diff --git a/convert-gptneox-h5-to-gguf.py b/convert-gptneox-h5-to-gguf.py index 4f9d41487..066ed0da0 100644 --- a/convert-gptneox-h5-to-gguf.py +++ b/convert-gptneox-h5-to-gguf.py @@ -1,14 +1,36 @@ # Quick and dirty HF gptneox--> gguf conversion import gguf +import os import sys import struct import json import numpy as np from typing import Any, List from pathlib import Path -from transformers import AutoModelForCausalLM +from transformers import AutoTokenizer, AutoModelForCausalLM +# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a significant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model ftype\n") @@ -20,7 +42,7 @@ if len(sys.argv) < 3: # output in the same directory as the model dir_model = sys.argv[1] fname_out = sys.argv[1] + "/ggml-model.bin" - +last_dir = os.path.basename(os.path.normpath(dir_model)) # possible tensor data types # ftype == 0 -> float32 @@ -37,6 +59,8 @@ if len(sys.argv) > 2: sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" +print("gguf: loading model "+last_dir) + with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) @@ -44,17 +68,17 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0] ) sys.exit() + model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) list_vars = model.state_dict() gguf_writer = gguf.GGUFWriter.open(fname_out) - -print("gguf: add key-values, metadata") +print("gguf: add metadata") llm_arch = "gptneox" -gguf_writer.add_name("pythia-70b-deduped") +gguf_writer.add_name(last_dir) gguf_writer.add_description("gguf test model") gguf_writer.add_architecture(llm_arch) gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) @@ -68,28 +92,55 @@ gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"]) # TOKENIZATION -print("gguf: add key-values, tokenizer") +print("gguf: add tokenizer") tokens: List[str] = [] merges: List[str] = [] + if Path(dir_model + "/tokenizer.json").is_file(): - # vocab type gpt2 - print("gguf: adding gpt2 tokenizer vocab") + # gpt2 tokenizer + gguf_writer.add_tokenizer_model("gpt2") + + print("gguf: adding gpt2 tokenizer merges") with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: - tokenizer = json.load(f) + tokenizer_json = json.load(f) + merges = tokenizer_json["model"]["merges"] - for key in tokenizer["model"]["vocab"]: - tokens.append(key) - - merges = tokenizer["model"]["merges"] - - gguf_writer.add_tokenizer_model("gpt2") - gguf_writer.add_token_list(tokens) gguf_writer.add_token_merges(merges) - if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): + print("gguf: adding gpt2 tokenizer vocab") + + vocab_size = len( tokenizer_json["model"]["vocab"] ) + + # from ggllm.cpp falcon_convert.py + tokenizer = AutoTokenizer.from_pretrained(dir_model) + + reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} + byte_encoder = bytes_to_unicode() + byte_decoder = {v:k for k, v in byte_encoder.items()} + + for i in range(vocab_size): + if i in reverse_vocab: + try: + text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) + except KeyError: + text = bytearray() + for c in reverse_vocab[i]: + if ord(c) < 256: # single byte character + text.append(byte_decoder[ord(c)]) + else: # multibyte special token character + text.extend(c.encode('utf-8')) + else: + print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") + padding_token = f"[PAD{i}]".encode("utf8") + text = bytearray(padding_token) + tokens.append(text) + + gguf_writer.add_token_list(tokens) + + if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file(): print("gguf: adding special token ids") with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: @@ -98,27 +149,27 @@ if Path(dir_model + "/tokenizer.json").is_file(): # find special token ids if "bos_token" in tokenizer_config: - for key in tokenizer["added_tokens"]: + for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["bos_token"]: gguf_writer.add_bos_token_id(key["id"]) if "eos_token" in tokenizer_config: - for key in tokenizer["added_tokens"]: + for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["eos_token"]: gguf_writer.add_eos_token_id(key["id"]) if "unk_token" in tokenizer_config: - for key in tokenizer["added_tokens"]: + for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["unk_token"]: gguf_writer.add_unk_token_id(key["id"]) if "sep_token" in tokenizer_config: - for key in tokenizer["added_tokens"]: + for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["sep_token"]: gguf_writer.add_sep_token_id(key["id"]) if "pad_token" in tokenizer_config: - for key in tokenizer["added_tokens"]: + for key in tokenizer_json["added_tokens"]: if key["content"] == tokenizer_config["pad_token"]: gguf_writer.add_pad_token_id(key["id"]) @@ -165,11 +216,9 @@ print("gguf: write tensor data") for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() -# print("Process tensor: " + name + " with shape: ", data.shape) # we don't need these if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): -# print(" Skip tensor: " + name) continue n_dims = len(data.shape) @@ -178,16 +227,13 @@ for name in list_vars.keys(): ftype_cur = 0 if ftype != 0: if name.endswith(".weight") and n_dims == 2: -# print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: -# print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: -# print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0