mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
Initial release
This commit is contained in:
commit
26c0846629
21
.gitignore
vendored
Normal file
21
.gitignore
vendored
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
*.o
|
||||||
|
*.a
|
||||||
|
.cache/
|
||||||
|
.vs/
|
||||||
|
.vscode/
|
||||||
|
.DS_Store
|
||||||
|
|
||||||
|
build/
|
||||||
|
build-em/
|
||||||
|
build-debug/
|
||||||
|
build-release/
|
||||||
|
build-static/
|
||||||
|
build-no-accel/
|
||||||
|
build-sanitize-addr/
|
||||||
|
build-sanitize-thread/
|
||||||
|
|
||||||
|
/main
|
||||||
|
/quantize
|
||||||
|
|
||||||
|
arm_neon.h
|
||||||
|
compile_commands.json
|
203
Makefile
Normal file
203
Makefile
Normal file
@ -0,0 +1,203 @@
|
|||||||
|
ifndef UNAME_S
|
||||||
|
UNAME_S := $(shell uname -s)
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifndef UNAME_P
|
||||||
|
UNAME_P := $(shell uname -p)
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifndef UNAME_M
|
||||||
|
UNAME_M := $(shell uname -m)
|
||||||
|
endif
|
||||||
|
|
||||||
|
CCV := $(shell $(CC) --version | head -n 1)
|
||||||
|
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||||
|
|
||||||
|
# Mac OS + Arm can report x86_64
|
||||||
|
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
ifneq ($(UNAME_P),arm)
|
||||||
|
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
|
||||||
|
ifeq ($(SYSCTL_M),1)
|
||||||
|
# UNAME_P := arm
|
||||||
|
# UNAME_M := arm64
|
||||||
|
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
|
||||||
|
#
|
||||||
|
# Compile flags
|
||||||
|
#
|
||||||
|
|
||||||
|
CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
|
||||||
|
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
||||||
|
LDFLAGS =
|
||||||
|
|
||||||
|
# OS specific
|
||||||
|
# TODO: support Windows
|
||||||
|
ifeq ($(UNAME_S),Linux)
|
||||||
|
CFLAGS += -pthread
|
||||||
|
CXXFLAGS += -pthread
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
CFLAGS += -pthread
|
||||||
|
CXXFLAGS += -pthread
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_S),FreeBSD)
|
||||||
|
CFLAGS += -pthread
|
||||||
|
CXXFLAGS += -pthread
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_S),Haiku)
|
||||||
|
CFLAGS += -pthread
|
||||||
|
CXXFLAGS += -pthread
|
||||||
|
endif
|
||||||
|
|
||||||
|
# Architecture specific
|
||||||
|
# TODO: probably these flags need to be tweaked on some architectures
|
||||||
|
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||||
|
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
CFLAGS += -mf16c
|
||||||
|
AVX1_M := $(shell sysctl machdep.cpu.features)
|
||||||
|
ifneq (,$(findstring FMA,$(AVX1_M)))
|
||||||
|
CFLAGS += -mfma
|
||||||
|
endif
|
||||||
|
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
|
||||||
|
CFLAGS += -mavx
|
||||||
|
endif
|
||||||
|
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
|
||||||
|
ifneq (,$(findstring AVX2,$(AVX2_M)))
|
||||||
|
CFLAGS += -mavx2
|
||||||
|
endif
|
||||||
|
else ifeq ($(UNAME_S),Linux)
|
||||||
|
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||||
|
CFLAGS += -mavx
|
||||||
|
endif
|
||||||
|
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||||
|
CFLAGS += -mavx2
|
||||||
|
endif
|
||||||
|
FMA_M := $(shell grep "fma " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring fma,$(FMA_M)))
|
||||||
|
CFLAGS += -mfma
|
||||||
|
endif
|
||||||
|
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||||
|
CFLAGS += -mf16c
|
||||||
|
endif
|
||||||
|
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||||
|
CFLAGS += -msse3
|
||||||
|
endif
|
||||||
|
else ifeq ($(UNAME_S),Haiku)
|
||||||
|
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
|
||||||
|
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||||
|
CFLAGS += -mavx
|
||||||
|
endif
|
||||||
|
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
|
||||||
|
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||||
|
CFLAGS += -mavx2
|
||||||
|
endif
|
||||||
|
FMA_M := $(shell sysinfo -cpu | grep "FMA ")
|
||||||
|
ifneq (,$(findstring fma,$(FMA_M)))
|
||||||
|
CFLAGS += -mfma
|
||||||
|
endif
|
||||||
|
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
|
||||||
|
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||||
|
CFLAGS += -mf16c
|
||||||
|
endif
|
||||||
|
else
|
||||||
|
CFLAGS += -mfma -mf16c -mavx -mavx2
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
ifeq ($(UNAME_M),amd64)
|
||||||
|
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||||
|
endif
|
||||||
|
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||||
|
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||||
|
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||||
|
CFLAGS += -mpower9-vector
|
||||||
|
endif
|
||||||
|
# Require c++23's std::byteswap for big-endian support.
|
||||||
|
ifeq ($(UNAME_M),ppc64)
|
||||||
|
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
ifndef WHISPER_NO_ACCELERATE
|
||||||
|
# Mac M1 - include Accelerate framework
|
||||||
|
ifeq ($(UNAME_S),Darwin)
|
||||||
|
CFLAGS += -DGGML_USE_ACCELERATE
|
||||||
|
LDFLAGS += -framework Accelerate
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
ifdef WHISPER_OPENBLAS
|
||||||
|
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||||
|
LDFLAGS += -lopenblas
|
||||||
|
endif
|
||||||
|
ifdef WHISPER_GPROF
|
||||||
|
CFLAGS += -pg
|
||||||
|
CXXFLAGS += -pg
|
||||||
|
endif
|
||||||
|
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||||
|
CFLAGS += -mcpu=native
|
||||||
|
CXXFLAGS += -mcpu=native
|
||||||
|
endif
|
||||||
|
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||||
|
# Raspberry Pi 1, 2, 3
|
||||||
|
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||||
|
endif
|
||||||
|
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||||
|
# Raspberry Pi 4
|
||||||
|
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||||
|
endif
|
||||||
|
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||||
|
# Raspberry Pi 4
|
||||||
|
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||||
|
endif
|
||||||
|
|
||||||
|
#
|
||||||
|
# Print build information
|
||||||
|
#
|
||||||
|
|
||||||
|
$(info I llama.cpp build info: )
|
||||||
|
$(info I UNAME_S: $(UNAME_S))
|
||||||
|
$(info I UNAME_P: $(UNAME_P))
|
||||||
|
$(info I UNAME_M: $(UNAME_M))
|
||||||
|
$(info I CFLAGS: $(CFLAGS))
|
||||||
|
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||||
|
$(info I LDFLAGS: $(LDFLAGS))
|
||||||
|
$(info I CC: $(CCV))
|
||||||
|
$(info I CXX: $(CXXV))
|
||||||
|
$(info )
|
||||||
|
|
||||||
|
default: main quantize
|
||||||
|
|
||||||
|
#
|
||||||
|
# Build library
|
||||||
|
#
|
||||||
|
|
||||||
|
ggml.o: ggml.c ggml.h
|
||||||
|
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||||
|
|
||||||
|
utils.o: utils.cpp utils.h
|
||||||
|
$(CXX) $(CXXFLAGS) -c utils.cpp -o utils.o
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -f *.o main quantize
|
||||||
|
|
||||||
|
main: main.cpp ggml.o utils.o
|
||||||
|
$(CXX) $(CXXFLAGS) main.cpp ggml.o utils.o -o main $(LDFLAGS)
|
||||||
|
./main -h
|
||||||
|
|
||||||
|
quantize: quantize.cpp ggml.o utils.o
|
||||||
|
$(CXX) $(CXXFLAGS) quantize.cpp ggml.o utils.o -o quantize $(LDFLAGS)
|
||||||
|
|
||||||
|
#
|
||||||
|
# Tests
|
||||||
|
#
|
||||||
|
|
||||||
|
.PHONY: tests
|
||||||
|
tests:
|
||||||
|
bash ./tests/run-tests.sh
|
136
convert-pth-to-ggml.py
Normal file
136
convert-pth-to-ggml.py
Normal file
@ -0,0 +1,136 @@
|
|||||||
|
# Convert a LLaMA model checkpoint to a ggml compatible file
|
||||||
|
#
|
||||||
|
# Load the model using Torch
|
||||||
|
# Iterate over all variables and write them to a binary file.
|
||||||
|
#
|
||||||
|
# For each variable, write the following:
|
||||||
|
# - Number of dimensions (int)
|
||||||
|
# - Name length (int)
|
||||||
|
# - Dimensions (int[n_dims])
|
||||||
|
# - Name (char[name_length])
|
||||||
|
# - Data (float[n_dims])
|
||||||
|
#
|
||||||
|
# By default, the bigger matrices are converted to 16-bit floats.
|
||||||
|
# This can be disabled by adding the "use-f32" CLI argument.
|
||||||
|
#
|
||||||
|
# At the start of the ggml file we write the model parameters
|
||||||
|
# and vocabulary.
|
||||||
|
#
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
import struct
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
|
if len(sys.argv) < 3:
|
||||||
|
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
||||||
|
print(" ftype == 0 -> float32")
|
||||||
|
print(" ftype == 1 -> float16")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# output in the same directory as the model
|
||||||
|
dir_model = sys.argv[1]
|
||||||
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
||||||
|
|
||||||
|
fname_hparams = sys.argv[1] + "/params.json"
|
||||||
|
fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||||
|
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
||||||
|
|
||||||
|
# possible data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
#
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
ftype = 1
|
||||||
|
if len(sys.argv) > 2:
|
||||||
|
ftype = int(sys.argv[2])
|
||||||
|
if ftype < 0 or ftype > 1:
|
||||||
|
print("Invalid ftype: " + str(ftype))
|
||||||
|
sys.exit(1)
|
||||||
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||||
|
|
||||||
|
with open(fname_hparams, "r") as f:
|
||||||
|
hparams = json.load(f)
|
||||||
|
|
||||||
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||||
|
|
||||||
|
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||||
|
|
||||||
|
print(hparams)
|
||||||
|
|
||||||
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
|
||||||
|
fout = open(fname_out, "wb")
|
||||||
|
|
||||||
|
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||||
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||||
|
fout.write(struct.pack("i", hparams["dim"]))
|
||||||
|
fout.write(struct.pack("i", hparams["multiple_of"]))
|
||||||
|
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||||
|
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||||
|
fout.write(struct.pack("i", 64)) # rot
|
||||||
|
fout.write(struct.pack("i", ftype))
