_t alloc) {
ggml_tallocr_reset(alloc->talloc);
}
void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
ggml_tallocr_alloc(alloc->talloc, tensor);
}
size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
return ggml_tallocr_max_size(alloc->talloc);
}
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
} }

View File

@ -6,27 +6,79 @@
extern "C" { extern "C" {
#endif #endif
struct ggml_backend;
struct ggml_backend_buffer; struct ggml_backend_buffer;
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment); //
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment); // Legacy API
GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer); //
typedef struct ggml_allocr * ggml_allocr_t;
// initialize allocator for use with CPU backend only
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
// initialize allocator for use with ggml-backend
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
// tell the allocator to parse nodes following the order described in the list // tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order // you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n); GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
GGML_API void ggml_allocr_free (struct ggml_allocr * alloc); GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc); GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc); GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor); GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph); GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc);
GGML_API size_t ggml_allocr_alloc_graph_n( GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs, //
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs); // ggml-backend v2 API
//
// Seperate tensor and graph allocator objects
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
// The original API is kept as a wrapper around the new API
// Tensor allocator
typedef struct ggml_tallocr * ggml_tallocr_t;
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
// Graph allocator
typedef struct ggml_gallocr * ggml_gallocr_t;
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
// Allocate tensors from the allocators given by the hash table
GGML_API void ggml_gallocr_alloc_graph_n(
ggml_gallocr_t galloc,
struct ggml_cgraph * graph,
struct ggml_hash_set hash_set,
ggml_tallocr_t * hash_node_talloc);
#ifdef __cplusplus #ifdef __cplusplus
} }

87
ggml-backend-impl.h Normal file
View File

@ -0,0 +1,87 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
#ifdef __cplusplus
}
#endif

