mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 11:24:35 +00:00
allocators wip
renamed ggml_backend functions changed ggml_buffer and ggml_backend to always be used as pointers rename ggml_tensor::params -> op_params
This commit is contained in:
parent
1102ff56db
commit
295f85654a
@ -327,24 +327,24 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU support\n");
|
||||
#endif
|
||||
} else if (arg == "--main-gpu" || arg == "-mg") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
params.main_gpu = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. It is not possible to set a main GPU.\n");
|
||||
#endif
|
||||
} else if (arg == "--tensor-split" || arg == "-ts") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
std::string arg_next = argv[i];
|
||||
|
||||
// split string by , and /
|
||||
@ -361,14 +361,14 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
}
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n");
|
||||
#endif // GGML_USE_CUDA
|
||||
} else if (arg == "--low-vram" || arg == "-lv") {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
params.low_vram = true;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA. It is not possible to set lower vram usage.\n");
|
||||
#endif // GGML_USE_CUDA
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--mtest") {
|
||||
|
473
ggml-backend.c
473
ggml-backend.c
@ -7,22 +7,114 @@
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
|
||||
// backend buffer
|
||||
// allocator
|
||||
|
||||
struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors) {
|
||||
struct ggml_buffer buffer;
|
||||
buffer.mem_size = ggml_tensor_overhead() * max_tensors;
|
||||
buffer.mem_buffer = malloc(buffer.mem_size);
|
||||
buffer.backend = backend;
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
return offset + align;
|
||||
}
|
||||
|
||||
static inline size_t ggml_backend_buffer_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { return alloc->interface.get_alloc_size(alloc, tensor); }
|
||||
static inline void ggml_backend_buffer_init_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.init_tensor(alloc, tensor); }
|
||||
|
||||
|
||||
void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc) {
|
||||
alloc->interface.free_buffer(alloc);
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
// backend buffer allocator - simple
|
||||
|
||||
struct ggml_allocator_simple_context {
|
||||
void * data;
|
||||
size_t size;
|
||||
size_t offset;
|
||||
size_t alignment;
|
||||
};
|
||||
|
||||
static void ggml_allocator_simple_free_buffer(struct ggml_backend_buffer * alloc) {
|
||||
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
||||
free(context);
|
||||
}
|
||||
|
||||
static void ggml_allocator_simple_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
||||
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
|
||||
if (context->offset + size > context->size) {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n",
|
||||
__func__, size, context->size - context->offset);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
}
|
||||
void * ptr = (char*)context->data + context->offset;
|
||||
context->offset = aligned_offset(context->data, context->offset + size, context->alignment);
|
||||
tensor->data = ptr;
|
||||
if (alloc->interface.init_tensor) {
|
||||
alloc->interface.init_tensor(alloc, tensor);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_allocator_simple_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(!"ggml_simple_allocator cannot free individual tensors");
|
||||
|
||||
UNUSED(alloc);
|
||||
UNUSED(tensor);
|
||||
}
|
||||
|
||||
static void ggml_allocator_simple_reset(struct ggml_backend_buffer * alloc) {
|
||||
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
||||
context->offset = aligned_offset(context->data, 0, context->alignment);
|
||||
}
|
||||
|
||||
size_t ggml_allocator_simple_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_buffer_interface ggml_allocator_simple_interface = {
|
||||
/* .free_buffer = */ ggml_allocator_simple_free_buffer,
|
||||
/* .alloc_tensor = */ ggml_allocator_simple_alloc_tensor,
|
||||
/* .free_tensor = */ ggml_allocator_simple_free_tensor,
|
||||
/* .reset = */ ggml_allocator_simple_reset,
|
||||
/* .get_alloc_size = */ ggml_allocator_simple_get_alloc_size,
|
||||
/* .init_tensor = */ NULL,
|
||||
/* .free_data = */ NULL,
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment) {
|
||||
struct ggml_allocator_simple_context * ctx = malloc(sizeof(struct ggml_allocator_simple_context));
|
||||
ctx->data = data;
|
||||
ctx->size = size;
|
||||
ctx->offset = aligned_offset(data, 0, alignment);
|
||||
ctx->alignment = alignment;
|
||||
|
||||
struct ggml_backend_buffer * allocator = malloc(sizeof(struct ggml_backend_buffer));
|
||||
*allocator = (struct ggml_backend_buffer){
|
||||
/* .interface = */ ggml_allocator_simple_interface,
|
||||
/* .context = */ ctx,
|
||||
/* .backend_data = */ NULL,
|
||||
};
|
||||
return allocator;
|
||||
}
|
||||
|
||||
// buffer
|
||||
|
||||
struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors) {
|
||||
struct ggml_buffer * buffer = malloc(sizeof(struct ggml_buffer));
|
||||
buffer->mem_size = ggml_tensor_overhead() * max_tensors;
|
||||
buffer->mem_buffer = malloc(buffer->mem_size);
|
||||
buffer->backend = backend;
|
||||
size += 128 * max_tensors; // alignment overhead
|
||||
buffer.backend_buffer = backend->interface->alloc_buffer(backend->context, size);
|
||||
buffer->backend_buffer = backend->interface.alloc_buffer(backend, size);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void ggml_backend_free_buffer(struct ggml_buffer * buffer) {
|
||||
struct ggml_backend * backend = buffer->backend;
|
||||
backend->interface->free_buffer(backend->context, buffer->backend_buffer);
|
||||
void ggml_buffer_free(struct ggml_buffer * buffer) {
|
||||
ggml_backend_buffer_free(buffer->backend_buffer);
|
||||
free(buffer->mem_buffer);
|
||||
free(buffer);
|
||||
}
|
||||
|
||||
// backend copy
|
||||
@ -42,7 +134,7 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
|
||||
return true;
|
||||
}
|
||||
|
||||
void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src) {
|
||||
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
|
||||
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
|
||||
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
||||
@ -53,17 +145,17 @@ void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src)
|
||||
return;
|
||||
}
|
||||
|
||||
if (dst->backend->interface->cpy_tensor_from != NULL) {
|
||||
dst->backend->interface->cpy_tensor_from(dst->backend->context, src, dst);
|
||||
} else if (src->backend->interface->cpy_tensor_to != NULL) {
|
||||
src->backend->interface->cpy_tensor_to(src->backend->context, src, dst);
|
||||
if (dst->backend->interface.cpy_tensor_from != NULL) {
|
||||
dst->backend->interface.cpy_tensor_from(dst->backend->context, src, dst);
|
||||
} else if (src->backend->interface.cpy_tensor_to != NULL) {
|
||||
src->backend->interface.cpy_tensor_to(src->backend->context, src, dst);
|
||||
} else {
|
||||
// not ideal, but shouldn't be hit when copying from/to CPU
|
||||
// TODO: print a performance warning in debug builds
|
||||
size_t nbytes = ggml_nbytes(src);
|
||||
void * data = malloc(nbytes);
|
||||
ggml_backend_get_tensor(src, data, 0, nbytes);
