mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 02:44:36 +00:00
examples : add batched.swift + improve CI for swift (#3562)
This commit is contained in:
parent
9f6ede19f3
commit
24ba3d829e
5
.github/workflows/build.yml
vendored
5
.github/workflows/build.yml
vendored
@ -276,6 +276,11 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
|
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
|
||||||
|
|
||||||
|
- name: Build Swift Example
|
||||||
|
id: make_build_swift_example
|
||||||
|
run: |
|
||||||
|
make swift
|
||||||
|
|
||||||
windows-latest-cmake:
|
windows-latest-cmake:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
|
|
||||||
|
7
Makefile
7
Makefile
@ -617,6 +617,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
|||||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
swift: examples/batched.swift
|
||||||
|
(cd examples/batched.swift; make build)
|
||||||
|
endif
|
||||||
|
|
||||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||||
@sh scripts/build-info.sh $(CC) > $@.tmp
|
@sh scripts/build-info.sh $(CC) > $@.tmp
|
||||||
@if ! cmp -s $@.tmp $@; then \
|
@if ! cmp -s $@.tmp $@; then \
|
||||||
@ -637,7 +642,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
|
|||||||
run-benchmark-matmult: benchmark-matmult
|
run-benchmark-matmult: benchmark-matmult
|
||||||
./$@
|
./$@
|
||||||
|
|
||||||
.PHONY: run-benchmark-matmult
|
.PHONY: run-benchmark-matmult swift
|
||||||
|
|
||||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
|
9
examples/batched.swift/.gitignore
vendored
Normal file
9
examples/batched.swift/.gitignore
vendored
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
.DS_Store
|
||||||
|
/.build
|
||||||
|
/Packages
|
||||||
|
xcuserdata/
|
||||||
|
DerivedData/
|
||||||
|
.swiftpm/configuration/registries.json
|
||||||
|
.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
|
||||||
|
.netrc
|
||||||
|
batched_swift
|
6
examples/batched.swift/Makefile
Executable file
6
examples/batched.swift/Makefile
Executable file
@ -0,0 +1,6 @@
|
|||||||
|
.PHONY: build
|
||||||
|
|
||||||
|
build:
|
||||||
|
xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
|
||||||
|
rm -f ./batched_swift
|
||||||
|
ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift
|
22
examples/batched.swift/Package.swift
Normal file
22
examples/batched.swift/Package.swift
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
// swift-tools-version: 5.5
|
||||||
|
// The swift-tools-version declares the minimum version of Swift required to build this package.
|
||||||
|
|
||||||
|
import PackageDescription
|
||||||
|
|
||||||
|
let package = Package(
|
||||||
|
name: "batched_swift",
|
||||||
|
platforms: [.macOS(.v12)],
|
||||||
|
dependencies: [
|
||||||
|
.package(name: "llama", path: "../../"),
|
||||||
|
],
|
||||||
|
targets: [
|
||||||
|
// Targets are the basic building blocks of a package, defining a module or a test suite.
|
||||||
|
// Targets can depend on other targets in this package and products from dependencies.
|
||||||
|
.executableTarget(
|
||||||
|
name: "batched_swift",
|
||||||
|
dependencies: ["llama"],
|
||||||
|
path: "Sources",
|
||||||
|
linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
4
examples/batched.swift/README.md
Normal file
4
examples/batched.swift/README.md
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
This is a swift clone of `examples/batched`.