View File

@ -1,7 +1,9 @@
#include "ggml-backend.h" #include "ggml-backend-impl.h"
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "ggml-impl.h"
#include <assert.h> #include <assert.h>
#include <limits.h>
#include <stdarg.h> #include <stdarg.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
@ -33,6 +35,10 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
} }
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return;
}
if (buffer->iface.free_buffer != NULL) { if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer); buffer->iface.free_buffer(buffer);
} }
@ -43,15 +49,20 @@ size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
return ggml_backend_get_alignment(buffer->backend); return ggml_backend_get_alignment(buffer->backend);
} }
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return buffer->iface.get_base(buffer);
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
return buffer->size; return buffer->size;
} }
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
return base;
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buffer->iface.get_alloc_size) { if (buffer->iface.get_alloc_size) {
return buffer->iface.get_alloc_size(buffer, tensor); return buffer->iface.get_alloc_size(buffer, tensor);
} }
@ -59,12 +70,14 @@ size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct g
} }
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) { if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor); buffer->iface.init_tensor(buffer, tensor);
} }
} }
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// free_tensor is optional
if (buffer->iface.free_tensor) { if (buffer->iface.free_tensor) {
buffer->iface.free_tensor(buffer, tensor); buffer->iface.free_tensor(buffer, tensor);
} }
@ -73,14 +86,21 @@ void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_t
// backend // backend
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) { ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
return tensor->buffer->backend; return tensor->buffer ? tensor->buffer->backend : NULL;
} }
const char * ggml_backend_name(ggml_backend_t backend) { const char * ggml_backend_name(ggml_backend_t backend) {
if (backend == NULL) {
return "NULL";
}
return backend->iface.get_name(backend); return backend->iface.get_name(backend);
} }
void ggml_backend_free(ggml_backend_t backend) { void ggml_backend_free(ggml_backend_t backend) {
if (backend == NULL) {
return;
}
backend->iface.free(backend); backend->iface.free(backend);
} }
@ -101,13 +121,23 @@ void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * dat
} }
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); ggml_backend_t backend = ggml_get_backend(tensor);
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
} }
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); ggml_backend_t backend = ggml_get_backend(tensor);
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
} }
void ggml_backend_synchronize(ggml_backend_t backend) { void ggml_backend_synchronize(ggml_backend_t backend) {
@ -156,7 +186,7 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if (src == dst) { if (src == dst) {
return; return;
@ -234,6 +264,8 @@ static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backen
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
GGML_ASSERT(data != NULL && "failed to allocate buffer");
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size); return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
} }
@ -271,8 +303,7 @@ static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml
} }
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
UNUSED(backend); UNUSED(backend);
} }
@ -383,3 +414,537 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) { ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size); return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
} }
// scheduler
#define GGML_MAX_BACKENDS 4
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
ggml_tallocr_t tallocr;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs;
struct ggml_cgraph * graph;
};
struct ggml_backend_sched {
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
ggml_gallocr_t galloc;
struct ggml_hash_set hash_set;
ggml_tallocr_t * node_talloc; // [hash_set.size]
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits;
struct ggml_context * ctx;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define node_allocr(node) sched->node_talloc[hash_id(node)]
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
// returns the priority of the backend, lower is better
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->backends[i] == backend) {
return i;
}
}
return INT_MAX;
}
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->tallocs[i] == allocr) {
return i;
}
}
return INT_MAX;
}
// returns the backend that should be used for the node based on the current locations
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst
ggml_backend_t cur_backend = ggml_get_backend(node);
if (cur_backend != NULL) {
sprintf(causes[hash_id(node)], "1.dst");
return cur_backend;
}
// view_src
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
sprintf(causes[hash_id(node)], "1.vsrc");
return ggml_get_backend(node->view_src);
}
// src
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = node->src[i];
if (src == NULL) {
break;
}
ggml_backend_t src_backend = ggml_get_backend(src);
if (src_backend != NULL) {
int src_prio = sched_backend_prio(sched, src_backend);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
cur_backend = src_backend;
sprintf(causes[hash_id(node)], "1.src%d", i);
}
}
}
return cur_backend;
}
static char * fmt_size(size_t size) {
static char buffer[128];
if (size >= 1024*1024) {
sprintf(buffer, "%zuM", size/1024/1024);
} else {
sprintf(buffer, "%zuK", size/1024);
}
return buffer;
}
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}
fprintf(stderr, "\n");
cur_split++;
}
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
}
fprintf(stderr, "\n");
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
dup->nb[i] = tensor->nb[i];
}
return dup;
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset state
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
sched->n_splits = 0;
struct ggml_init_params params = {
/*.mem_size = */ sizeof(sched->context_buffer),
/*.mem_buffer = */ sched->context_buffer,
/*.no_alloc = */ true
};
if (sched->ctx != NULL) {
ggml_free(sched->ctx);
}
sched->ctx = ggml_init(params);
// pass 1: assign backends to ops with allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
if (node_allocr(leaf) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
if (leaf_backend == NULL && leaf->view_src != NULL) {
leaf_backend = ggml_get_backend(leaf->view_src);
}
if (leaf_backend != NULL) {
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
}
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node_allocr(node) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
if (node_backend != NULL) {
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
}
}
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 2: assign backends to ops from current assignments
// TODO:
// - reuse sched_backend_from_cur
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != NULL) {
int src_prio = sched_allocr_prio(sched, src_allocr);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
node_allocr = src_allocr;
sprintf(causes[hash_id(node)], "2.src%d", j);
}
}
}
if (node_allocr != NULL) {
node_allocr(node) = node_allocr;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs)
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr == NULL) {
node_allocr(src) = node_allocr;
}
}
}
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 4: split graph, find tensors that need to be copied
// TODO:
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node->view_src == NULL) {
sched->splits[0].tallocr = node_allocr(node);
break;
}
}
sched->splits[0].i_start = 0;
sched->splits[0].n_inputs = 0;
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != cur_allocr) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
sched->splits[cur_split].tallocr = node_allocr;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
cur_allocr = node_allocr;
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
}
// find inputs that are not on the same backend
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr) {
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
// create copies
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
}
node->src[j] = sched->node_copies[id][cur_backend_id];
}
}
}
sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1;
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
#if 1
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
}
}
}
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
input_cpy->src[0] = input;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
}
for (int j = split->i_start; j < split->i_end; j++) {
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
sched->graph = graph_copy;
}
static void sched_alloc_splits(ggml_backend_sched_t sched) {
ggml_gallocr_alloc_graph_n(
sched->galloc,
sched->graph,
sched->hash_set,
sched->node_talloc);
}
static void sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
int split_backend_id = sched_backend_prio(sched, split_backend);
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
if (split->inputs[j]->buffer == NULL) {
if (split->inputs[j]->view_src == NULL) {
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
exit(1);
}
struct ggml_tensor * view = split->inputs[j];
view->backend = view->view_src->backend;
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
}
if (input_cpy->buffer == NULL) {
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
exit(1);
}
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
}
// ggml_backend_synchronize(split_backend);
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
ggml_backend_graph_compute(split_backend, split->graph);
// ggml_backend_synchronize(split_backend);
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
}
static void sched_reset(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_reset(sched->tallocs[i]);
}
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
memset(sched, 0, sizeof(struct ggml_backend_sched));
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
}
sched->galloc = ggml_gallocr_new();
// init measure allocs for each backend
for (int i = 0; i < n_backends; i++) {
sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
}
return sched;
}
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_free(sched->tallocs[i]);
}
ggml_gallocr_free(sched->galloc);
free(sched->hash_set.keys);
free(sched->node_talloc);
free(sched->node_copies);
free(sched);
}
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
// initialize hash tables
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
sched->hash_set.size = hash_size;
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
sched_split_graph(sched, measure_graph);
sched_alloc_splits(sched);
// allocate buffers and reset allocators
for (int i = 0; i < sched->n_backends; i++) {
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
ggml_tallocr_free(sched->tallocs[i]);
sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
}
sched_reset(sched);
}
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched_split_graph(sched, graph);
sched_alloc_splits(sched);
sched_compute_splits(sched);
sched_reset(sched);
}
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return sched->tallocs[backend_index];
}
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
node_allocr(node) = sched->tallocs[backend_index];
}