|
||||
ggml_backend_set_tensor(dst, data, 0, nbytes);
|
||||
ggml_backend_tensor_get(src, data, 0, nbytes);
|
||||
ggml_backend_tensor_set(dst, data, 0, nbytes);
|
||||
free(data);
|
||||
}
|
||||
}
|
||||
@ -76,105 +168,70 @@ struct ggml_backend_cpu_context {
|
||||
size_t work_size;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_name(ggml_backend_context_t ctx) {
|
||||
static const char * ggml_backend_cpu_name(struct ggml_backend * backend) {
|
||||
return "CPU";
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_free_context(ggml_backend_context_t ctx) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx;
|
||||
static void ggml_backend_cpu_free(struct ggml_backend * backend) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
free(cpu_ctx->work_data);
|
||||
free(ctx);
|
||||
free(cpu_ctx);
|
||||
free(backend);
|
||||
}
|
||||
|
||||
struct cpu_backend_buffer {
|
||||
void * data;
|
||||
size_t offset;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
||||
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
return offset + align;
|
||||
static void ggml_backend_cpu_free_buffer(struct ggml_backend_buffer * alloc) {
|
||||
free(alloc->backend_data);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_context_t ctx, size_t size) {
|
||||
struct cpu_backend_buffer * buffer = malloc(sizeof(struct cpu_backend_buffer));
|
||||
buffer->data = malloc(size);
|
||||
buffer->offset = aligned_offset(buffer->data, 0, TENSOR_ALIGNMENT);
|
||||
buffer->size = size;
|
||||
static struct ggml_backend_buffer * ggml_backend_cpu_alloc_buffer(struct ggml_backend * backend, size_t size) {
|
||||
void * data = malloc(size);
|
||||
|
||||
struct ggml_backend_buffer * buffer = ggml_allocator_simple_init(data, size, TENSOR_ALIGNMENT);
|
||||
buffer->interface.free_data = ggml_backend_cpu_free_buffer;
|
||||
buffer->backend_data = data;
|
||||
|
||||
return buffer;
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_free_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) {
|
||||
struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer;
|
||||
free(cpu_buffer->data);
|
||||
free(cpu_buffer);
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_reset_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) {
|
||||
struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer;
|
||||
cpu_buffer->offset = aligned_offset(cpu_buffer->data, 0, TENSOR_ALIGNMENT);
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_alloc_tensor(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer;
|
||||
|
||||
// TODO: make this error recoverable
|
||||
if (cpu_buffer->offset + ggml_nbytes(tensor) > cpu_buffer->size) {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n",
|
||||
__func__, ggml_nbytes(tensor), cpu_buffer->size - cpu_buffer->offset);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
tensor->data = (char*)cpu_buffer->data + cpu_buffer->offset;
|
||||
cpu_buffer->offset = aligned_offset(cpu_buffer->data, cpu_buffer->offset + ggml_nbytes(tensor), TENSOR_ALIGNMENT);
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_set_tensor_async(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cpu_set_tensor_async(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_get_tensor_async(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cpu_get_tensor_async(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_synchronize(ggml_backend_context_t ctx) {
|
||||
UNUSED(ctx);
|
||||
static void ggml_backend_cpu_synchronize(struct ggml_backend * backend) {
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_get_tensor(src, dst->data, 0, ggml_nbytes(src));
|
||||
static void ggml_backend_cpu_cpy_tensor_from(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
ggml_backend_set_tensor_async(dst, src->data, 0, ggml_nbytes(src));
|
||||
static void ggml_backend_cpu_cpy_tensor_to(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
|
||||
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
struct ggml_backend_cpu_plan {
|
||||
@ -182,8 +239,8 @@ struct ggml_backend_cpu_plan {
|
||||
struct ggml_cgraph cgraph;
|
||||
};
|
||||
|
||||
static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx;
|
||||
static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan));
|
||||
|
||||
@ -197,25 +254,25 @@ static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_context
|
||||
return cpu_plan;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_plan_free(ggml_backend_context_t ctx, ggml_graph_plan_t plan) {
|
||||
static void ggml_backend_cpu_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) {
|
||||
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
|
||||
|
||||
free(cpu_plan->cplan.work_data);
|
||||
free(cpu_plan);
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_context_t ctx, ggml_graph_plan_t plan) {
|
||||
static void ggml_backend_cpu_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) {
|
||||
struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan;
|
||||
|
||||
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_compute(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx;
|
||||
static void ggml_backend_cpu_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
||||
|
||||
@ -232,11 +289,8 @@ static void ggml_backend_cpu_graph_compute(ggml_backend_context_t ctx, struct gg
|
||||
|
||||
static struct ggml_backend_interface cpu_backend_interface = {
|
||||
/* .get_name = */ ggml_backend_cpu_name,
|
||||
/* .free_context = */ ggml_backend_cpu_free_context,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
|
||||
/* .free_buffer = */ ggml_backend_cpu_free_buffer,
|
||||
/* .reset_buffer = */ ggml_backend_cpu_reset_buffer,
|
||||
/* .alloc_tensor = */ ggml_backend_cpu_alloc_tensor,
|
||||
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_cpu_synchronize,
|
||||
@ -248,14 +302,16 @@ static struct ggml_backend_interface cpu_backend_interface = {
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute
|
||||
};
|
||||
|
||||
struct ggml_backend ggml_backend_cpu_init(void) {
|
||||
struct ggml_backend * ggml_backend_cpu_init(void) {
|
||||
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
||||
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||
ctx->work_data = NULL;
|
||||
ctx->work_size = 0;
|
||||
|
||||
struct ggml_backend cpu_backend = {
|
||||
/* .interface = */ &cpu_backend_interface,
|
||||
struct ggml_backend * cpu_backend = malloc(sizeof(struct ggml_backend));
|
||||
|
||||
*cpu_backend = (struct ggml_backend) {
|
||||
/* .interface = */ cpu_backend_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
return cpu_backend;
|
||||
@ -287,26 +343,31 @@ void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_t
|
||||
|
||||
struct ggml_graph_split * split = &splits->splits[splits->n_splits];
|
||||
|
||||
// check if the split is on the same backend as the previous one
|
||||
// FIXME: need to check all the inputs
|
||||
if ((*inputs[0])->backend == ggml_get_ctx_backend(ctx)) {
|
||||
if (splits->n_splits > 0) {
|
||||
char name[GGML_MAX_NAME];
|
||||
vsnprintf(name, sizeof(name), fmt, args);
|
||||
if (splits->n_splits == 0) {
|
||||
// always add the first split
|
||||
int i = 0;
|
||||
while (inputs[i] != NULL) {
|
||||
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
||||
split->src_inputs[i] = *inputs[i];
|
||||
split->dst_inputs[i] = *inputs[i];
|
||||