|
||||||
|
|
||||||
|
# Is this correct??
|
||||||
|
for i in range(32000):
|
||||||
|
# TODO: this is probably wrong - not sure how this tokenizer works
|
||||||
|
text = tokenizer.decode([29889, i]).encode('utf-8')
|
||||||
|
# remove the first byte (it's always '.')
|
||||||
|
text = text[1:]
|
||||||
|
fout.write(struct.pack("i", len(text)))
|
||||||
|
fout.write(text)
|
||||||
|
|
||||||
|
for k, v in model.items():
|
||||||
|
name = k
|
||||||
|
shape = v.shape
|
||||||
|
|
||||||
|
# skip layers.X.attention.inner_attention.rope.freqs
|
||||||
|
if name[-5:] == "freqs":
|
||||||
|
continue
|
||||||
|
|
||||||
|
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||||
|
|
||||||
|
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||||
|
data = v.numpy().squeeze()
|
||||||
|
n_dims = len(data.shape);
|
||||||
|
|
||||||
|
# for efficiency - transpose some matrices
|
||||||
|
# "model/h.*/attn/c_attn/w"
|
||||||
|
# "model/h.*/attn/c_proj/w"
|
||||||
|
# "model/h.*/mlp/c_fc/w"
|
||||||
|
# "model/h.*/mlp/c_proj/w"
|
||||||
|
#if name[-14:] == "/attn/c_attn/w" or \
|
||||||
|
# name[-14:] == "/attn/c_proj/w" or \
|
||||||
|
# name[-11:] == "/mlp/c_fc/w" or \
|
||||||
|
# name[-13:] == "/mlp/c_proj/w":
|
||||||
|
# print(" Transposing")
|
||||||
|
# data = data.transpose()
|
||||||
|
|
||||||
|
dshape = data.shape
|
||||||
|
|
||||||
|
# default type is fp16
|
||||||
|
ftype_cur = 1
|
||||||
|
if ftype == 0 or n_dims == 1:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
|
||||||
|
# header
|
||||||
|
str = name.encode('utf-8')
|
||||||
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
||||||
|
for i in range(n_dims):
|
||||||
|
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||||
|
fout.write(str);
|
||||||
|
|
||||||
|
# data
|
||||||
|
data.tofile(fout)
|
||||||
|
|
||||||
|
fout.close()
|
||||||
|
|
||||||
|
print("Done. Output file: " + fname_out)
|
||||||
|
print("")
|
758
ggml.h
Normal file
758
ggml.h
Normal file
@ -0,0 +1,758 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
//
|
||||||
|
// GGML Tensor Library
|
||||||
|
//
|
||||||
|
// This documentation is still a work in progress.
|
||||||
|
// If you wish some specific topics to be covered, feel free to drop a comment:
|
||||||
|
//
|
||||||
|
// https://github.com/ggerganov/whisper.cpp/issues/40
|
||||||
|
//
|
||||||
|
// ## Overview
|
||||||
|
//
|
||||||
|
// This library implements:
|
||||||
|
//
|
||||||
|
// - a set of tensor operations
|
||||||
|
// - automatic differentiation
|
||||||
|
// - basic optimization algorithms
|
||||||
|
//
|
||||||
|
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
||||||
|
// but is not limited to, the following:
|
||||||
|
//
|
||||||
|
// - linear regression
|
||||||
|
// - support vector machines
|
||||||
|
// - neural networks
|
||||||
|
//
|
||||||
|
// The library allows the user to define a certain function using the available tensor operations. This function
|
||||||
|
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
||||||
|
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
||||||
|
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
||||||
|
// using one of the available optimization algorithms.
|
||||||
|
//
|
||||||
|
// For example, here we define the function: f(x) = a*x^2 + b
|
||||||
|
//
|
||||||
|
// {
|
||||||
|
// struct ggml_init_params params = {
|
||||||
|
// .mem_size = 16*1024*1024,
|
||||||
|
// .mem_buffer = NULL,
|
||||||
|
// };
|
||||||
|
//
|
||||||
|
// // memory allocation happens here
|
||||||
|
// struct ggml_context * ctx = ggml_init(params);
|
||||||
|
//
|
||||||
|
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||||
|
//
|
||||||
|
// ggml_set_param(ctx, x); // x is an input variable
|
||||||
|
//
|
||||||
|
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||||
|
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||||
|
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
||||||
|
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
||||||
|
//
|
||||||
|
// ...
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
||||||
|
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
||||||
|
//
|
||||||
|
// {
|
||||||
|
// ...
|
||||||
|
//
|
||||||
|
// struct ggml_cgraph gf = ggml_build_forward(f);
|
||||||
|
//
|
||||||
|
// // set the input variable and parameter values
|
||||||
|
// ggml_set_f32(x, 2.0f);
|
||||||
|
// ggml_set_f32(a, 3.0f);
|
||||||
|
// ggml_set_f32(b, 4.0f);
|
||||||
|
//
|
||||||
|
// ggml_graph_compute(ctx0, &gf);
|
||||||
|
//
|
||||||
|
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
||||||
|
//
|
||||||
|
// ...
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// The actual computation is performed in the ggml_graph_compute() function.
|
||||||
|
//
|
||||||
|
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
||||||
|
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
||||||
|
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
||||||
|
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
||||||
|
// actually needed.
|
||||||
|
//
|
||||||
|
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
||||||
|
// differentiation and optimization algorithms.
|
||||||
|
//
|
||||||
|
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
||||||
|
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
||||||
|
// the user can avoid the memory allocation overhead at runtime.
|
||||||
|
//
|
||||||
|
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
||||||
|
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
||||||
|
//
|
||||||
|
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
||||||
|
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
||||||
|
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
||||||
|
// yet, but a few examples are demonstrated in the following operations:
|
||||||
|
//
|
||||||
|
// - ggml_permute()
|
||||||
|
// - ggml_conv_1d_1s()
|
||||||
|
// - ggml_conv_1d_2s()
|
||||||
|
//
|
||||||
|
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
||||||
|
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
||||||
|
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
||||||
|
// calculus class, or watch the following video:
|
||||||
|
//
|
||||||
|
// What is Automatic Differentiation?
|
||||||
|
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// ## Tensor data (struct ggml_tensor)
|
||||||
|
//
|
||||||
|
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
||||||
|
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
||||||
|
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
||||||
|
//
|
||||||
|
// {
|
||||||
|
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
||||||
|
//
|
||||||
|
// assert(c->src[0] == a);
|
||||||
|
// assert(c->src[1] == b);
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
||||||
|
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
||||||
|
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
||||||
|
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
||||||
|
// contiguous in memory.
|
||||||
|
//
|
||||||
|
// The data of the tensor is accessed via the "data" pointer. For example:
|
||||||
|
//
|
||||||
|
// {
|
||||||
|
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
||||||
|
//
|
||||||
|
// // a[1, 2] = 1.0f;
|
||||||
|
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
||||||
|
//
|
||||||
|
// // a[2, 0] = 2.0f;
|
||||||
|
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
||||||
|
//
|
||||||
|
// ...