|
||||||
|
|
||||||
|
$ `make`
|
||||||
|
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`
|
255
examples/batched.swift/Sources/main.swift
Normal file
255
examples/batched.swift/Sources/main.swift
Normal file
@ -0,0 +1,255 @@
|
|||||||
|
import Foundation
|
||||||
|
import llama
|
||||||
|
|
||||||
|
let arguments = CommandLine.arguments
|
||||||
|
|
||||||
|
// Check that we have at least one argument (the model path)
|
||||||
|
guard arguments.count > 1 else {
|
||||||
|
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
|
||||||
|
exit(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
let modelPath: String = arguments[1]
|
||||||
|
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
|
||||||
|
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
|
||||||
|
|
||||||
|
// total length of the sequences including the prompt
|
||||||
|
let n_len: Int = 32
|
||||||
|
|
||||||
|
// init LLM
|
||||||
|
llama_backend_init(false)
|
||||||
|
defer {
|
||||||
|
llama_backend_free()
|
||||||
|
}
|
||||||
|
|
||||||
|
let model_params = llama_model_default_params()
|
||||||
|
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
|
||||||
|
print("Failed to load model")
|
||||||
|
exit(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
defer {
|
||||||
|
llama_free_model(model)
|
||||||
|
}
|
||||||
|
|
||||||
|
var tokens = tokenize(text: prompt, add_bos: true)
|
||||||
|
|
||||||
|
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
|
||||||
|
|
||||||
|
var context_params = llama_context_default_params()
|
||||||
|
context_params.seed = 1234
|
||||||
|
context_params.n_ctx = n_kv_req
|
||||||
|
context_params.n_batch = UInt32(max(n_len, n_parallel))
|
||||||
|
context_params.n_threads = 8
|
||||||
|
context_params.n_threads_batch = 8
|
||||||
|
|
||||||
|
let context = llama_new_context_with_model(model, context_params)
|
||||||
|
guard context != nil else {
|
||||||
|
print("Failed to initialize context")
|
||||||
|
exit(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
defer {
|
||||||
|
llama_free(context)
|
||||||
|
}
|
||||||
|
|
||||||
|
let n_ctx = llama_n_ctx(context)
|
||||||
|
|
||||||
|
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
|
||||||
|
|
||||||
|
if n_kv_req > n_ctx {
|
||||||
|
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
|
||||||
|
exit(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
var buffer: [CChar] = []
|
||||||
|
for id: llama_token in tokens {
|
||||||
|
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
|
||||||
|
}
|
||||||
|
|
||||||
|
print("\n")
|
||||||
|
|
||||||
|
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
|
||||||
|
defer {
|
||||||
|
llama_batch_free(batch)
|
||||||
|
}
|
||||||
|
|
||||||
|
// evaluate the initial prompt
|
||||||
|
batch.n_tokens = Int32(tokens.count)
|
||||||
|
|
||||||
|
for (i, token) in tokens.enumerated() {
|
||||||
|
batch.token[i] = token
|
||||||
|
batch.pos[i] = Int32(i)
|
||||||
|
batch.seq_id[i] = 0
|
||||||
|
batch.logits[i] = 0
|
||||||
|
}
|
||||||
|
|
||||||
|
// llama_decode will output logits only for the last token of the prompt
|
||||||
|
batch.logits[Int(batch.n_tokens) - 1] = 1
|
||||||
|
|
||||||
|
if llama_decode(context, batch) != 0 {
|
||||||
|
print("llama_decode() failed")
|
||||||
|
exit(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
for i in 1 ..< n_parallel {
|
||||||
|
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||||
|
}
|
||||||
|
|
||||||
|
if n_parallel > 1 {
|
||||||
|
print("generating \(n_parallel) sequences ...\n")
|
||||||
|
}
|
||||||
|
|
||||||
|
var streams: [String] = .init(repeating: "", count: n_parallel)
|
||||||
|
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
|
||||||
|
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
|
||||||
|
|
||||||
|
var n_cur = batch.n_tokens
|
||||||
|
var n_decode = 0
|
||||||
|
|
||||||
|
let t_main_start = ggml_time_us()
|
||||||
|
|
||||||
|
while n_cur <= n_len {
|
||||||
|
// prepare the next batch
|
||||||
|
batch.n_tokens = 0
|
||||||
|
|
||||||
|
// sample the next token for each parallel sequence / stream
|
||||||
|
for i in 0 ..< n_parallel {
|
||||||
|
if i_batch[i] < 0 {
|
||||||
|
// the stream has already finished
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
var n_vocab = llama_n_vocab(model)
|
||||||
|
var logits = llama_get_logits_ith(context, i_batch[i])