i++;
|
||||
}
|
||||
split->src_inputs[i] = NULL;
|
||||
split->dst_inputs[i] = NULL;
|
||||
} else {
|
||||
// add to the previous split
|
||||
char name[GGML_MAX_NAME - 2];
|
||||
int n = vsnprintf(name, sizeof(name), fmt, args);
|
||||
char new_name[GGML_MAX_NAME];
|
||||
snprintf(new_name, sizeof(new_name), "%s,%s", splits->splits[splits->n_splits - 1].name, name);
|
||||
snprintf(new_name, sizeof(new_name), "%.*s,%s", GGML_MAX_NAME - n - 2, splits->splits[splits->n_splits - 1].name, name);
|
||||
strcpy(splits->splits[splits->n_splits - 1].name, new_name);
|
||||
return;
|
||||
}
|
||||
// always add the first split
|
||||
int i = 0;
|
||||
while (inputs[i] != NULL) {
|
||||
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
||||
split->src_inputs[i] = *inputs[i];
|
||||
split->dst_inputs[i] = *inputs[i];
|
||||
i++;
|
||||
}
|
||||
split->src_inputs[i] = NULL;
|
||||
split->dst_inputs[i] = NULL;
|
||||
} else {
|
||||
// add a new split
|
||||
int i = 0;
|
||||
while (inputs[i] != NULL) {
|
||||
GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS);
|
||||
@ -360,8 +421,6 @@ void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct g
|
||||
// TODO: allocate graphs in context
|
||||
split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph));
|
||||
memset(split->graph, 0, sizeof(struct ggml_cgraph));
|
||||
// *split->graph = ggml_build_forward_range(output, split->input);
|
||||
// *split->graph = ggml_build_forward(output);
|
||||
for (int j = 0; outputs[j] != NULL; j++) {
|
||||
ggml_build_forward_expand(split->graph, outputs[j]);
|
||||
}
|
||||
@ -404,10 +463,8 @@ void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
|
||||
// copy the input tensor to the backend
|
||||
uint64_t copy_start_us = ggml_time_us();
|
||||
for (int j = 0; split->src_inputs[j] != NULL; j++) {
|
||||
if (split->src_inputs[j] != split->dst_inputs[j]) {
|
||||
//printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j]));
|
||||
ggml_backend_cpy_tensor(split->dst_inputs[j], split->src_inputs[j]);
|
||||
}
|
||||
//printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j]));
|
||||
ggml_backend_tensor_copy(split->src_inputs[j], split->dst_inputs[j]);
|
||||
}
|
||||
// ggml_backend_synchronize(split->dst_inputs[0]->backend);
|
||||
copy_us += ggml_time_us() - copy_start_us;
|
||||
@ -433,3 +490,187 @@ void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
|
||||
//printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0);
|
||||
//exit(0);
|
||||
}
|
||||
|
||||
#if 0
|
||||
// default allocator
|
||||
struct free_block {
|
||||
void * addr;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct ggml_backend_default_allocator_context {
|
||||
void * data;
|
||||
size_t alignment;
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[];
|
||||
};
|
||||
|
||||
void ggml_backend_default_allocator_free_context(ggml_allocator_context_t ctx) {
|
||||
struct ggml_backend_default_allocator_context * allocator_ctx = ctx;
|
||||
free(allocator_ctx);
|
||||
}
|
||||
|
||||
ggml_allocator_context_t ggml_backend_default_allocator_context(void * data, size_t size, size_t alignment, int n_free_blocks) {
|
||||
struct ggml_backend_default_allocator_context * ctx = malloc(sizeof(struct ggml_backend_default_allocator_context) + n_free_blocks * sizeof(struct free_block));
|
||||
ctx->data = data;
|
||||
ctx->alignment = alignment;
|
||||
ctx->n_free_blocks = 1;
|
||||
size_t align_offset = align_offset(data, alignment);
|
||||
ctx->free_blocks[0].addr = (char *)data + align_offset;
|
||||
ctx->free_blocks[0].size = size - align_offset;
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void * ggml_backend_default_allocator_alloc(ggml_allocator_context_t ctx, size_t size) {
|
||||
struct ggml_backend_default_allocator_context * allocator_ctx = ctx;
|
||||
size = align_size(size, allocator_ctx->alignment);
|
||||
// find a free block
|
||||
for (int i = 0; i < allocator_ctx->n_free_blocks; i++) {
|
||||
struct free_block * block = &allocator_ctx->free_blocks[i];
|
||||
if (block->size >= size) {
|
||||
void * addr = block->addr;
|
||||
block->addr += size;
|
||||
block->size -= size;
|
||||
if (block->size == 0) {
|
||||
// remove block if empty
|
||||
allocator_ctx->n_free_blocks--;
|
||||
for (int j = i; j < allocator_ctx->n_free_blocks; j++) {
|
||||
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
void ggml_backend_default_allocator_free(ggml_allocator_context_t ctx, void * ptr, size_t size) {
|
||||
struct ggml_backend_default_allocator_context * allocator_ctx = ctx;
|
||||
size = align_size(size, allocator_ctx->alignment);
|
||||
// see if we can merge with an existing block
|
||||
for (int i = 0; i < allocator_ctx->n_free_blocks; i++) {
|
||||
struct free_block * block = &allocator_ctx->free_blocks[i];
|
||||
// check if ptr is at the end of the block
|
||||
if (block->addr + block->size == ptr) {
|
||||
block->size += size;
|
||||
// check if we can merge with the next block
|
||||
if (i < allocator_ctx->n_free_blocks - 1 && block->addr + block->size == allocator_ctx->free_blocks[i+1].addr) {
|
||||
block->size += allocator_ctx->free_blocks[i+1].size;
|
||||
allocator_ctx->n_free_blocks--;
|
||||
for (int j = i+1; j < allocator_ctx->n_free_blocks; j++) {
|
||||
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
// check if ptr is at the beginning of the block
|
||||
if (ptr + size == block->addr) {
|
||||
block->addr = ptr;
|
||||
block->size += size;
|
||||
// check if we can merge with the previous block
|
||||
if (i > 0 && allocator_ctx->free_blocks[i-1].addr + allocator_ctx->free_blocks[i-1].size == block->addr) {
|
||||
allocator_ctx->free_blocks[i-1].size += block->size;
|
||||
allocator_ctx->n_free_blocks--;
|
||||
for (int j = i; j < allocator_ctx->n_free_blocks; j++) {
|
||||
allocator_ctx->free_blocks[j] = allocator_ctx->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
// otherwise, add a new block
|
||||
if (allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS) {
|
||||
// insert the new block in the correct position to keep the array sorted
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) {
|
||||
insert_pos++;
|
||||
}
|
||||
// shift all blocks from insert_pos onward to make room for the new block
|
||||
for (int i = allocator_ctx->n_free_blocks; i > insert_pos; i--) {
|
||||
allocator_ctx->free_blocks[i] = allocator_ctx->free_blocks[i-1];
|
||||
}
|
||||
// insert the new block
|
||||
allocator_ctx->free_blocks[insert_pos].addr = ptr;
|
||||
allocator_ctx->free_blocks[insert_pos].size = size;
|
||||
allocator_ctx->n_free_blocks++;
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(!"out of free blocks");
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_NONE;
|
||||
}
|
||||
|
||||
|
||||
NOTE: id can be n_leaf OR n_node instead, we can determine the type by checking if the node is a leaf or not
|
||||
|
||||
void allocate_graph(struct ggml_cgraph * gf, struct ggml_buffer * buffer) {
|
||||
int node_children_count[GGML_MAX_NODES*2];
|
||||
int node_view_count[GGML_MAX_NODES*2];
|
||||
memset(node_children_count, 0, sizeof(int) * (gf->n_nodes + gf->n_leafs));
|
||||
memset(node_view_count, 0, sizeof(int) * (gf->n_nodes + gf->n_leafs));
|
||||
|
||||
// count number of children and views
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
// todo: ....