View File

@ -1,51 +1,20 @@
#pragma once #pragma once
#include "ggml.h" #include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
struct ggml_backend;
//
// Backend buffer
//
struct ggml_backend_buffer; struct ggml_backend_buffer;
// type-erased backend-specific types / wrappers
typedef void * ggml_backend_context_t;
typedef void * ggml_backend_graph_plan_t;
typedef void * ggml_backend_buffer_context_t;
// avoid accessing internals of these types
typedef struct ggml_backend * ggml_backend_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t; typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
//
// backend buffer
//
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
// TODO: hide behind API
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
// backend buffer functions // backend buffer functions
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
@ -55,50 +24,13 @@ extern "C" {
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
// //
// backend // Backend
// //
struct ggml_backend_i { struct ggml_backend;
const char * (*get_name)(ggml_backend_t backend); typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
// TODO: hide behind API
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
// backend helper functions
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor); GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API const char * ggml_backend_name(ggml_backend_t backend); GGML_API const char * ggml_backend_name(ggml_backend_t backend);
@ -133,11 +65,72 @@ extern "C" {
GGML_API ggml_backend_t ggml_backend_cpu_init(void); GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend); GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads); GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size); GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
// Allocate a graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -81,6 +81,7 @@
#include "ggml-cuda.h" #include "ggml-cuda.h"
#include "ggml.h" #include "ggml.h"
#include "ggml-backend-impl.h"
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700 #define CC_VOLTA 700
@ -7751,11 +7752,11 @@ static size_t g_temp_tensor_extra_index = 0;
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (g_temp_tensor_extras == nullptr) { if (g_temp_tensor_extras == nullptr) {
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES]; g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
} }
size_t alloc_index = g_temp_tensor_extra_index; size_t alloc_index = g_temp_tensor_extra_index;
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES; g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra)); memset(extra, 0, sizeof(*extra));
@ -8070,11 +8071,11 @@ struct ggml_backend_buffer_context_cuda {
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (temp_tensor_extras == nullptr) { if (temp_tensor_extras == nullptr) {
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES]; temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
} }
size_t alloc_index = temp_tensor_extra_index; size_t alloc_index = temp_tensor_extra_index;
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_MAX_NODES; temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index]; ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra)); memset(extra, 0, sizeof(*extra));
@ -8160,7 +8161,12 @@ static ggml_backend_buffer_t ggml_backend_cuda_alloc_buffer(ggml_backend_t backe
ggml_cuda_set_device(g_main_device); ggml_cuda_set_device(g_main_device);
ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda; ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda;
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
ggml_cuda_set_device(g_main_device);
CUDA_CHECK(cudaMalloc(&ctx->device, size)); CUDA_CHECK(cudaMalloc(&ctx->device, size));
return ggml_backend_buffer_init(backend, cuda_backend_buffer_interface, ctx, size); return ggml_backend_buffer_init(backend, cuda_backend_buffer_interface, ctx, size);
} }
@ -8227,6 +8233,8 @@ static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
for (int i = 0; i < cgraph->n_nodes; i++) { for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i]; ggml_tensor * node = cgraph->nodes[i];
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
continue;
assert(node->backend == GGML_BACKEND_GPU); assert(node->backend == GGML_BACKEND_GPU);
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) { if (node->src[j] != nullptr) {