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
||||||
|
//
|
||||||
|
// ## The matrix multiplication operator (ggml_mul_mat)
|
||||||
|
//
|
||||||
|
// TODO
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// ## Multi-threading
|
||||||
|
//
|
||||||
|
// TODO
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// ## Overview of ggml.c
|
||||||
|
//
|
||||||
|
// TODO
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// ## SIMD optimizations
|
||||||
|
//
|
||||||
|
// TODO
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// ## Debugging ggml
|
||||||
|
//
|
||||||
|
// TODO
|
||||||
|
//
|
||||||
|
//
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdbool.h>
|
||||||
|
|
||||||
|
#define GGML_MAX_DIMS 4
|
||||||
|
#define GGML_MAX_NODES 4096
|
||||||
|
#define GGML_MAX_PARAMS 16
|
||||||
|
#define GGML_MAX_CONTEXTS 64
|
||||||
|
#define GGML_MAX_OPT 4
|
||||||
|
|
||||||
|
#ifdef __ARM_NEON
|
||||||
|
// we use the built-in 16-bit float type
|
||||||
|
typedef __fp16 ggml_fp16_t;
|
||||||
|
#else
|
||||||
|
typedef uint16_t ggml_fp16_t;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// convert FP16 <-> FP32
|
||||||
|
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||||
|
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||||
|
|
||||||
|
struct ggml_object;
|
||||||
|
struct ggml_context;
|
||||||
|
|
||||||
|
enum ggml_type {
|
||||||
|
GGML_TYPE_Q4_0,
|
||||||
|
GGML_TYPE_Q4_1,
|
||||||
|
GGML_TYPE_I8,
|
||||||
|
GGML_TYPE_I16,
|
||||||
|
GGML_TYPE_I32,
|
||||||
|
GGML_TYPE_F16,
|
||||||
|
GGML_TYPE_F32,
|
||||||
|
GGML_TYPE_COUNT,
|
||||||
|
};
|
||||||
|
|
||||||
|
// available tensor operations:
|
||||||
|
enum ggml_op {
|
||||||
|
GGML_OP_NONE = 0,
|
||||||
|
|
||||||
|
GGML_OP_DUP,
|
||||||
|
GGML_OP_ADD,
|
||||||
|
GGML_OP_SUB,
|
||||||
|
GGML_OP_MUL,
|
||||||
|
GGML_OP_DIV,
|
||||||
|
GGML_OP_SQR,
|
||||||
|
GGML_OP_SQRT,
|
||||||
|
GGML_OP_SUM,
|
||||||
|
GGML_OP_MEAN,
|
||||||
|
GGML_OP_REPEAT,
|
||||||
|
GGML_OP_ABS,
|
||||||
|
GGML_OP_SGN,
|
||||||
|
GGML_OP_NEG,
|
||||||
|
GGML_OP_STEP,
|
||||||
|
GGML_OP_RELU,
|
||||||
|
GGML_OP_GELU,
|
||||||
|
GGML_OP_SILU,
|
||||||
|
GGML_OP_NORM, // normalize
|
||||||
|
|
||||||
|
GGML_OP_MUL_MAT,
|
||||||
|
|
||||||
|
GGML_OP_SCALE,
|
||||||
|
GGML_OP_CPY,
|
||||||
|
GGML_OP_RESHAPE,
|
||||||
|
GGML_OP_VIEW,
|
||||||
|
GGML_OP_PERMUTE,
|
||||||
|
GGML_OP_TRANSPOSE,
|
||||||
|
GGML_OP_GET_ROWS,
|
||||||
|
GGML_OP_DIAG_MASK_INF,
|
||||||
|
GGML_OP_SOFT_MAX,
|
||||||
|
GGML_OP_ROPE,
|
||||||
|
GGML_OP_CONV_1D_1S,
|
||||||
|
GGML_OP_CONV_1D_2S,
|
||||||
|
|
||||||
|
GGML_OP_FLASH_ATTN,
|
||||||
|
GGML_OP_FLASH_FF,
|
||||||
|
|
||||||
|
GGML_OP_COUNT,
|
||||||
|
};
|
||||||
|
|
||||||
|
// n-dimensional tensor
|
||||||
|
struct ggml_tensor {
|
||||||
|
enum ggml_type type;
|
||||||
|
|
||||||
|
int n_dims;
|
||||||
|
int ne[GGML_MAX_DIMS]; // number of elements
|
||||||
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||||
|
// nb[0] = sizeof(type)
|
||||||
|
// nb[1] = nb[0] * ne[0] + padding
|
||||||
|
// nb[i] = nb[i-1] * ne[i-1]
|
||||||
|
|
||||||
|
// compute data
|
||||||
|
enum ggml_op op;
|
||||||
|
|
||||||
|
bool is_param;
|
||||||
|
|
||||||
|
struct ggml_tensor * grad;
|
||||||
|
struct ggml_tensor * src0;
|
||||||
|
struct ggml_tensor * src1;
|
||||||
|
struct ggml_tensor * opt[GGML_MAX_OPT];
|
||||||
|
|
||||||
|
// thread scheduling
|
||||||
|
int n_tasks;
|
||||||
|
|
||||||
|
// performance
|
||||||
|
int perf_runs;
|
||||||
|
int64_t perf_cycles;
|
||||||
|
int64_t perf_time_us;
|
||||||
|
|
||||||
|
void * data;
|
||||||
|
char padding[8];
|
||||||
|
};
|
||||||
|
|
||||||
|
// computation graph
|
||||||
|
struct ggml_cgraph {
|
||||||
|
int n_nodes;
|
||||||
|
int n_leafs;
|
||||||
|
int n_threads;
|
||||||
|
|
||||||
|
size_t work_size;
|
||||||
|
struct ggml_tensor * work;
|
||||||
|
|
||||||
|
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
||||||
|
struct ggml_tensor * grads[GGML_MAX_NODES];
|
||||||
|
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
||||||
|
|
||||||
|
// performance
|
||||||
|
int perf_runs;
|
||||||
|
int64_t perf_cycles;
|
||||||
|
int64_t perf_time_us;
|
||||||
|
};
|
||||||
|
|
||||||
|
// scratch buffer
|
||||||
|
struct ggml_scratch {
|
||||||
|
size_t offs;
|
||||||
|
size_t size;
|
||||||
|
void * data;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_init_params {
|
||||||
|
// memory pool
|
||||||
|
size_t mem_size; // bytes
|
||||||
|
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||||
|
};
|
||||||
|
|
||||||
|
void ggml_time_init(void); // call this once at the beginning of the program
|
||||||
|
int64_t ggml_time_ms(void);
|
||||||
|
int64_t ggml_time_us(void);
|
||||||
|
int64_t ggml_cycles(void);
|
||||||
|
int64_t ggml_cycles_per_ms(void);
|
||||||
|
|
||||||
|
void ggml_print_object (const struct ggml_object * obj);
|
||||||
|
void ggml_print_objects(const struct ggml_context * ctx);
|
||||||
|
|
||||||
|
int ggml_nelements(const struct ggml_tensor * tensor);
|
||||||
|
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
int ggml_blck_size (enum ggml_type type);
|
||||||
|
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||||
|
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
||||||
|
|
||||||
|
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||||
|
void ggml_free(struct ggml_context * ctx);
|
||||||
|
|
||||||
|
size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||||
|
|
||||||
|
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_new_tensor(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
enum ggml_type type,
|
||||||
|
int n_dims,
|
||||||
|
const int *ne);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_new_tensor_1d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
enum ggml_type type,
|
||||||
|
int ne0);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_new_tensor_2d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
enum ggml_type type,
|
||||||
|
int ne0,
|
||||||
|
int ne1);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_new_tensor_3d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
enum ggml_type type,
|
||||||
|
int ne0,
|
||||||
|
int ne1,
|
||||||
|
int ne2);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_new_tensor_4d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
enum ggml_type type,
|
||||||
|
int ne0,
|
||||||
|
int ne1,
|
||||||
|
int ne2,
|
||||||
|
int ne3);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||||
|
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||||
|
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
||||||
|
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||||
|
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||||
|
|
||||||
|
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||||
|
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||||
|
|
||||||
|
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||||
|
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||||
|
|
||||||
|
void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||||
|
float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
//
|
||||||
|
// operations on tensors with backpropagation
|
||||||
|
//
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_dup(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_add(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_sub(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_mul(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_div(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_sqr(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_sqrt(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// return scalar
|
||||||
|
// TODO: compute sum along rows
|
||||||
|
struct ggml_tensor * ggml_sum(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// mean along rows
|
||||||
|
struct ggml_tensor * ggml_mean(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// if a is the same shape as b, and a is not parameter, return a
|
||||||
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
||||||
|
struct ggml_tensor * ggml_repeat(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_abs(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_sgn(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_neg(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_step(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_relu(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// TODO: double-check this computation is correct
|
||||||
|
struct ggml_tensor * ggml_gelu(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_silu(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// normalize along rows
|
||||||
|
// TODO: eps is hardcoded to 1e-5 for now
|
||||||
|
struct ggml_tensor * ggml_norm(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// A: m rows, n columns
|
||||||
|
// B: p rows, n columns (i.e. we transpose it internally)
|
||||||
|
// result is m columns, p rows
|
||||||
|
struct ggml_tensor * ggml_mul_mat(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
//
|
||||||
|
// operations on tensors without backpropagation
|
||||||
|
//
|
||||||
|
|
||||||
|
// in-place, returns view(a)
|
||||||
|
struct ggml_tensor * ggml_scale(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// a -> b, return view(b)
|
||||||
|
struct ggml_tensor * ggml_cpy(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// return view(a), b specifies the new shape
|
||||||
|
// TODO: when we start computing gradient, make a copy instead of view
|
||||||
|
struct ggml_tensor * ggml_reshape(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// return view(a)
|
||||||
|
// TODO: when we start computing gradient, make a copy instead of view
|
||||||
|
struct ggml_tensor * ggml_reshape_2d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int ne0,
|
||||||
|
int ne1);
|
||||||
|
|
||||||
|
// return view(a)
|
||||||
|
// TODO: when we start computing gradient, make a copy instead of view
|
||||||
|
struct ggml_tensor * ggml_reshape_3d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int ne0,
|
||||||
|
int ne1,
|
||||||
|
int ne2);
|
||||||
|
|
||||||
|
// offset in bytes
|
||||||
|
struct ggml_tensor * ggml_view_1d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int ne0,
|
||||||
|
size_t offset);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_view_2d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int ne0,
|
||||||
|
int ne1,
|
||||||
|
size_t nb1, // row stride in bytes
|
||||||
|
size_t offset);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_permute(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int axis0,
|
||||||
|
int axis1,
|
||||||
|
int axis2,
|
||||||
|
int axis3);
|
||||||
|
|
||||||
|
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
||||||
|
struct ggml_tensor * ggml_transpose(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_get_rows(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// set elements above the diagonal to -INF
|
||||||
|
// in-place, returns view(a)
|
||||||
|
struct ggml_tensor * ggml_diag_mask_inf(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_past);
|
||||||
|
|
||||||
|
// in-place, returns view(a)
|
||||||
|
struct ggml_tensor * ggml_soft_max(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a);
|
||||||
|
|
||||||
|
// rotary position embedding
|
||||||
|
// in-place, returns view(a)
|
||||||
|
// if mode == 1, skip n_past elements
|
||||||
|
// TODO: avoid creating a new tensor every time
|
||||||
|
struct ggml_tensor * ggml_rope(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_past,
|
||||||
|
int n_dims,
|
||||||
|
int mode);
|
||||||
|
|
||||||
|
// padding = 1
|
||||||
|
// TODO: we don't support extra parameters for now
|
||||||
|
// that's why we are hard-coding the stride, padding, and dilation
|
||||||
|
// not great ..