|
||||
node_children_count[parent->id] += 1;
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * ancestor = parent;
|
||||
do {
|
||||
node_view_count[ancestor->id] += 1;
|
||||
ancestor = ancestor->src[0];
|
||||
} while (ggml_is_view(ancestor));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
bool is_view = ggml_is_view(node);
|
||||
if (is_view) {
|
||||
// allocate view accordingly to the OP
|
||||
node->data = node->src[0]->data; // + offset
|
||||
struct ggml_tensor * ancestor = node->src[0];
|
||||
while (ggml_is_view(ancestor)) {
|
||||
ancestor = ancestor->src[0];
|
||||
}
|
||||
node_view_count[ancestor->id] -= 1;
|
||||
} else {
|
||||
if (node->data == NULL) {
|
||||
// allocate tensor
|
||||
// TODO: if last children and size == parent.size, then reuse parent tensor (auto in-place)
|
||||
// may need a list of ops that can be in-place
|
||||
ggml_backend_alloc_tensor(buffer, node);
|
||||
}
|
||||
}
|
||||
|
||||
// update parents
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
if (is_view) {
|
||||
node_view_count[parent->id] -= 1;
|
||||
}
|
||||
node_children_count[parent->id] -= 1;
|
||||
if (node_children_count[parent->id] == 0 && node_view_count[parent->id] == 0) {
|
||||
// free parent
|
||||
ggml_backend_free_tensor(buffer, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
118
ggml-backend.h
118
ggml-backend.h
@ -5,12 +5,45 @@
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef void * ggml_graph_plan_t;
|
||||
typedef void * ggml_backend_context_t;
|
||||
typedef void * ggml_backend_buffer_t;
|
||||
struct ggml_backend;
|
||||
|
||||
|
||||
// backend buffers
|
||||
typedef void * ggml_buffer_context_t;
|
||||
struct ggml_backend_buffer;
|
||||
|
||||
struct ggml_backend_buffer_interface {
|
||||
// allocator functions
|
||||
void (*free_buffer) (struct ggml_backend_buffer * alloc);
|
||||
void (*alloc_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor);
|
||||
void (*free_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor);
|
||||
void (*reset) (struct ggml_backend_buffer * alloc);
|
||||
// functions overriden by the backend
|
||||
size_t (*get_alloc_size)(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // pre-allocation callback
|
||||
void (*init_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // post-allocation callback
|
||||
void (*free_data) (struct ggml_backend_buffer * alloc); // free backend-specific data // TODO: better name
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_interface interface;
|
||||
ggml_buffer_context_t context;
|
||||
void * backend_data;
|
||||
};
|
||||
|
||||
// backend buffer helper functions
|
||||
GGML_API void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc);
|
||||
static inline void ggml_backend_buffer_tensor_alloc(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.alloc_tensor(alloc, tensor); }
|
||||
static inline void ggml_backend_buffer_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.free_tensor(alloc, tensor); }
|
||||
static inline void ggml_backend_buffer_reset(struct ggml_backend_buffer * alloc) { alloc->interface.reset(alloc); }
|
||||
|
||||
// default buffer allocators
|
||||
// simple buffer allocator: cannot free tensors, good for weights and small contexts
|
||||
// default buffer allocator: can free tensors, good for compute contexts
|
||||
GGML_API struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment);
|
||||
GGML_API struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment, int max_free_blocks);
|
||||
|
||||
// buffer
|
||||
|
||||
// buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory
|
||||
struct ggml_buffer {
|
||||
// host memory
|
||||
@ -19,75 +52,70 @@ extern "C" {
|
||||
|
||||
// tensor data
|
||||
struct ggml_backend * backend;
|
||||
ggml_backend_buffer_t backend_buffer; // backend-specific data
|
||||
struct ggml_backend_buffer * backend_buffer;
|
||||
};
|
||||
|
||||
GGML_API struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors);
|
||||
GGML_API void ggml_buffer_free(struct ggml_buffer * buffer);
|
||||
|
||||
// backend
|
||||
typedef void * ggml_backend_context_t;
|
||||
typedef void * ggml_graph_plan_t;
|
||||
|
||||
struct ggml_backend_interface {
|
||||
const char * (*get_name)(ggml_backend_context_t ctx);
|
||||
const char * (*get_name)(struct ggml_backend * backend);
|
||||
|
||||
void (*free_context)(ggml_backend_context_t ctx);
|
||||
void (*free)(struct ggml_backend * backend);
|
||||
|
||||
// buffers
|
||||
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_context_t ctx, size_t size);
|
||||
void (*free_buffer) (ggml_backend_context_t ctx, ggml_backend_buffer_t buffer);
|
||||
void (*reset_buffer)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer);
|
||||
void (*alloc_tensor)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
|
||||
// TODO: pinned buffers for faster transfers between host and device
|
||||
// buffer allocation
|
||||
struct ggml_backend_buffer * (*alloc_buffer)(struct ggml_backend * backend, size_t size);
|
||||
|
||||
// tensor data access
|
||||
// these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize
|
||||
void (*set_tensor_async)(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
void (*synchronize)(ggml_backend_context_t ctx);
|
||||
void (*set_tensor_async)(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
void (*synchronize) (struct ggml_backend * backend);
|
||||
|
||||
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
void (*cpy_tensor_from)(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// compute graph with a plan
|
||||
ggml_graph_plan_t (*graph_plan_create) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_context_t ctx, ggml_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(ggml_backend_context_t ctx, ggml_graph_plan_t plan);
|
||||
ggml_graph_plan_t (*graph_plan_create) (struct ggml_backend * backend, struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (struct ggml_backend * backend, ggml_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(struct ggml_backend * backend, ggml_graph_plan_t plan);
|
||||
|
||||
// compute graph without a plan
|
||||
void (*graph_compute) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph);
|
||||
void (*graph_compute) (struct ggml_backend * backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if a backend supports a given operation
|
||||
// this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation
|
||||
// bool (*supports_op)(ggml_backend_context_t ctx, struct ggml_tensor * op);
|
||||
// bool (*supports_op)(struct ggml_backend * backend, struct ggml_tensor * op);
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