View File

@ -230,7 +230,19 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#endif #endif
// TODO: backend v2 PR #define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -1,5 +1,6 @@
#import "ggml-metal.h" #import "ggml-metal.h"
#import "ggml-backend-impl.h"
#import "ggml.h" #import "ggml.h"
#import <Foundation/Foundation.h> #import <Foundation/Foundation.h>
@ -23,7 +24,7 @@
#define UNUSED(x) (void)(x) #define UNUSED(x) (void)(x)
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES) #define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE)
struct ggml_metal_buffer { struct ggml_metal_buffer {
const char * name; const char * name;
@ -744,6 +745,20 @@ void ggml_metal_graph_compute(
struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * src1 = gf->nodes[i]->src[1];
struct ggml_tensor * dst = gf->nodes[i]; struct ggml_tensor * dst = gf->nodes[i];
switch (dst->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
{
// noop -> next node
} continue;
default:
{
} break;
}
const int64_t ne00 = src0 ? src0->ne[0] : 0; const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0; const int64_t ne01 = src0 ? src0->ne[1] : 0;
const int64_t ne02 = src0 ? src0->ne[2] : 0; const int64_t ne02 = src0 ? src0->ne[2] : 0;
@ -797,14 +812,6 @@ void ggml_metal_graph_compute(
//} //}
switch (dst->op) { switch (dst->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
{
// noop
} break;
case GGML_OP_CONCAT: case GGML_OP_CONCAT:
{ {
const int64_t nb = ne00; const int64_t nb = ne00;