|
||||||
|
|
||||||
|
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
|
||||||
|
|
||||||
|
for token_id in 0 ..< n_vocab {
|
||||||
|
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
|
||||||
|
}
|
||||||
|
|
||||||
|
var candidates_p: llama_token_data_array = .init(
|
||||||
|
data: &candidates,
|
||||||
|
size: candidates.count,
|
||||||
|
sorted: false
|
||||||
|
)
|
||||||
|
|
||||||
|
let top_k: Int32 = 40
|
||||||
|
let top_p: Float = 0.9
|
||||||
|
let temp: Float = 0.4
|
||||||
|
|
||||||
|
llama_sample_top_k(context, &candidates_p, top_k, 1)
|
||||||
|
llama_sample_top_p(context, &candidates_p, top_p, 1)
|
||||||
|
llama_sample_temp(context, &candidates_p, temp)
|
||||||
|
|
||||||
|
let new_token_id = llama_sample_token(context, &candidates_p)
|
||||||
|
|
||||||
|
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||||
|
|
||||||
|
// is it an end of stream? -> mark the stream as finished
|
||||||
|
if new_token_id == llama_token_eos(context) || n_cur == n_len {
|
||||||
|
i_batch[i] = -1
|
||||||
|
// print("")
|
||||||
|
if n_parallel > 1 {
|
||||||
|
print("stream \(i) finished at n_cur = \(n_cur)")
|
||||||
|
}
|
||||||
|
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
|
||||||
|
|
||||||
|
// if there is only one stream, we print immediately to stdout
|
||||||
|
if n_parallel == 1 {
|
||||||
|
print(nextStringPiece, terminator: "")
|
||||||
|
}
|
||||||
|
streams[i] += nextStringPiece
|
||||||
|
|
||||||
|
// push this new token for next evaluation
|
||||||
|
batch.token[Int(batch.n_tokens)] = new_token_id
|
||||||
|
batch.pos[Int(batch.n_tokens)] = n_cur
|
||||||
|
batch.seq_id[Int(batch.n_tokens)] = Int32(i)
|
||||||
|
batch.logits[Int(batch.n_tokens)] = 1
|
||||||
|
|
||||||
|
i_batch[i] = batch.n_tokens
|
||||||
|
|
||||||
|
batch.n_tokens += 1
|
||||||
|
|
||||||
|
n_decode += 1
|
||||||
|
}
|
||||||
|
|
||||||
|
// all streams are finished
|
||||||
|
if batch.n_tokens == 0 {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
n_cur += 1
|
||||||
|
|
||||||
|
// evaluate the current batch with the transformer model
|
||||||
|
if llama_decode(context, batch) != 0 {
|
||||||
|
print("llama_decode() failed")
|
||||||
|
exit(1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if n_parallel > 1 {
|
||||||
|
print("\n")
|
||||||
|
for (i, stream) in streams.enumerated() {
|
||||||
|
print("sequence \(i):\n\n\(prompt)\(stream)\n")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let t_main_end = ggml_time_us()
|
||||||
|
|
||||||
|
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
|
||||||
|
|
||||||
|
llama_print_timings(context)
|
||||||
|
|
||||||
|
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||||
|
let n_tokens = text.count + (add_bos ? 1 : 0)
|
||||||
|
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||||
|
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos)
|
||||||
|
var swiftTokens: [llama_token] = []
|
||||||
|
for i in 0 ..< tokenCount {
|
||||||
|
swiftTokens.append(tokens[Int(i)])
|
||||||
|
}
|
||||||
|
tokens.deallocate()
|
||||||
|
return swiftTokens
|
||||||
|
}
|
||||||
|
|
||||||
|
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||||
|
var result = [CChar](repeating: 0, count: 8)
|
||||||
|
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
|
||||||
|
if nTokens < 0 {
|
||||||
|
if result.count >= -Int(nTokens) {
|
||||||
|
result.removeLast(-Int(nTokens))
|
||||||
|
} else {
|
||||||
|
result.removeAll()
|
||||||
|
}
|
||||||
|
let check = llama_token_to_piece(
|
||||||
|
model,
|
||||||
|
token,
|
||||||
|
&result,
|
||||||
|
Int32(result.count)
|
||||||
|
)
|
||||||
|
assert(check == nTokens)
|
||||||
|
} else {
|
||||||
|
result.removeLast(result.count - Int(nTokens))
|
||||||
|
}
|
||||||
|
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
|
||||||
|
return utfString
|
||||||
|
} else {
|
||||||
|
buffer.append(contentsOf: result)
|
||||||
|
let data = Data(buffer.map { UInt8(bitPattern: $0) })
|
||||||
|
if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
|
||||||
|
buffer = []
|
||||||
|
}
|
||||||
|
guard let bufferString = String(data: data, encoding: .utf8) else {
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
buffer = []
|
||||||
|
return bufferString
|
||||||
|
}
|
||||||
|
return nil
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user