struct ggml_backend_interface * interface;
|
||||
struct ggml_backend_interface interface;
|
||||
ggml_backend_context_t context;
|
||||
};
|
||||
|
||||
// backend helper functions
|
||||
static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface->get_name(backend->context); }
|
||||
static inline void ggml_backend_free_context(struct ggml_backend * backend) { backend->interface->free_context(backend->context); }
|
||||
static inline void ggml_backend_set_tensor_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); }
|
||||
static inline void ggml_backend_get_tensor_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); }
|
||||
static inline void ggml_backend_set_tensor(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); }
|
||||
static inline void ggml_backend_get_tensor(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); }
|
||||
static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface->synchronize(backend->context); }
|
||||
static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface->graph_plan_create(backend->context, cgraph); }
|
||||
static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_free(backend->context, plan); }
|
||||
static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_compute(backend->context, plan); }
|
||||
static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface->graph_compute(backend->context, cgraph); }
|
||||
|
||||
// buffer and tensor allocation
|
||||
GGML_API struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors);
|
||||
GGML_API void ggml_backend_free_buffer(struct ggml_buffer * buffer);
|
||||
static inline void ggml_backend_reset_buffer(struct ggml_buffer * buffer) { buffer->backend->interface->reset_buffer(buffer->backend->context, buffer->backend_buffer); }
|
||||
static inline void ggml_backend_alloc_tensor(struct ggml_buffer * buffer, struct ggml_tensor * tensor) { buffer->backend->interface->alloc_tensor(buffer->backend->context, buffer->backend_buffer, tensor); }
|
||||
static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface.get_name(backend); }
|
||||
static inline void ggml_backend_free(struct ggml_backend * backend) { backend->interface.free(backend); }
|
||||
static inline void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); }
|
||||
static inline void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); }
|
||||
static inline void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); }
|
||||
static inline void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); }
|
||||
static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface.synchronize(backend); }
|
||||
static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface.graph_plan_create(backend, cgraph); }
|
||||
static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_free(backend, plan); }
|
||||
static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_compute(backend, plan); }
|
||||
static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface.graph_compute(backend, cgraph); }
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src);
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// CPU backend
|
||||
GGML_API struct ggml_backend ggml_backend_cpu_init(void);
|
||||
GGML_API struct ggml_backend * ggml_backend_cpu_init(void);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads);
|
||||
|
||||
///////////////////////////
|
||||
|
118
ggml-cuda.cu
118
ggml-cuda.cu
@ -585,6 +585,14 @@ void ggml_cuda_host_free(void * ptr) {
|
||||
CUDA_CHECK(cudaFreeHost(ptr));
|
||||
}
|
||||
|
||||
void ggml_cuda_host_register(void * ptr, size_t size) {
|
||||
CUDA_CHECK(cudaHostRegister(ptr, size, 0));
|
||||
}
|
||||
|
||||
void ggml_cuda_host_unregister(void * ptr) {
|
||||
CUDA_CHECK(cudaHostUnregister(ptr));
|
||||
}
|
||||
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
static void ggml_cuda_op_add(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
@ -792,9 +800,9 @@ static void ggml_cuda_op_rope(
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t i01_diff = i01_high - i01_low;
|
||||
|
||||
const int n_past = ((int32_t *) dst->params)[0];
|
||||
const int n_dims = ((int32_t *) dst->params)[1];
|
||||
const int mode = ((int32_t *) dst->params)[2];
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
//const int n_ctx = ((int32_t *) dst->params)[3];
|
||||
GGML_ASSERT(mode == 0);
|
||||
|
||||
@ -822,7 +830,7 @@ static void ggml_cuda_op_diag_mask_inf(
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t i01_diff = i01_high - i01_low;
|
||||
|
||||
const int n_past = ((int32_t *) dst->params)[0];
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
// compute
|
||||
diag_mask_inf_cuda((src0_t *)src0_d, (dst_t *)dst_d, ne00, i01_diff, ne01, n_past, stream);
|
||||
@ -1689,16 +1697,17 @@ struct ggml_backend_cuda_context {
|
||||
ggml_cuda_context * cuda_ctx = ggml_cuda_init();
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cuda_name(ggml_backend_context_t ctx) {
|
||||
static const char * ggml_backend_cuda_name(ggml_backend * backend) {
|
||||
return "CUDA";
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_free_context(ggml_backend_context_t ctx) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)ctx;
|
||||
static void ggml_backend_cuda_free(ggml_backend * backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_cuda_free(cuda_ctx->cuda_ctx);
|
||||
delete cuda_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
struct cuda_backend_buffer {
|
||||
@ -1709,116 +1718,82 @@ struct cuda_backend_buffer {
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 128;
|
||||
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
return offset + align;
|
||||
static void ggml_backend_cuda_free_buffer(struct ggml_backend_buffer * alloc) {
|
||||
CUDA_CHECK(cudaFree(alloc->backend_data));
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cuda_alloc_buffer(ggml_backend_context_t ctx, size_t size) {
|
||||
cuda_backend_buffer * buffer = new cuda_backend_buffer;
|
||||
static ggml_backend_buffer * ggml_backend_cuda_alloc_buffer(ggml_backend * backend, size_t size) {
|
||||
void * data;
|
||||
CUDA_CHECK(cudaMalloc(&data, size));
|
||||
|
||||
CUDA_CHECK(cudaMalloc(&buffer->data, size));
|
||||
buffer->offset = 0; // cudaMalloc returns aligned pointers
|
||||
buffer->size = size;
|
||||
ggml_backend_buffer * buffer = ggml_allocator_simple_init(data, size, TENSOR_ALIGNMENT);
|
||||
buffer->interface.free_data = ggml_backend_cuda_free_buffer;
|
||||
buffer->backend_data = data;
|
||||
|
||||
return buffer;
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_free_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) {