|
||||||
|
struct ggml_tensor * ggml_conv_1d_1s(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_conv_1d_2s(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_flash_attn(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * q,
|
||||||
|
struct ggml_tensor * k,
|
||||||
|
struct ggml_tensor * v,
|
||||||
|
bool masked);
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_flash_ff(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b0,
|
||||||
|
struct ggml_tensor * b1,
|
||||||
|
struct ggml_tensor * c0,
|
||||||
|
struct ggml_tensor * c1);
|
||||||
|
|
||||||
|
//
|
||||||
|
// automatic differentiation
|
||||||
|
//
|
||||||
|
|
||||||
|
void ggml_set_param(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
||||||
|
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
||||||
|
|
||||||
|
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||||
|
void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
||||||
|
|
||||||
|
// print info and performance information for the graph
|
||||||
|
void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
||||||
|
|
||||||
|
// dump the graph into a file using the dot format
|
||||||
|
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
||||||
|
|
||||||
|
//
|
||||||
|
// optimization
|
||||||
|
//
|
||||||
|
|
||||||
|
// optimization methods
|
||||||
|
enum ggml_opt_type {
|
||||||
|
GGML_OPT_ADAM,
|
||||||
|
GGML_OPT_LBFGS,
|
||||||
|
};
|
||||||
|
|
||||||
|
// linesearch methods
|
||||||
|
enum ggml_linesearch {
|
||||||
|
GGML_LINESEARCH_DEFAULT = 1,
|
||||||
|
|
||||||
|
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
||||||
|
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
||||||
|
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
||||||
|
};
|
||||||
|
|
||||||
|
// optimization return values
|
||||||
|
enum ggml_opt_result {
|
||||||
|
GGML_OPT_OK = 0,
|
||||||
|
GGML_OPT_DID_NOT_CONVERGE,
|
||||||
|
GGML_OPT_NO_CONTEXT,
|
||||||
|
GGML_OPT_INVALID_WOLFE,
|
||||||
|
GGML_OPT_FAIL,
|
||||||
|
|
||||||
|
GGML_LINESEARCH_FAIL = -128,
|
||||||
|
GGML_LINESEARCH_MINIMUM_STEP,
|
||||||
|
GGML_LINESEARCH_MAXIMUM_STEP,
|
||||||
|
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
||||||
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
||||||
|
};
|
||||||
|
|
||||||
|
// optimization parameters
|
||||||
|
//
|
||||||
|
// see ggml.c (ggml_opt_default_params) for default values
|
||||||
|
//
|
||||||
|
struct ggml_opt_params {
|
||||||
|
enum ggml_opt_type type;
|
||||||
|
|
||||||
|
int n_threads;
|
||||||
|
|
||||||
|
// delta-based convergence test
|
||||||
|
//
|
||||||
|
// if past == 0 - disabled
|
||||||
|
// if past > 0:
|
||||||
|
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
||||||
|
//
|
||||||
|
int past;
|
||||||
|
float delta;
|
||||||
|
|
||||||
|
// maximum number of iterations without improvement
|
||||||
|
//
|
||||||
|
// if 0 - disabled
|
||||||
|
// if > 0:
|
||||||
|
// assume convergence if no cost improvement in this number of iterations
|
||||||
|
//
|
||||||
|
int max_no_improvement;
|
||||||
|
|
||||||
|
bool print_forward_graph;
|
||||||
|
bool print_backward_graph;
|
||||||
|
|
||||||
|
// ADAM parameters
|
||||||
|
struct {
|
||||||
|
int n_iter;
|
||||||
|
|
||||||
|
float alpha; // learning rate
|
||||||
|
float beta1;
|
||||||
|
float beta2;
|
||||||
|
float eps; // epsilon for numerical stability
|
||||||
|
float eps_f; // epsilon for convergence test
|
||||||
|
float eps_g; // epsilon for convergence test
|
||||||
|
} adam;
|
||||||
|
|
||||||
|
// LBFGS parameters
|
||||||
|
struct {
|
||||||
|
int m; // number of corrections to approximate the inv. Hessian
|
||||||
|
int n_iter;
|
||||||
|
int max_linesearch;
|
||||||
|
|
||||||
|
float eps; // convergence tolerance
|
||||||
|
float ftol; // line search tolerance
|
||||||
|
float wolfe;
|
||||||
|
float min_step;
|
||||||
|
float max_step;
|
||||||
|
|
||||||
|
enum ggml_linesearch linesearch;
|
||||||
|
} lbfgs;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
||||||
|
|
||||||
|
// optimize the function defined by the tensor f
|
||||||
|
enum ggml_opt_result ggml_opt(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_opt_params params,
|
||||||
|
struct ggml_tensor * f);
|
||||||
|
|
||||||
|
//
|
||||||
|
// system info
|
||||||
|
//
|
||||||
|
|
||||||
|
int ggml_cpu_has_avx(void);
|
||||||
|
int ggml_cpu_has_avx2(void);
|
||||||
|
int ggml_cpu_has_avx512(void);
|
||||||
|
int ggml_cpu_has_fma(void);
|
||||||
|
int ggml_cpu_has_neon(void);
|
||||||
|
int ggml_cpu_has_arm_fma(void);
|
||||||
|
int ggml_cpu_has_f16c(void);
|
||||||
|
int ggml_cpu_has_fp16_va(void);
|
||||||
|
int ggml_cpu_has_wasm_simd(void);
|
||||||
|
int ggml_cpu_has_blas(void);
|
||||||
|
int ggml_cpu_has_sse3(void);
|
||||||
|
int ggml_cpu_has_vsx(void);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
750
main.cpp
Normal file
750
main.cpp
Normal file
@ -0,0 +1,750 @@
|
|||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#include "utils.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <fstream>
|
||||||
|
#include <map>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
// default hparams (LLaMA 7B)
|
||||||
|
struct llama_hparams {
|
||||||
|
int32_t n_vocab = 32000;
|
||||||
|
int32_t n_ctx = 512; // this is provided as user input?
|
||||||
|
int32_t n_embd = 4096;
|
||||||
|
int32_t n_mult = 256;
|
||||||
|
int32_t n_head = 32;
|
||||||
|
int32_t n_layer = 32;
|
||||||
|
int32_t n_rot = 64;
|
||||||
|
int32_t f16 = 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct llama_layer {
|
||||||
|
// normalization
|
||||||
|
struct ggml_tensor * attention_norm;
|
||||||
|
|
||||||
|
// attention
|
||||||
|
struct ggml_tensor * wq;
|
||||||
|
struct ggml_tensor * wk;
|
||||||
|
struct ggml_tensor * wv;
|
||||||
|
struct ggml_tensor * wo;
|
||||||
|
|
||||||
|
// normalization
|
||||||
|
struct ggml_tensor * ffn_norm;
|
||||||
|
|
||||||
|
// ff
|
||||||
|
struct ggml_tensor * w1;
|
||||||
|
struct ggml_tensor * w2;
|
||||||
|
struct ggml_tensor * w3;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct llama_model {
|
||||||
|
llama_hparams hparams;
|
||||||
|
|
||||||
|
struct ggml_tensor * tok_embeddings;
|
||||||
|
|
||||||
|
struct ggml_tensor * norm;
|
||||||
|
struct ggml_tensor * output;
|
||||||
|
|
||||||
|
std::vector<llama_layer> layers;
|
||||||
|
|
||||||
|
// key + value memory
|
||||||
|
struct ggml_tensor * memory_k;
|
||||||
|
struct ggml_tensor * memory_v;
|
||||||
|
|
||||||
|
//
|
||||||
|
struct ggml_context * ctx;
|
||||||
|
std::map<std::string, struct ggml_tensor *> tensors;
|
||||||
|
};
|
||||||
|
|
||||||
|
// load the model's weights from a file
|
||||||
|
bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) {
|
||||||
|
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
||||||
|
|
||||||
|
auto fin = std::ifstream(fname, std::ios::binary);
|
||||||
|
if (!fin) {
|
||||||
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// verify magic
|
||||||
|
{
|
||||||
|
uint32_t magic;
|
||||||
|
fin.read((char *) &magic, sizeof(magic));
|
||||||
|
if (magic != 0x67676d6c) {
|
||||||
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int n_ff = 0;
|
||||||
|
|
||||||
|
// load hparams
|
||||||
|
{
|
||||||
|
auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||||
|
//fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||||
|
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||||
|
fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
|
||||||
|
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||||
|
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||||
|
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
||||||
|
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||||
|
|
||||||
|
hparams.n_ctx = n_ctx;
|
||||||
|
|
||||||
|
n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
||||||
|
|
||||||
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||||
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||||
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||||
|
printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
|
||||||
|
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||||
|
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||||
|
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
|
||||||
|
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||||
|
printf("%s: n_ff = %d\n", __func__, n_ff);
|
||||||
|
}
|
||||||
|
|
||||||
|
// load vocab
|
||||||
|
{
|
||||||
|
const int32_t n_vocab = model.hparams.n_vocab;
|
||||||
|
|
||||||
|
if (n_vocab != model.hparams.n_vocab) {
|
||||||
|
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||||
|
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string word;
|
||||||
|
for (int i = 0; i < n_vocab; i++) {
|
||||||
|
uint32_t len;
|
||||||
|
fin.read((char *) &len, sizeof(len));
|
||||||
|
|
||||||
|
word.resize(len);
|
||||||
|
fin.read((char *) word.data(), len);
|
||||||
|
|
||||||
|
vocab.token_to_id[word] = i;
|
||||||
|
vocab.id_to_token[i] = word;
|
||||||
|
|
||||||
|
//if (i < 30000) {
|
||||||
|
// printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
||||||
|
//}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||||
|
// in order to save memory and also to speed up the computation
|
||||||
|
ggml_type wtype = GGML_TYPE_COUNT;
|
||||||
|
switch (model.hparams.f16) {
|
||||||
|
case 0: wtype = GGML_TYPE_F32; break;
|
||||||
|
case 1: wtype = GGML_TYPE_F16; break;
|
||||||
|
case 2: wtype = GGML_TYPE_Q4_0; break;
|
||||||
|
case 3: wtype = GGML_TYPE_Q4_1; break;
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
|
||||||
|
__func__, fname.c_str(), model.hparams.f16);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const ggml_type wtype2 = GGML_TYPE_F32;
|
||||||
|
|
||||||
|
auto & ctx = model.ctx;
|
||||||
|
|
||||||
|
size_t ctx_size = 0;
|
||||||
|
|
||||||
|
{
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
const int n_embd = hparams.n_embd;
|
||||||
|
const int n_layer = hparams.n_layer;
|
||||||
|
const int n_ctx = hparams.n_ctx;
|
||||||
|
const int n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings
|
||||||
|
|
||||||
|
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
||||||
|
|
||||||
|
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output
|
||||||
|
|
||||||
|
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
||||||
|
|
||||||
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
|
||||||
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
|
||||||
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
|
||||||
|
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
|
||||||
|
|
||||||
|
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
|
||||||
|
|
||||||
|
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
|
||||||
|
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
|
||||||
|
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
|
||||||
|
|
||||||
|
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||||
|
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||||
|
|
||||||
|
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||||
|
|
||||||
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
// create the ggml context
|
||||||
|
{
|
||||||
|
struct ggml_init_params params = {
|
||||||
|
.mem_size = ctx_size,
|
||||||
|
.mem_buffer = NULL,
|
||||||
|
};
|
||||||
|
|
||||||
|
model.ctx = ggml_init(params);
|
||||||
|
if (!model.ctx) {
|
||||||
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// prepare memory for the weights
|
||||||
|
{
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
const int n_embd = hparams.n_embd;
|
||||||
|
const int n_layer = hparams.n_layer;
|
||||||
|
const int n_ctx = hparams.n_ctx;
|
||||||
|
const int n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
model.layers.resize(n_layer);
|
||||||
|
|
||||||
|