1055
ggml.c

File diff suppressed because it is too large Load Diff

89
ggml.h
View File

@ -58,7 +58,8 @@
// { // {
// ... // ...
// //
// struct ggml_cgraph gf = ggml_build_forward(f); // struct ggml_cgraph * gf = ggml_new_graph(ctx);
// ggml_build_forward_expand(gf, f);
// //
// // set the input variable and parameter values // // set the input variable and parameter values
// ggml_set_f32(x, 2.0f); // ggml_set_f32(x, 2.0f);
@ -213,15 +214,14 @@
#define GGML_QNT_VERSION 2 // bump this on quantization format changes #define GGML_QNT_VERSION 2 // bump this on quantization format changes
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
#define GGML_MAX_DIMS 4 #define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 16384 #define GGML_MAX_PARAMS 1024
#define GGML_MAX_PARAMS 1024 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_CONTEXTS 64 #define GGML_MAX_SRC 6
#define GGML_MAX_SRC 6 #define GGML_MAX_NAME 64
#define GGML_MAX_NAME 64 #define GGML_MAX_OP_PARAMS 64
#define GGML_MAX_OP_PARAMS 64 #define GGML_DEFAULT_N_THREADS 4
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_GRAPH_SIZE 2048
#if UINTPTR_MAX == 0xFFFFFFFF #if UINTPTR_MAX == 0xFFFFFFFF
#define GGML_MEM_ALIGN 4 #define GGML_MEM_ALIGN 4
#else #else
@ -245,7 +245,10 @@
do { \ do { \
if (!(x)) { \ if (!(x)) { \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \ fflush(stderr); \
fflush(stdout); \
ggml_print_backtrace(); \
exit(1); \
} \ } \
} while (0) } while (0)
@ -451,6 +454,7 @@ extern "C" {
GGML_UNARY_OP_GELU, GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK, GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU, GGML_UNARY_OP_SILU,
GGML_UNARY_OP_LEAKY
}; };
enum ggml_object_type { enum ggml_object_type {
@ -531,37 +535,33 @@ extern "C" {
int n_threads; int n_threads;
// the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
int n_tasks[GGML_MAX_NODES];
// abort ggml_graph_compute when true // abort ggml_graph_compute when true
bool (*abort_callback)(void * data); bool (*abort_callback)(void * data);
void * abort_callback_data; void * abort_callback_data;
}; };
// next prime after GGML_MAX_NODES
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
// #define GGML_GRAPH_HASHTABLE_SIZE 8273
// #define GGML_GRAPH_HASHTABLE_SIZE 16411
#define GGML_GRAPH_HASHTABLE_SIZE 32771
enum ggml_cgraph_eval_order { enum ggml_cgraph_eval_order {
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
GGML_CGRAPH_EVAL_ORDER_COUNT GGML_CGRAPH_EVAL_ORDER_COUNT
}; };
struct ggml_hash_set {
size_t size;
struct ggml_tensor ** keys;
};
// computation graph // computation graph
struct ggml_cgraph { struct ggml_cgraph {
int size;
int n_nodes; int n_nodes;
int n_leafs; int n_leafs;
struct ggml_tensor * nodes[GGML_MAX_NODES]; struct ggml_tensor ** nodes;
struct ggml_tensor * grads[GGML_MAX_NODES]; struct ggml_tensor ** grads;
struct ggml_tensor * leafs[GGML_MAX_NODES]; struct ggml_tensor ** leafs;
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE]; struct ggml_hash_set visited_hash_table;
enum ggml_cgraph_eval_order order; enum ggml_cgraph_eval_order order;
@ -571,8 +571,6 @@ extern "C" {
int64_t perf_time_us; int64_t perf_time_us;
}; };
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
// scratch buffer // scratch buffer
struct ggml_scratch { struct ggml_scratch {
size_t offs; size_t offs;
@ -617,6 +615,8 @@ extern "C" {
GGML_API int64_t ggml_cycles(void); GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void); GGML_API int64_t ggml_cycles_per_ms(void);
GGML_API void ggml_print_backtrace(void);
GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
@ -709,7 +709,7 @@ extern "C" {
// Context tensor enumeration and lookup // Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx); GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor (struct ggml_context * ctx, const char * name); GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
@ -943,6 +943,10 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_leaky(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu_inplace( GGML_API struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
@ -1482,6 +1486,8 @@ extern "C" {
int s0, // stride int s0, // stride
int p0); // padding int p0); // padding
// the result will have 2*p0 padding for the first dimension
// and 2*p1 padding for the second dimension
GGML_API struct ggml_tensor * ggml_pool_2d( GGML_API struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -1490,8 +1496,8 @@ extern "C" {
int k1, int k1,
int s0, int s0,
int s1, int s1,
int p0, float p0,
int p1); float p1);
// nearest interpolate // nearest interpolate
// used in stable-diffusion // used in stable-diffusion
@ -1732,19 +1738,22 @@ extern "C" {
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
// graph allocation in a context // graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor); GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
GGML_API size_t ggml_graph_overhead(void); GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
// ggml_graph_plan() has to be called before ggml_graph_compute() // ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data // when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
// same as ggml_graph_compute() but the work data is allocated as a part of the context // same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
@ -1752,8 +1761,8 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name); GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname); GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval); GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
// print info and performance information for the graph // print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph); GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
@ -1816,6 +1825,8 @@ extern "C" {
struct ggml_opt_params { struct ggml_opt_params {
enum ggml_opt_type type; enum ggml_opt_type type;
size_t graph_size;
int n_threads; int n_threads;
// delta-based convergence test // delta-based convergence test