|
||||
cuda_backend_buffer * cuda_buffer = (cuda_backend_buffer *)buffer;
|
||||
CUDA_CHECK(cudaFree(cuda_buffer->data));
|
||||
delete cuda_buffer;
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_reset_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) {
|
||||
cuda_backend_buffer * cuda_buffer = (cuda_backend_buffer *)buffer;
|
||||
cuda_buffer->offset = 0;
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_alloc_tensor(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
cuda_backend_buffer * cuda_buffer = (cuda_backend_buffer *)buffer;
|
||||
|
||||
if (cuda_buffer->offset + ggml_nbytes(tensor) > cuda_buffer->size) {
|
||||
fprintf(stderr, "%s: not enough space in the CUDA buffer (needed %zu, available %zu)\n",
|
||||
__func__, ggml_nbytes(tensor), cuda_buffer->size - cuda_buffer->offset);
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
tensor->data = (char*)cuda_buffer->data + cuda_buffer->offset;
|
||||
cuda_buffer->offset = aligned_offset(cuda_buffer->data, cuda_buffer->offset + ggml_nbytes(tensor), TENSOR_ALIGNMENT);
|
||||
|
||||
UNUSED(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_set_tensor_async(ggml_backend_context_t ctx, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_set_tensor_async(ggml_backend * backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
//ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)ctx;
|
||||
//ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync((char*)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStream_main));
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_get_tensor_async(ggml_backend_context_t ctx, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_get_tensor_async(ggml_backend * backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
|
||||
//ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)ctx;
|
||||
//ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(data, (const char*)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStream_main));
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_synchronize(ggml_backend_context_t ctx) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)ctx;
|
||||
static void ggml_backend_cuda_synchronize(ggml_backend * backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_cuda_synchronize(cuda_ctx->cuda_ctx);
|
||||
}
|
||||
|
||||
static ggml_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend_context_t ctx, ggml_cgraph * cgraph) {
|
||||
static ggml_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend * backend, ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
return nullptr;
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
UNUSED(cgraph);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_plan_free(ggml_backend_context_t ctx, ggml_graph_plan_t plan) {
|
||||
static void ggml_backend_cuda_graph_plan_free(ggml_backend * backend, ggml_graph_plan_t plan) {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
UNUSED(plan);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_plan_compute(ggml_backend_context_t ctx, ggml_graph_plan_t plan) {
|
||||
static void ggml_backend_cuda_graph_plan_compute(ggml_backend * backend, ggml_graph_plan_t plan) {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
UNUSED(ctx);
|
||||
UNUSED(backend);
|
||||
UNUSED(plan);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_compute(ggml_backend_context_t ctx, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)ctx;
|
||||
static void ggml_backend_cuda_graph_compute(ggml_backend * backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_cuda_cgraph_compute(cuda_ctx->cuda_ctx, cgraph);
|
||||
}
|
||||
|
||||
static ggml_backend_interface cuda_backend_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_name,
|
||||
/* .free_context = */ ggml_backend_cuda_free_context,
|
||||
/* .free = */ ggml_backend_cuda_free,
|
||||
/* .alloc_buffer = */ ggml_backend_cuda_alloc_buffer,
|
||||
/* .free_buffer = */ ggml_backend_cuda_free_buffer,
|
||||
/* .reset_buffer = */ ggml_backend_cuda_reset_buffer,
|
||||
/* .alloc_tensor = */ ggml_backend_cuda_alloc_tensor,
|
||||
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
||||
@ -1830,11 +1805,12 @@ static ggml_backend_interface cuda_backend_interface = {
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute
|
||||
};
|
||||
|
||||
ggml_backend ggml_backend_cuda_init(void) {
|
||||
ggml_backend * ggml_backend_cuda_init(void) {
|
||||
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context;
|
||||
|
||||
ggml_backend cuda_backend = {
|
||||
/* .interface = */ &cuda_backend_interface,
|
||||
ggml_backend * cuda_backend = new ggml_backend;
|
||||
*cuda_backend = (ggml_backend){
|
||||
/* .interface = */ cuda_backend_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
return cuda_backend;
|
||||
|
@ -6,12 +6,14 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
GGML_API void * ggml_cuda_host_malloc(size_t size);
|
||||
GGML_API void ggml_cuda_host_free(void * ptr);
|
||||
GGML_API void ggml_cuda_host_register(void * ptr, size_t size);
|
||||
GGML_API void ggml_cuda_host_unregister(void * ptr);
|
||||
|
||||
// backend API
|
||||
|
||||
struct ggml_backend ggml_backend_cuda_init();
|
||||
GGML_API struct ggml_backend * ggml_backend_cuda_init();
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
78
ggml.c
78
ggml.c
@ -4393,7 +4393,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
||||
/*.compute_type =*/ params.compute_type,
|
||||
};
|
||||
|
||||
ggml_backend_reset_buffer(params.buffer);
|
||||
ggml_backend_buffer_reset(params.buffer->backend_buffer);
|
||||
|
||||
GGML_ASSERT(ctx->mem_buffer != NULL);
|
||||
|
||||
@ -4526,17 +4526,17 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
||||
/*.ne =*/ { 1, 1, 1, 1 },
|
||||
/*.nb =*/ { 0, 0, 0, 0 },
|
||||
/*.op =*/ GGML_OP_NONE,
|
||||
/*.op_params =*/ { 0 },
|
||||
/*.is_param =*/ false,
|
||||
/*.grad =*/ NULL,
|
||||
/*.src =*/ { NULL },
|
||||
/*.node_id =*/ -1,
|
||||
/*.perf_runs =*/ 0,
|
||||
/*.perf_cycles =*/ 0,
|
||||
/*.perf_time_us =*/ 0,
|
||||
/*.params =*/ { 0 },
|
||||
/*.data =*/ data,
|
||||
/*.name =*/ { 0 },
|
||||
/*.extra =*/ NULL,
|
||||
/*.visited =*/ false,
|
||||
/*.pad =*/ { 0 },
|
||||
};
|
||||
|
||||
@ -4551,7 +4551,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
||||
}
|
||||
|
||||
if (data == NULL && !ctx->no_alloc) {
|
||||
ggml_backend_alloc_tensor(ctx->buffer, result);
|
||||
ggml_backend_buffer_tensor_alloc(ctx->buffer->backend_buffer, result);
|
||||
}
|
||||
|
||||
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
|
||||
@ -4730,7 +4730,7 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
|
||||
}
|
||||
*/
|
||||