model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||||
|
|
||||||
|
model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||||
|
|
||||||
|
// map by name
|
||||||
|
model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
|
||||||
|
|
||||||
|
model.tensors["norm.weight"] = model.norm;
|
||||||
|
model.tensors["output.weight"] = model.output;
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
|
layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||||
|
layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||||
|
layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||||
|
layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||||
|
|
||||||
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||||
|
|
||||||
|
layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
|
||||||
|
layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
|
||||||
|
layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
|
||||||
|
|
||||||
|
// map by name
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
|
||||||
|
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
|
||||||
|
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
|
||||||
|
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
|
||||||
|
model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// key + value memory
|
||||||
|
{
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
const int n_embd = hparams.n_embd;
|
||||||
|
const int n_layer = hparams.n_layer;
|
||||||
|
const int n_ctx = hparams.n_ctx;
|
||||||
|
|
||||||
|
const int n_mem = n_layer*n_ctx;
|
||||||
|
const int n_elements = n_embd*n_mem;
|
||||||
|
|
||||||
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||||
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||||
|
|
||||||
|
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||||
|
|
||||||
|
printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
||||||
|
}
|
||||||
|
|
||||||
|
// load weights
|
||||||
|
{
|
||||||
|
int n_tensors = 0;
|
||||||
|
size_t total_size = 0;
|
||||||
|
|
||||||
|
printf("%s: ", __func__);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
int32_t n_dims;
|
||||||
|
int32_t length;
|
||||||
|
int32_t ftype;
|
||||||
|
|
||||||
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||||
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||||
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||||
|
|
||||||
|
if (fin.eof()) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t nelements = 1;
|
||||||
|
int32_t ne[2] = { 1, 1 };
|
||||||
|
for (int i = 0; i < n_dims; ++i) {
|
||||||
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||||
|
nelements *= ne[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string name(length, 0);
|
||||||
|
fin.read(&name[0], length);
|
||||||
|
|
||||||
|
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||||
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto tensor = model.tensors[name.data()];
|
||||||
|
if (ggml_nelements(tensor) != nelements) {
|
||||||
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||||
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||||
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (0) {
|
||||||
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||||
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t bpe = 0;
|
||||||
|
|
||||||
|
switch (ftype) {
|
||||||
|
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
||||||
|
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
||||||
|
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
||||||
|
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||||
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||||
|
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||||
|
|
||||||
|
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||||
|
total_size += ggml_nbytes(tensor);
|
||||||
|
if (++n_tensors % 8 == 0) {
|
||||||
|
printf(".");
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
printf(" done\n");
|
||||||
|
|
||||||
|
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
|
||||||
|
}
|
||||||
|
|
||||||
|
fin.close();
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// evaluate the transformer
|
||||||
|
//
|
||||||
|
// - model: the model
|
||||||
|
// - n_threads: number of threads to use
|
||||||
|
// - n_past: the context size so far
|
||||||
|
// - embd_inp: the embeddings of the tokens in the context
|
||||||
|
// - embd_w: the predicted logits for the next token
|
||||||
|
//
|
||||||
|
// The GPT-J model requires about 16MB of memory per input token.
|
||||||
|
//
|
||||||
|
bool llama_eval(
|
||||||
|
const llama_model & model,
|
||||||
|
const int n_threads,
|
||||||
|
const int n_past,
|
||||||
|
const std::vector<gpt_vocab::id> & embd_inp,
|
||||||
|
std::vector<float> & embd_w,
|
||||||
|
size_t & mem_per_token) {
|
||||||
|
const int N = embd_inp.size();
|
||||||
|
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
const int n_embd = hparams.n_embd;
|
||||||
|
const int n_layer = hparams.n_layer;
|
||||||
|
const int n_ctx = hparams.n_ctx;
|
||||||
|
const int n_head = hparams.n_head;
|
||||||
|
const int n_vocab = hparams.n_vocab;
|
||||||
|
const int n_rot = hparams.n_rot;
|
||||||
|
|
||||||
|
const int d_key = n_embd/n_head;
|
||||||
|
|
||||||
|
static size_t buf_size = 256u*1024*1024;
|
||||||
|
static void * buf = malloc(buf_size);
|
||||||
|
|
||||||
|
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||||
|
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||||
|
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||||
|
|
||||||
|
// reallocate
|
||||||
|
buf_size = buf_size_new;
|
||||||
|
buf = realloc(buf, buf_size);
|
||||||
|
if (buf == nullptr) {
|
||||||
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_init_params params = {
|
||||||
|
.mem_size = buf_size,
|
||||||
|
.mem_buffer = buf,
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
|
struct ggml_cgraph gf = { .n_threads = n_threads };
|
||||||
|
|
||||||
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||||
|
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||||
|
|
||||||
|
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_norm(ctx0, inpL);
|
||||||
|
|
||||||
|
// cur = attention_norm*cur
|
||||||
|
cur = ggml_mul(ctx0,
|
||||||
|
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
|
||||||
|
cur);
|
||||||
|
}
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||||
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||||
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||||
|
|
||||||
|
// store key and value to memory
|
||||||
|
if (N >= 1) {
|
||||||
|
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||||
|
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||||
|
|
||||||
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||||
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||||
|
struct ggml_tensor * Q =
|
||||||
|
ggml_permute(ctx0,
|
||||||
|
ggml_rope(ctx0,
|
||||||
|
ggml_cpy(ctx0,
|
||||||
|
Qcur,
|
||||||
|
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||||
|
n_past, n_rot, 0),
|
||||||
|
0, 2, 1, 3);
|
||||||
|
|
||||||
|
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||||
|
struct ggml_tensor * K =
|
||||||
|
ggml_permute(ctx0,
|
||||||
|
ggml_rope(ctx0,
|
||||||
|
ggml_reshape_3d(ctx0,
|
||||||
|
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
||||||
|
n_embd/n_head, n_head, n_past + N),
|
||||||
|
n_past, n_rot, 1),
|
||||||
|
0, 2, 1, 3);
|
||||||
|
|
||||||
|
// K * Q
|
||||||
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||||
|
|
||||||
|
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||||
|
struct ggml_tensor * KQ_scaled =
|
||||||
|
ggml_scale(ctx0,
|
||||||
|
KQ,
|
||||||
|
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
||||||
|
);
|
||||||
|
|
||||||
|
// KQ_masked = mask_past(KQ_scaled)
|
||||||
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||||
|
|
||||||
|
// KQ = soft_max(KQ_masked)
|
||||||
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||||
|
|
||||||
|
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||||
|
struct ggml_tensor * V_trans =
|
||||||
|
ggml_permute(ctx0,
|
||||||
|
ggml_reshape_3d(ctx0,
|
||||||
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||||
|
n_embd/n_head, n_head, n_past + N),
|
||||||
|
1, 2, 0, 3);
|
||||||
|
|
||||||
|
// KQV = transpose(V) * KQ_soft_max
|
||||||
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||||
|
|
||||||
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||||
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||||
|
|
||||||
|
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||||
|
cur = ggml_cpy(ctx0,
|
||||||
|
KQV_merged,
|
||||||
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||||
|
|
||||||
|
// projection (no bias)
|
||||||
|
cur = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].wo,
|
||||||
|
cur);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
{
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
cur = ggml_norm(ctx0, inpFF);
|
||||||
|
|
||||||
|
// cur = ffn_norm*cur
|
||||||
|
cur = ggml_mul(ctx0,
|
||||||
|
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
|
||||||
|
cur);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].w3,
|
||||||
|
cur);
|
||||||
|
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].w1,
|
||||||
|
cur);
|
||||||
|
|
||||||
|
// SILU activation
|
||||||
|
cur = ggml_silu(ctx0, cur);
|
||||||
|
|
||||||
|
cur = ggml_mul(ctx0, cur, tmp);
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0,
|
||||||
|
model.layers[il].w2,
|
||||||
|
cur);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, inpFF);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
// norm
|
||||||
|
{
|
||||||
|
inpL = ggml_norm(ctx0, inpL);
|
||||||
|
|
||||||
|
// inpL = norm*inpL
|
||||||
|
inpL = ggml_mul(ctx0,
|
||||||
|
ggml_repeat(ctx0, model.norm, inpL),
|
||||||
|
inpL);
|
||||||
|
}
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
{
|
||||||
|
inpL = ggml_mul_mat(ctx0, model.output, inpL);
|
||||||
|
}
|
||||||
|
|
||||||
|
// logits -> probs
|
||||||
|
//inpL = ggml_soft_max(ctx0, inpL);
|
||||||
|
|
||||||
|
// run the computation
|
||||||
|
ggml_build_forward_expand(&gf, inpL);
|
||||||
|
ggml_graph_compute (ctx0, &gf);
|
||||||
|
|
||||||
|
//if (n_past%100 == 0) {
|
||||||
|
// ggml_graph_print (&gf);
|
||||||
|
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||||
|
//}
|
||||||
|
|
||||||
|
//embd_w.resize(n_vocab*N);
|
||||||
|
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||||
|
|
||||||
|
// return result for just the last token
|
||||||
|
embd_w.resize(n_vocab);
|
||||||
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||||
|
|
||||||
|
if (mem_per_token == 0) {
|
||||||
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||||
|
}
|
||||||
|
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
||||||
|
|
||||||
|
ggml_free(ctx0);
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
const int64_t t_main_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
gpt_params params;
|
||||||
|
params.model = "models/llama-7B/ggml-model.bin";
|
||||||
|
|
||||||
|
if (gpt_params_parse(argc, argv, params) == false) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.seed < 0) {
|
||||||
|
params.seed = time(NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("%s: seed = %d\n", __func__, params.seed);
|
||||||
|
|
||||||
|
std::mt19937 rng(params.seed);
|
||||||
|
if (params.prompt.empty()) {
|
||||||
|
params.prompt = gpt_random_prompt(rng);
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t t_load_us = 0;
|
||||||
|
|
||||||
|
gpt_vocab vocab;
|
||||||
|
llama_model model;
|
||||||
|
|
||||||
|
// load the model
|
||||||
|
{
|
||||||
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
if (!llama_model_load(params.model, model, vocab, 512)) { // TODO: set context from user input ??