View File

@ -93,6 +93,8 @@
#define LLAMA_ATTRIBUTE_FORMAT(...) #define LLAMA_ATTRIBUTE_FORMAT(...)
#endif #endif
#define LLAMA_MAX_NODES 4096
// //
// logging // logging
// //
@ -3676,7 +3678,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_llama() { struct ggml_cgraph * build_llama() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
GGML_ASSERT(n_embd_head == hparams.n_rot); GGML_ASSERT(n_embd_head == hparams.n_rot);
@ -3805,7 +3807,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * build_baichuan() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * inpL; struct ggml_tensor * inpL;
@ -3925,7 +3927,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_falcon() { struct ggml_cgraph * build_falcon() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * inpL; struct ggml_tensor * inpL;
@ -4064,7 +4066,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_starcoder() { struct ggml_cgraph * build_starcoder() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * pos; struct ggml_tensor * pos;
@ -4163,7 +4165,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_persimmon() { struct ggml_cgraph * build_persimmon() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_rot = n_embd_head / 2; const int64_t n_rot = n_embd_head / 2;
@ -4373,7 +4375,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_refact() { struct ggml_cgraph * build_refact() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * inpL; struct ggml_tensor * inpL;
@ -4464,7 +4466,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_bloom() { struct ggml_cgraph * build_bloom() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * inpL; struct ggml_tensor * inpL;
@ -4558,7 +4560,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_mpt() { struct ggml_cgraph * build_mpt() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
struct ggml_tensor * cur; struct ggml_tensor * cur;
struct ggml_tensor * inpL; struct ggml_tensor * inpL;
@ -8324,7 +8326,7 @@ struct llama_context * llama_new_context_with_model(
{ {
static const size_t tensor_alignment = 32; static const size_t tensor_alignment = 32;
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead()); ctx->buf_compute.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
// create measure allocator // create measure allocator
ctx->alloc = ggml_allocr_new_measure(tensor_alignment); ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
@ -8733,8 +8735,8 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
if (kv_buf_size) { if (kv_buf_size) {
const size_t elt_size = ggml_element_size(kv_self.k); const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
ggml_cgraph gf{}; ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer); ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0); std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
@ -8752,9 +8754,9 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
kv_head, n_embd, n_layer, kv_head, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k3d, kout3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d)); ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, v3d, vout3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
ggml_free(cpy_ctx); ggml_free(cpy_ctx);
@ -8861,8 +8863,8 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
const size_t elt_size = ggml_element_size(kv_self.k); const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
ggml_cgraph gf{}; ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer); ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
kin3d->data = (void *) inp; kin3d->data = (void *) inp;
@ -8880,9 +8882,9 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
kv_head, n_embd, n_layer, kv_head, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin3d, k3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d)); ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, vin3d, v3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
ggml_free(cpy_ctx); ggml_free(cpy_ctx);
} }

View File

@ -2,14 +2,20 @@
cp -rpv ../ggml/src/ggml.c ./ggml.c cp -rpv ../ggml/src/ggml.c ./ggml.c
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp cp -rpv ../ggml/src/ggml-impl.h ./ggml-impl.h
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
cp -rpv ../ggml/src/ggml-mpi.h ./ggml-mpi.h
cp -rpv ../ggml/src/ggml-mpi.c ./ggml-mpi.c
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c
cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h

View File

@ -231,9 +231,10 @@ static bool check_gradient(
printf("GGML_N_THREADS = %d\n", n_threads); printf("GGML_N_THREADS = %d\n", n_threads);
} }
struct ggml_cgraph * gf = ggml_build_forward_ctx(ctx0, f); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
struct ggml_cgraph * gb = ggml_new_graph(ctx0); struct ggml_cgraph * gb = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
*gb = *gf; ggml_build_forward_expand(gf, f);
ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx0, gf, gb, false); ggml_build_backward_expand(ctx0, gf, gb, false);
ggml_graph_compute_with_ctx(ctx0, gf, n_threads); ggml_graph_compute_with_ctx(ctx0, gf, n_threads);

View File

@ -109,10 +109,11 @@ int main(void) {
struct ggml_tensor * d = ggml_sub(ctx, c, ab); struct ggml_tensor * d = ggml_sub(ctx, c, ab);
struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d)); struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
struct ggml_cgraph ge = ggml_build_forward(e); struct ggml_cgraph * ge = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
ggml_graph_reset(&ge); ggml_build_forward_expand(ge, e);
ggml_graph_reset(ge);
ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1); ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
const float fe = ggml_get_f32_1d(e, 0); const float fe = ggml_get_f32_1d(e, 0);
printf("%s: e = %.4f\n", __func__, fe); printf("%s: e = %.4f\n", __func__, fe);
@ -121,9 +122,9 @@ int main(void) {
ggml_opt(ctx, opt_params, e); ggml_opt(ctx, opt_params, e);
ggml_graph_reset(&ge); ggml_graph_reset(ge);
ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1); ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
const float fe_opt = ggml_get_f32_1d(e, 0); const float fe_opt = ggml_get_f32_1d(e, 0);
printf("%s: original e = %.4f\n", __func__, fe); printf("%s: original e = %.4f\n", __func__, fe);