for (int i = 0; i < ggml_nelements(tensor); i++) {
|
||||
ggml_backend_set_tensor(tensor, &value, sizeof(float)*i, sizeof(float));
|
||||
ggml_backend_tensor_set(tensor, &value, sizeof(float)*i, sizeof(float));
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
@ -4839,7 +4839,7 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||||
//return ((float *)(tensor->data))[i];
|
||||
float value;
|
||||
ggml_backend_get_tensor(tensor, &value, sizeof(float)*i, sizeof(float));
|
||||
ggml_backend_tensor_get(tensor, &value, sizeof(float)*i, sizeof(float));
|
||||
return value;
|
||||
} break;
|
||||
default:
|
||||
@ -4912,6 +4912,11 @@ struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char *
|
||||
return tensor;
|
||||
}
|
||||
|
||||
static void ggml_set_op_params(struct ggml_tensor * tensor, void * params, size_t params_size) {
|
||||
GGML_ASSERT(params_size <= GGML_MAX_OP_PARAMS);
|
||||
memcpy(tensor->op_params, params, params_size);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_view_tensor(
|
||||
struct ggml_context * ctx,
|
||||
const struct ggml_tensor * src) {
|
||||
@ -6385,8 +6390,7 @@ struct ggml_tensor * ggml_view_1d(
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
|
||||
ggml_format_name(result, "%s (view)", a->name);
|
||||
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(offset));
|
||||
memcpy(result->params, &offset, sizeof(offset));
|
||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||
|
||||
result->op = GGML_OP_VIEW;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -6417,8 +6421,7 @@ struct ggml_tensor * ggml_view_2d(
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
|
||||
ggml_format_name(result, "%s (view)", a->name);
|
||||
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(offset));
|
||||
memcpy(result->params, &offset, sizeof(offset));
|
||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = result->nb[1]*ne1;
|
||||
@ -6455,8 +6458,7 @@ struct ggml_tensor * ggml_view_3d(
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
|
||||
ggml_format_name(result, "%s (view)", a->name);
|
||||
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(offset));
|
||||
memcpy(result->params, &offset, sizeof(offset));
|
||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = nb2;
|
||||
@ -6495,8 +6497,7 @@ struct ggml_tensor * ggml_view_4d(
|
||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
|
||||
ggml_format_name(result, "%s (view)", a->name);
|
||||
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(offset));
|
||||
memcpy(result->params, &offset, sizeof(offset));
|
||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||
|
||||
result->nb[1] = nb1;
|
||||
result->nb[2] = nb2;
|
||||
@ -6569,8 +6570,7 @@ struct ggml_tensor * ggml_permute(
|
||||
result->src[1] = NULL;
|
||||
|
||||
int32_t params[] = { axis0, axis1, axis2, axis3 };
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(params));
|
||||
memcpy(result->params, params, sizeof(params));
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -6694,8 +6694,7 @@ struct ggml_tensor * ggml_diag_mask_inf_impl(
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(params));
|
||||
memcpy(result->params, params, sizeof(params));
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_DIAG_MASK_INF;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -6854,12 +6853,10 @@ struct ggml_tensor * ggml_rope_impl(
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
// TODO: just use a struct
|
||||
int32_t params[6] = { n_past, n_dims, mode, n_ctx };
|
||||
memcpy(params + 4, &freq_base, sizeof(float));
|
||||
memcpy(params + 5, &freq_scale, sizeof(float));
|
||||
assert(GGML_MAX_OP_PARAMS >= sizeof(params));
|
||||
memcpy(result->params, ¶ms, sizeof(params));
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_ROPE;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -11392,8 +11389,8 @@ static void ggml_compute_forward_diag_mask_f32(
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int n_past = ((int32_t *) dst->params)[0];
|
||||
const bool inplace = (bool)((int32_t *) dst->params)[1];
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const bool inplace = (bool)((int32_t *) dst->op_params)[1];
|
||||
|
||||
GGML_ASSERT(n_past >= 0);
|
||||
|
||||
@ -11910,12 +11907,12 @@ static void ggml_compute_forward_rope_f32(
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
const int n_past = ((int32_t *) dst->params)[0];
|
||||
const int n_dims = ((int32_t *) dst->params)[1];
|
||||
const int mode = ((int32_t *) dst->params)[2];
|
||||
const int n_ctx = ((int32_t *) dst->params)[3];
|
||||
memcpy(&freq_base, (int32_t *) dst->params + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->params + 5, sizeof(float));
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
@ -12039,12 +12036,12 @@ static void ggml_compute_forward_rope_f16(
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
|
||||
const int n_past = ((int32_t *) dst->params)[0];
|
||||
const int n_dims = ((int32_t *) dst->params)[1];
|
||||
const int mode = ((int32_t *) dst->params)[2];
|
||||
const int n_ctx = ((int32_t *) dst->params)[3];
|
||||
memcpy(&freq_base, (int32_t *) dst->params + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->params + 5, sizeof(float));
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
@ -15810,10 +15807,9 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
|
||||
}
|
||||
|
||||
// check if already visited
|
||||
if (node->visited) {
|
||||
if (node->node_id != -1) {
|
||||
return;
|
||||
}
|
||||
node->visited = true;
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
||||
if (node->src[i]) {
|
||||
@ -15821,6 +15817,8 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
|
||||
}
|
||||
}
|
||||
|
||||
//node->id = cgraph->n_nodes + cgraph->n_leafs;
|
||||
|
||||
// TODO: add ggml_dependency instead of checking for NULL
|
||||
if (node->op == GGML_OP_NONE && node->src[0] == NULL && node->src[1] == NULL && node->grad == NULL) {
|
||||
// reached a leaf node, not part of the gradient graph (e.g. a constant)
|
||||
@ -15830,6 +15828,7 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
|
||||
ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
|
||||
}
|
||||
|
||||
node->node_id = cgraph->n_leafs;
|
||||
cgraph->leafs[cgraph->n_leafs] = node;
|
||||
cgraph->n_leafs++;
|
||||
} else {
|
||||
@ -15839,6 +15838,7 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor *
|
||||
ggml_format_name(node, "node_%d", cgraph->n_nodes);
|
||||
}
|
||||
|
||||
node->node_id = cgraph->n_nodes;
|
||||
cgraph->nodes[cgraph->n_nodes] = node;
|
||||
cgraph->grads[cgraph->n_nodes] = node->grad;
|
||||
cgraph->n_nodes++;