|
||||||
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
t_load_us = ggml_time_us() - t_start_us;
|
||||||
|
}
|
||||||
|
|
||||||
|
int n_past = 0;
|
||||||
|
|
||||||
|
int64_t t_sample_us = 0;
|
||||||
|
int64_t t_predict_us = 0;
|
||||||
|
|
||||||
|
std::vector<float> logits;
|
||||||
|
|
||||||
|
// tokenize the prompt
|
||||||
|
std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
|
||||||
|
|
||||||
|
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
||||||
|
|
||||||
|
printf("\n");
|
||||||
|
printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
|
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||||
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||||
|
printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
printf("sampling parameters: temp = %f, top_k = %d, top_p = %f\n", params.temp, params.top_k, params.top_p);
|
||||||
|
printf("\n\n");
|
||||||
|
|
||||||
|
std::vector<gpt_vocab::id> embd;
|
||||||
|
|
||||||
|
// determine the required inference memory per token:
|
||||||
|
size_t mem_per_token = 0;
|
||||||
|
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
||||||
|
|
||||||
|
for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
||||||
|
// predict
|
||||||
|
if (embd.size() > 0) {
|
||||||
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
||||||
|
printf("Failed to predict\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
t_predict_us += ggml_time_us() - t_start_us;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past += embd.size();
|
||||||
|
embd.clear();
|
||||||
|
|
||||||
|
if (i >= embd_inp.size()) {
|
||||||
|
// sample next token
|
||||||
|
const int top_k = params.top_k;
|
||||||
|
const float top_p = params.top_p;
|
||||||
|
const float temp = params.temp;
|
||||||
|
|
||||||
|
const int n_vocab = model.hparams.n_vocab;
|
||||||
|
|
||||||
|
gpt_vocab::id id = 0;
|
||||||
|
|
||||||
|
{
|
||||||
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
|
||||||
|
|
||||||
|
t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
}
|
||||||
|
|
||||||
|
// add it to the context
|
||||||
|
embd.push_back(id);
|
||||||
|
} else {
|
||||||
|
// if here, it means we are still processing the input prompt
|
||||||
|
for (int k = i; k < embd_inp.size(); k++) {
|
||||||
|
embd.push_back(embd_inp[k]);
|
||||||
|
if (embd.size() > params.n_batch) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
i += embd.size() - 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// display text
|
||||||
|
for (auto id : embd) {
|
||||||
|
printf("%s", vocab.id_to_token[id].c_str());
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
|
||||||
|
// end of text token
|
||||||
|
if (embd.back() == 2) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// report timing
|
||||||
|
{
|
||||||
|
const int64_t t_main_end_us = ggml_time_us();
|
||||||
|
|
||||||
|
printf("\n\n");
|
||||||
|
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
||||||
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
||||||
|
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
||||||
|
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
||||||
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_free(model.ctx);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
330
quantize.cpp
Normal file
330
quantize.cpp
Normal file
@ -0,0 +1,330 @@
|
|||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#include "utils.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <fstream>
|
||||||
|
#include <map>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <regex>
|
||||||
|
|
||||||
|
// TODO: move somewhere else
|
||||||
|
#define QK 32
|
||||||
|
|
||||||
|
// default hparams (LLaMA76B)
|
||||||
|
struct llama_hparams {
|
||||||
|
int32_t n_vocab = 32000;
|
||||||
|
int32_t n_ctx = 512; // this is provided as user input?
|
||||||
|
int32_t n_embd = 4096;
|
||||||
|
int32_t n_mult = 256;
|
||||||
|
int32_t n_head = 32;
|
||||||
|
int32_t n_layer = 32;
|
||||||
|
int32_t n_rot = 64;
|
||||||
|
int32_t f16 = 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// quantize a model
|
||||||
|
bool llama_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) {
|
||||||
|
ggml_type type = GGML_TYPE_Q4_1;
|
||||||
|
|
||||||
|
switch (itype) {
|
||||||
|
case 2: type = GGML_TYPE_Q4_0; break;
|
||||||
|
case 3: type = GGML_TYPE_Q4_1; break;
|
||||||
|
default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
|
||||||
|
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
gpt_vocab vocab;
|
||||||
|
|
||||||
|
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
|
||||||
|
|
||||||
|
auto finp = std::ifstream(fname_inp, std::ios::binary);
|
||||||
|
if (!finp) {
|
||||||
|
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto fout = std::ofstream(fname_out, std::ios::binary);
|
||||||
|
if (!fout) {
|
||||||
|
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// verify magic
|
||||||
|
{
|
||||||
|
uint32_t magic;
|
||||||
|
finp.read((char *) &magic, sizeof(magic));
|
||||||
|
if (magic != 0x67676d6c) {
|
||||||
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
fout.write((char *) &magic, sizeof(magic));
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_hparams hparams;
|
||||||
|
|
||||||
|
// load hparams
|
||||||
|
{
|
||||||
|
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||||
|
//finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||||
|
finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||||
|
finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
|
||||||
|
finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||||
|
finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||||
|
finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
||||||
|
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
|
||||||
|
|
||||||
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||||
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||||
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||||
|
printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
|
||||||
|
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||||
|
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||||
|
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
||||||
|
|
||||||
|
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||||
|
//fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||||
|
fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||||
|
fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
|
||||||
|
fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||||
|
fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||||
|
fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
||||||
|
fout.write((char *) &itype, sizeof(hparams.f16));
|
||||||
|
}
|
||||||
|
|
||||||
|
// load vocab
|
||||||
|
{
|
||||||
|
const int32_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
if (n_vocab != hparams.n_vocab) {
|
||||||
|
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||||
|
__func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string word;
|
||||||
|
for (int i = 0; i < n_vocab; i++) {
|
||||||
|
uint32_t len;
|
||||||
|
finp.read ((char *) &len, sizeof(len));
|
||||||
|
fout.write((char *) &len, sizeof(len));
|
||||||
|
|
||||||
|
word.resize(len);
|
||||||
|
finp.read ((char *) word.data(), len);
|
||||||
|
fout.write((char *) word.data(), len);
|
||||||
|
|
||||||
|
vocab.token_to_id[word] = i;
|
||||||
|
vocab.id_to_token[i] = word;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// load weights
|
||||||
|
{
|
||||||
|
size_t total_size_org = 0;
|
||||||
|
size_t total_size_new = 0;
|
||||||
|
|
||||||
|
std::vector<float> work;
|
||||||
|
|
||||||
|
std::vector<uint8_t> data_u8;
|
||||||
|
std::vector<ggml_fp16_t> data_f16;
|
||||||
|
std::vector<float> data_f32;
|
||||||
|
|
||||||
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
int32_t n_dims;
|
||||||
|
int32_t length;
|
||||||
|
int32_t ftype;
|
||||||
|
|
||||||
|
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||||
|
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||||
|
finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||||
|
|
||||||
|
if (finp.eof()) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
int32_t nelements = 1;
|
||||||
|
int32_t ne[2] = { 1, 1 };
|
||||||
|
for (int i = 0; i < n_dims; ++i) {
|
||||||
|
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||||
|
nelements *= ne[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string name(length, 0);
|
||||||
|
finp.read (&name[0], length);
|
||||||
|
|
||||||
|
{
|
||||||
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||||
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// regexes of tensor names to be quantized
|
||||||
|
const std::vector<std::string> k_names = {
|
||||||
|
".*weight",
|
||||||
|
};
|
||||||
|
|
||||||
|
bool quantize = false;
|
||||||
|
for (const auto & s : k_names) {
|
||||||
|
if (std::regex_match(name, std::regex(s))) {
|
||||||
|
quantize = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// quantize only 2D tensors
|
||||||
|
quantize &= (n_dims == 2);
|
||||||
|
|
||||||
|
if (quantize) {
|
||||||
|
if (ftype != 0 && ftype != 1) {
|
||||||
|
fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ftype == 1) {
|
||||||
|
data_f16.resize(nelements);
|
||||||
|
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
|
||||||
|
data_f32.resize(nelements);
|
||||||
|
for (int i = 0; i < nelements; ++i) {
|
||||||
|
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
data_f32.resize(nelements);
|
||||||
|
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
|
||||||
|
}
|
||||||
|
|
||||||
|
ftype = itype;
|
||||||
|
} else {
|
||||||
|
const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
|
||||||
|
|
||||||
|
data_u8.resize(nelements*bpe);
|
||||||
|
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
|
||||||
|
}
|
||||||
|
|
||||||
|
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||||
|
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
|
||||||
|
fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||||
|
for (int i = 0; i < n_dims; ++i) {
|
||||||
|
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||||
|
}
|
||||||
|
fout.write(&name[0], length);
|
||||||
|
|
||||||
|
if (quantize) {
|
||||||
|
printf("quantizing .. ");
|
||||||
|
work.resize(nelements); // for quantization
|
||||||
|
|
||||||
|
size_t cur_size = 0;
|
||||||
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||||
|
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
{
|
||||||
|
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
|
||||||
|
} break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
{
|
||||||
|
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
|
||||||
|
} break;
|
||||||
|
default:
|
||||||
|
{
|
||||||
|
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
|
||||||
|
total_size_new += cur_size;
|
||||||
|
|
||||||
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
|
||||||
|
for (int i = 0; i < hist_cur.size(); ++i) {
|
||||||
|
hist_all[i] += hist_cur[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < hist_cur.size(); ++i) {
|
||||||
|
printf("%5.3f ", hist_cur[i] / (float)nelements);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
} else {
|
||||||
|
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
|
||||||
|
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
|
||||||
|
total_size_new += data_u8.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
total_size_org += nelements * sizeof(float);
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||||||
|
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||||||
|
|
||||||
|
{
|
||||||
|
int64_t sum_all = 0;
|
||||||
|
for (int i = 0; i < hist_all.size(); ++i) {
|
||||||
|
sum_all += hist_all[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("%s: hist: ", __func__);
|
||||||
|
for (int i = 0; i < hist_all.size(); ++i) {
|
||||||
|
printf("%5.3f ", hist_all[i] / (float)sum_all);
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
finp.close();
|
||||||
|
fout.close();
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// usage:
|
||||||
|
// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
||||||
|
//
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
if (argc != 4) {
|
||||||
|
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
||||||
|
fprintf(stderr, " type = 2 - q4_0\n");
|
||||||
|
fprintf(stderr, " type = 3 - q4_1\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string fname_inp = argv[1];
|
||||||
|
const std::string fname_out = argv[2];
|
||||||
|
|
||||||
|
const int itype = atoi(argv[3]);
|
||||||
|
|
||||||
|
const int64_t t_main_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
int64_t t_quantize_us = 0;
|
||||||
|
|
||||||
|
// load the model
|
||||||
|
{
|
||||||
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
if (!llama_model_quantize(fname_inp, fname_out, itype)) {
|
||||||
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
t_quantize_us = ggml_time_us() - t_start_us;
|
||||||
|
}
|
||||||
|
|
||||||
|
// report timing
|
||||||
|
{
|
||||||
|
const int64_t t_main_end_us = ggml_time_us();
|
||||||
|
|
||||||
|
printf("\n");
|
||||||
|
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
|
||||||
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
478
utils.cpp
Normal file
478
utils.cpp
Normal file
@ -0,0 +1,478 @@
|
|||||||
|
#include "utils.h"
|
||||||
|
|
||||||
|
#include <fstream>
|
||||||
|
#include <regex>
|
||||||
|
|
||||||
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
|
for (int i = 1; i < argc; i++) {
|
||||||
|
std::string arg = argv[i];
|
||||||
|
|
||||||
|
if (arg == "-s" || arg == "--seed") {
|
||||||
|
params.seed = std::stoi(argv[++i]);
|
||||||
|
} else if (arg == "-t" || arg == "--threads") {
|
||||||
|
params.n_threads = std::stoi(argv[++i]);
|
||||||
|
} else if (arg == "-p" || arg == "--prompt") {
|
||||||
|
params.prompt = argv[++i];
|
||||||
|
} else if (arg == "-n" || arg == "--n_predict") {
|
||||||
|
params.n_predict = std::stoi(argv[++i]);
|
||||||
|
} else if (arg == "--top_k") {
|
||||||
|
params.top_k = std::stoi(argv[++i]);
|
||||||
|
} else if (arg == "--top_p") {
|
||||||
|
params.top_p = std::stof(argv[++i]);
|
||||||
|
} else if (arg == "--temp") {
|
||||||
|
params.temp = std::stof(argv[++i]);
|
||||||
|
} else if (arg == "-b" || arg == "--batch_size") {
|
||||||
|
params.n_batch = std::stoi(argv[++i]);
|
||||||
|
} else if (arg == "-m" || arg == "--model") {
|
||||||
|
params.model = argv[++i];
|
||||||
|
} else if (arg == "-h" || arg == "--help") {
|
||||||
|
gpt_print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
|
gpt_print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||||
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "options:\n");
|
||||||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||||
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||||
|
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||||
|
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||||
|
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||||
|
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||||
|
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||||
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||||
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||||
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||||
|
const int r = rng() % 10;
|
||||||
|
switch (r) {
|
||||||
|
case 0: return "So";
|
||||||
|
case 1: return "Once upon a time";
|
||||||
|
case 2: return "When";
|
||||||
|
case 3: return "The";
|
||||||
|
case 4: return "After";
|
||||||
|
case 5: return "If";
|
||||||
|
case 6: return "import";
|
||||||
|
case 7: return "He";
|
||||||
|
case 8: return "She";
|
||||||
|
case 9: return "They";
|
||||||
|
default: return "To";
|
||||||
|
}
|
||||||
|
|
||||||
|
return "The";
|
||||||
|
}
|
||||||
|
|
||||||
|
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
|
||||||
|
size_t pos = 0;
|
||||||
|
while ((pos = str.find(needle, pos)) != std::string::npos) {
|
||||||
|
str.replace(pos, needle.length(), replacement);
|
||||||
|
pos += replacement.length();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||||
|
std::map<std::string, int32_t> result;
|
||||||
|
|
||||||
|
// read file into string
|
||||||
|
std::string json;
|
||||||
|
{
|
||||||
|
std::ifstream ifs(fname);
|
||||||
|
if (!ifs) {
|
||||||
|
fprintf(stderr, "Failed to open %s\n", fname.c_str());
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
json = std::string((std::istreambuf_iterator<char>(ifs)),
|
||||||
|
(std::istreambuf_iterator<char>()));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (json[0] != '{') {
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// parse json
|
||||||
|
{
|
||||||
|
bool has_key = false;
|
||||||
|
bool in_token = false;
|
||||||
|
|
||||||
|
std::string str_key = "";
|
||||||
|
std::string str_val = "";
|
||||||
|
|
||||||
|
int n = json.size();
|
||||||
|
for (int i = 1; i < n; ++i) {
|
||||||
|
if (!in_token) {
|
||||||
|
if (json[i] == ' ') continue;
|
||||||
|
if (json[i] == '"') {
|
||||||
|
in_token = true;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (json[i] == '\\' && i+1 < n) {
|
||||||
|
if (has_key == false) {
|
||||||
|
str_key += json[i];
|
||||||
|
} else {
|
||||||
|
str_val += json[i];
|
||||||
|
}
|
||||||
|
++i;
|
||||||
|
} else if (json[i] == '"') {
|
||||||
|
if (has_key == false) {
|
||||||
|
has_key = true;
|
||||||
|
++i;
|
||||||
|
while (json[i] == ' ') ++i;
|
||||||
|
++i; // :
|
||||||
|
while (json[i] == ' ') ++i;
|
||||||
|
if (json[i] != '\"') {
|
||||||
|
while (json[i] != ',' && json[i] != '}') {
|
||||||
|
str_val += json[i++];
|
||||||
|
}
|
||||||
|
has_key = false;
|
||||||
|
} else {
|
||||||
|
in_token = true;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
has_key = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
|
||||||
|
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
|
||||||
|
::replace(str_key, "\\\"", "\""); // \\\" -> "
|
||||||
|
|
||||||
|
try {
|
||||||
|
result[str_key] = std::stoi(str_val);
|
||||||
|
} catch (...) {
|
||||||
|
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
|
||||||
|
|
||||||
|
}
|
||||||
|
str_key = "";
|
||||||
|
str_val = "";
|
||||||
|
in_token = false;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (has_key == false) {
|
||||||
|
str_key += json[i];
|
||||||
|
} else {
|
||||||
|
str_val += json[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||||
|
std::vector<std::string> words;
|
||||||
|
|
||||||
|
// first split the text into words
|
||||||
|
{
|
||||||
|
std::string str = text;
|
||||||
|
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||||
|
|
||||||
|
std::regex re(pat);
|
||||||
|
std::smatch m;
|
||||||
|
|
||||||
|
while (std::regex_search(str, m, re)) {
|
||||||
|
for (auto x : m) {
|
||||||
|
words.push_back(x);
|
||||||
|
}
|
||||||
|
str = m.suffix();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the longest tokens that form the words:
|
||||||
|
std::vector<gpt_vocab::id> tokens;
|
||||||
|
for (const auto & word : words) {
|
||||||
|
if (word.size() == 0) continue;
|
||||||
|
|
||||||
|
int i = 0;
|
||||||
|
int n = word.size();
|
||||||
|
while (i < n) {
|
||||||
|
int j = n;
|
||||||
|
while (j > i) {
|
||||||
|
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||||
|
if (it != vocab.token_to_id.end()) {
|
||||||
|
tokens.push_back(it->second);
|
||||||
|
i = j;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
--j;
|
||||||
|
}
|
||||||
|
if (i == n) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (j == i) {
|
||||||
|
auto sub = word.substr(i, 1);
|
||||||
|
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||||
|
tokens.push_back(vocab.token_to_id.at(sub));
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||||
|
}
|
||||||
|
++i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return tokens;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos) {
|
||||||
|
auto res = gpt_tokenize(vocab, text);
|
||||||
|
|
||||||
|
if (bos) {
|
||||||
|
res.insert(res.begin(), 1); // TODO: replace with vocab.bos
|
||||||
|
}
|
||||||
|
|
||||||
|
//std::vector<gpt_vocab::id> res;
|
||||||
|
|
||||||
|
//if (bos) {
|
||||||
|
// res.push_back(1); // TODO: replace with vocab.bos
|
||||||
|
//}
|
||||||
|
|
||||||
|
// find the longest token that matches the text
|
||||||
|
//int pos = 0;
|
||||||
|
//while (true) {
|
||||||
|
// int l = 0;
|
||||||
|
// int t = 0;
|
||||||
|
// for (const auto & kv : vocab.id_to_token) {
|
||||||
|
// if (kv.second.size() < l) continue;
|
||||||
|
// if (kv.second.size() > text.size() - pos) continue;
|
||||||
|
// if (text.substr(pos, kv.second.size()) == kv.second) {
|
||||||
|
// l = kv.second.size();
|
||||||
|
// t = kv.first;
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// if (l == 0 && t != 13) {
|
||||||
|
// break;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// res.push_back(t);
|
||||||
|
// pos += l;
|
||||||
|
//}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||||
|
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||||
|
|
||||||
|
vocab.token_to_id = ::json_parse(fname);
|
||||||
|
|
||||||
|
for (const auto & kv : vocab.token_to_id) {
|
||||||
|
vocab.id_to_token[kv.second] = kv.first;
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
||||||
|
|
||||||
|
// print the vocabulary
|
||||||
|
//for (auto kv : vocab.token_to_id) {
|
||||||
|
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
||||||
|
//}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||||
|
const gpt_vocab & vocab,
|
||||||
|
const float * logits,
|
||||||
|
int top_k,
|
||||||
|
double top_p,
|
||||||
|
double temp,
|
||||||
|
std::mt19937 & rng) {
|
||||||
|
int n_logits = vocab.id_to_token.size();
|
||||||
|
|
||||||
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||||
|
logits_id.reserve(n_logits);
|
||||||
|
|
||||||
|
{
|
||||||
|
const double scale = 1.0/temp;
|
||||||
|
for (int i = 0; i < n_logits; ++i) {
|
||||||
|
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the top K tokens
|
||||||
|
std::partial_sort(
|
||||||
|
logits_id.begin(),
|
||||||
|
logits_id.begin() + top_k, logits_id.end(),
|
||||||
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||||
|
return a.first > b.first;
|
||||||
|
});
|
||||||
|
|
||||||
|
logits_id.resize(top_k);
|
||||||
|
|
||||||
|
double maxl = -INFINITY;
|
||||||
|
for (const auto & kv : logits_id) {
|
||||||
|
maxl = std::max(maxl, kv.first);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute probs for the top K tokens
|
||||||
|
std::vector<double> probs;
|
||||||
|
probs.reserve(logits_id.size());
|
||||||
|
|
||||||
|
double sum = 0.0;
|
||||||
|
for (const auto & kv : logits_id) {
|
||||||
|
double p = exp(kv.first - maxl);
|
||||||
|
probs.push_back(p);
|
||||||
|
sum += p;
|
||||||
|
}
|
||||||
|
|
||||||
|
// normalize the probs
|
||||||
|
for (auto & p : probs) {
|
||||||
|
p /= sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (top_p < 1.0f) {
|
||||||
|
double cumsum = 0.0f;
|
||||||
|
for (int i = 0; i < top_k; i++) {
|
||||||
|
cumsum += probs[i];
|
||||||
|
if (cumsum >= top_p) {
|
||||||
|
top_k = i + 1;
|
||||||
|
probs.resize(top_k);
|
||||||
|
logits_id.resize(top_k);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cumsum = 1.0/cumsum;
|
||||||
|
for (int i = 0; i < (int) probs.size(); i++) {
|
||||||
|
probs[i] *= cumsum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//printf("\n");
|
||||||
|
//for (int i = 0; i < (int) probs.size(); i++) {
|
||||||
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||||
|
//}
|
||||||
|
//exit(0);
|
||||||
|
|
||||||
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||||
|
int idx = dist(rng);
|
||||||
|
|
||||||
|
return logits_id[idx].second;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
|
||||||
|
const int nb = k / qk;
|
||||||
|
const size_t row_size = nb*(sizeof(float) + sizeof(uint8_t)*qk/2);
|
||||||
|
|
||||||
|
assert(k % qk == 0);
|
||||||
|
|
||||||
|
uint8_t pp[qk/2];
|
||||||
|
|
||||||
|
char * pdst = (char *) dst;
|
||||||
|
|
||||||
|
for (int j = 0; j < n; j += k) {
|
||||||
|
float * pd = (float *) (pdst + (j/k)*row_size);
|
||||||
|
uint8_t * pb = (uint8_t *) (pd + nb);
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; i++) {
|
||||||
|
float amax = 0.0f; // absolute max
|
||||||
|
|
||||||
|
{
|
||||||
|
for (int l = 0; l < qk; l++) {
|
||||||
|
const float v = src[j + i*qk + l];
|
||||||
|
amax = std::max(amax, fabsf(v));
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = amax / ((1 << 3) - 1);
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
pd[i] = d;
|
||||||
|
|
||||||
|
for (int l = 0; l < qk; l += 2) {
|
||||||
|
const float v0 = (src[j + i*qk + l + 0])*id;
|
||||||
|
const float v1 = (src[j + i*qk + l + 1])*id;
|
||||||
|
|
||||||
|
const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
|
||||||
|
const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
|
||||||
|
|
||||||
|
assert(vi0 >= 0 && vi0 < 16);
|
||||||
|
assert(vi1 >= 0 && vi1 < 16);
|
||||||
|
|
||||||
|
hist[vi0]++;
|
||||||
|
hist[vi1]++;
|
||||||
|
|
||||||
|
pp[l/2] = vi0 | (vi1 << 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
memcpy(pb + i*qk/2, pp, sizeof(pp));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return (n/k)*row_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
|
||||||
|
const int nb = k / qk;
|
||||||
|
const size_t row_size = nb*(2*sizeof(float) + sizeof(uint8_t)*qk/2);
|
||||||
|
|
||||||
|
assert(k % qk == 0);
|
||||||
|
|
||||||
|
uint8_t pp[qk/2];
|
||||||
|
|
||||||
|
char * pdst = (char *) dst;
|
||||||
|
|
||||||
|
for (int j = 0; j < n; j += k) {
|
||||||
|
float * pm = (float *) (pdst + (j/k)*row_size);
|
||||||
|
float * pd = (float *) (pm + nb);
|
||||||
|
uint8_t * pb = (uint8_t *) (pd + nb);
|
||||||
|
|
||||||
|
//printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; i++) {
|
||||||
|
float min = std::numeric_limits<float>::max();
|
||||||
|
float max = std::numeric_limits<float>::min();
|
||||||
|
|
||||||
|
{
|
||||||
|
for (int l = 0; l < qk; l++) {
|
||||||
|
const float v = src[j + i*qk + l];
|
||||||
|
if (v < min) min = v;
|
||||||
|
if (v > max) max = v;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = (max - min) / ((1 << 4) - 1);
|
||||||
|
const float id = d ? 1.0f/d : 0.0f;
|
||||||
|
|
||||||
|
pm[i] = min;
|
||||||
|
pd[i] = d;
|
||||||
|
|
||||||
|
for (int l = 0; l < qk; l += 2) {
|
||||||
|
const float v0 = (src[j + i*qk + l + 0] - min)*id;
|
||||||
|
const float v1 = (src[j + i*qk + l + 1] - min)*id;
|
||||||
|
|
||||||
|
const uint8_t vi0 = round(v0);
|
||||||
|
const uint8_t vi1 = round(v1);
|
||||||
|
|
||||||
|
assert(vi0 >= 0 && vi0 < 16);
|
||||||
|
assert(vi1 >= 0 && vi1 < 16);
|
||||||
|
|
||||||
|
hist[vi0]++;
|
||||||
|
hist[vi1]++;
|
||||||
|
|
||||||
|
pp[l/2] = vi0 | (vi1 << 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
memcpy(pb + i*qk/2, pp, sizeof(pp));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return (n/k)*row_size;
|
||||||
|
}
|
94
utils.h
Normal file
94
utils.h
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
// Various helper functions and utilities
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include <random>
|
||||||
|
#include <thread>
|
||||||
|
|
||||||
|
//
|
||||||
|
// CLI argument parsing
|
||||||
|
//
|
||||||
|
|
||||||
|
struct gpt_params {
|
||||||
|
int32_t seed = -1; // RNG seed
|
||||||
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||||
|
int32_t n_predict = 200; // new tokens to predict
|
||||||
|
|
||||||
|
// sampling parameters
|
||||||
|
int32_t top_k = 100;
|
||||||
|
float top_p = 0.95f;
|
||||||
|
float temp = 0.8f;
|
||||||
|
|
||||||
|
int32_t n_batch = 8; // batch size for prompt processing
|
||||||
|
|
||||||
|
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
||||||
|
std::string prompt;
|
||||||
|
};
|
||||||
|
|
||||||
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||||
|
|
||||||
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||||
|
|
||||||
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Vocab utils
|
||||||
|
//
|
||||||
|
|
||||||
|
struct gpt_vocab {
|
||||||
|
using id = int32_t;
|
||||||
|
using token = std::string;
|
||||||
|
|
||||||
|
std::map<token, id> token_to_id;
|
||||||
|
std::map<id, token> id_to_token;
|
||||||
|
};
|
||||||
|
|
||||||
|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
||||||
|
|
||||||
|
// poor-man's JSON parsing
|
||||||
|
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||||
|
|
||||||
|
// split text into tokens
|
||||||
|
//
|
||||||
|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||||
|
//
|
||||||
|
// Regex (Python):
|
||||||
|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
||||||
|
//
|
||||||
|
// Regex (C++):
|
||||||
|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
||||||
|
//
|
||||||
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||||
|
|
||||||
|
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
|
||||||
|
// ref: https://github.com/google/sentencepiece
|
||||||
|
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
|
||||||
|
|
||||||
|
// load the tokens from encoder.json
|
||||||
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||||
|
|
||||||
|
// sample next token given probabilities for each embedding
|
||||||
|
//
|
||||||
|
// - consider only the top K tokens
|
||||||
|
// - from them, consider only the top tokens with cumulative probability > P
|
||||||
|
//
|
||||||
|
// TODO: not sure if this implementation is correct
|
||||||
|
// TODO: temperature is not implemented
|
||||||
|
//
|
||||||
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||||
|
const gpt_vocab & vocab,
|
||||||
|
const float * logits,
|
||||||
|
int top_k,
|
||||||
|
double top_p,
|
||||||
|
double temp,
|
||||||
|
std::mt19937 & rng);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Quantization
|
||||||
|
//
|
||||||
|
|
||||||
|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||||
|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
Loading…
Reference in New Issue
Block a user