|
||||
@ -15872,10 +15872,10 @@ void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor *
|
||||
// TODO: this can be removed when ggml_build_forward_expand is removed
|
||||
void ggml_graph_close(struct ggml_cgraph * cgraph) {
|
||||
for (int i = 0; i < cgraph->n_nodes; ++i) {
|
||||
cgraph->nodes[i]->visited = false;
|
||||
cgraph->nodes[i]->node_id = -1;
|
||||
}
|
||||
for (int i = 0; i < cgraph->n_leafs; ++i) {
|
||||
cgraph->leafs[i]->visited = false;
|
||||
cgraph->leafs[i]->node_id = -1;
|
||||
}
|
||||
cgraph->closed = true;
|
||||
}
|
||||
|
9
ggml.h
9
ggml.h
@ -414,19 +414,21 @@ extern "C" {
|
||||
// compute data
|
||||
enum ggml_op op;
|
||||
|
||||
// op params - allocated as int32_t for alignment
|
||||
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(uint32_t)];
|
||||
|
||||
bool is_param;
|
||||
|
||||
struct ggml_tensor * grad;
|
||||
struct ggml_tensor * src[GGML_MAX_SRC];
|
||||
|
||||
int node_id; // used to build graphs
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
|
||||
// op params
|
||||
// allocated as int32_t to avoid alignment issues
|
||||
int32_t params[GGML_MAX_OP_PARAMS / sizeof(uint32_t)];
|
||||
|
||||
void * data;
|
||||
|
||||
@ -434,7 +436,6 @@ extern "C" {
|
||||
|
||||
void * extra; // extra things e.g. for ggml-cuda.cu
|
||||
|
||||
bool visited; // used to build graphs
|
||||
|
||||
char padding[4];
|
||||
};
|
||||
|
183
llama.cpp
183
llama.cpp
@ -172,7 +172,7 @@ struct llama_kv_cache {
|
||||
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
ggml_buffer buf;
|
||||
ggml_buffer * buf;
|
||||
|
||||
int n; // number of tokens currently in the cache
|
||||
|
||||
@ -225,29 +225,29 @@ struct llama_model {
|
||||
llama_vocab vocab;
|
||||
|
||||
// backends
|
||||
ggml_backend backend_cpu;
|
||||
ggml_buffer buf_cpu;
|
||||
ggml_backend * backend_cpu = NULL;
|
||||
ggml_buffer * buf_cpu = NULL;
|
||||
ggml_context * ctx_cpu = NULL;
|
||||
#ifdef GGML_USE_CUDA
|
||||
ggml_backend backend_cuda;
|
||||
ggml_buffer buf_cuda;
|
||||
ggml_backend * backend_cuda = NULL;
|
||||
ggml_buffer * buf_cuda = NULL;
|
||||
ggml_context * ctx_cuda = NULL;
|
||||
#endif
|
||||
|
||||
// backend assigned to each layer
|
||||
ggml_backend * backend_input = NULL;
|
||||
ggml_backend * backend_output = NULL;
|
||||
ggml_backend * backend_inp = NULL;
|
||||
ggml_backend * backend_out = NULL;
|
||||
std::vector<ggml_backend *> backend_layers;
|
||||
|
||||
~llama_model() {
|
||||
if (ctx_cpu) {
|
||||
ggml_free(ctx_cpu);
|
||||
ggml_backend_free_buffer(&buf_cpu);
|
||||
ggml_buffer_free(buf_cpu);
|
||||
}
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (ctx_cuda) {
|
||||
ggml_free(ctx_cuda);
|
||||
ggml_backend_free_buffer(&buf_cuda);
|
||||
ggml_buffer_free(buf_cuda);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -286,9 +286,9 @@ struct llama_context {
|
||||
std::vector<float> embedding;
|
||||
|
||||
// memory buffers used to evaluate the model
|
||||
ggml_buffer buf_compute_cpu = {};
|
||||
ggml_buffer * buf_compute_cpu;
|
||||
#ifdef GGML_USE_CUDA
|
||||
ggml_buffer buf_compute_cuda = {};
|
||||
ggml_buffer * buf_compute_cuda;
|
||||
#endif
|
||||
|
||||
// input tensors
|
||||
@ -300,8 +300,19 @@ struct llama_context {
|
||||
struct ggml_tensor * graph_embeddings_out = nullptr;
|
||||
|
||||
// buffers to store the inputs and outputs of the graphs
|
||||
ggml_buffer buf_input = {};
|
||||
ggml_buffer buf_output = {};
|
||||
ggml_buffer * buf_input;
|
||||
ggml_buffer * buf_output;
|
||||
|
||||
/*
|
||||
~llama_context() {
|
||||
if (model_owner) {
|
||||
delete &model;
|
||||
}
|
||||
if (buf_compute_cpu) {
|
||||
ggml_buffer_free(buf_compute_cpu);
|
||||
}
|
||||
}
|
||||
*/
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -601,9 +612,6 @@ struct llama_model_loader {
|
||||
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
||||
size_t data_size = 0;
|
||||
size_t lock_size = 0;
|
||||
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
||||
data_size += lt.size;
|
||||
}
|
||||
|
||||
if (use_mmap) {
|
||||
mapping.reset(new llama_mmap(&file_loader->file, false, ggml_is_numa()));
|
||||
@ -613,14 +621,28 @@ struct llama_model_loader {
|
||||
}
|
||||
|
||||
size_t done_size = 0;
|
||||
std::vector<uint8_t> tmp_buf;
|
||||
std::vector<uint8_t> load_buf;
|
||||
size_t load_buf_size = 0;
|
||||
for (llama_load_tensor & lt : tensors_map.tensors) {
|
||||
bool is_cpu = lt.ggml_tensor->backend == model->backend_cpu;
|
||||
if (!use_mmap && !is_cpu) {
|
||||
load_buf_size = std::max(load_buf_size, lt.size);
|
||||
}
|
||||
data_size += lt.size;
|
||||
}
|
||||
if (load_buf_size > 0) {
|
||||
load_buf.resize(load_buf_size);
|
||||
// may improve CUDA loading speed without mmap
|
||||
//ggml_cuda_host_register(load_buf.data(), load_buf.size());
|
||||
}
|
||||
|
||||
for (llama_load_tensor & lt : tensors_map.tensors) {
|
||||
if (progress_callback) {
|
||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
||||
}
|
||||
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
|
||||
|
||||
bool is_cpu = lt.ggml_tensor->backend == &model->backend_cpu;
|
||||
bool is_cpu = lt.ggml_tensor->backend == model->backend_cpu;
|
||||
|
||||
// select buffer to load data into
|
||||
if (!use_mmap) {
|
||||
@ -628,8 +650,7 @@ struct llama_model_loader {
|
||||
lt.data = (uint8_t *) lt.ggml_tensor->data;
|
||||
} else {
|
||||
// read to temporary buffer
|
||||
tmp_buf.resize(lt.size);
|
||||
lt.data = (uint8_t *) tmp_buf.data();
|
||||
lt.data = (uint8_t *) load_buf.data();
|
||||
}
|
||||
}
|
||||
|
||||
@ -645,7 +666,7 @@ struct llama_model_loader {
|
||||
}
|
||||
}
|
||||
} else {
|
||||
ggml_backend_set_tensor(lt.ggml_tensor, lt.data, 0, lt.size);
|
||||
ggml_backend_tensor_set(lt.ggml_tensor, lt.data, 0, lt.size);
|
||||
if (use_mmap) {
|
||||
// hint the OS that we don't need the data anymore
|
||||
// TODO: this may be a bad idea with devices that use the system memory (Metal?)
|
||||
@ -655,6 +676,9 @@ struct llama_model_loader {
|
||||
|
||||
done_size += lt.size;
|
||||
}
|
||||
//if (load_buf_size > 0) {
|
||||
// ggml_cuda_host_unregister(load_buf.data());
|
||||
//}
|
||||
}
|
||||
|
||||
void load_data_for(llama_load_tensor & lt) {
|
||||
@ -701,11 +725,11 @@ static bool kv_cache_init(
|
||||
|
||||
size_t size = 2u*n_elements*ggml_type_size(wtype) + 2u*MB;
|
||||
|
||||
cache.buf = ggml_backend_alloc_buffer(backend, size, 2);
|
||||
cache.buf = ggml_buffer_alloc(backend, size, 2);
|
||||
cache.n = 0;
|
||||
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = &cache.buf;
|
||||
params.buffer = cache.buf;
|
||||
|
||||
cache.ctx = ggml_init(params);
|
||||
|
||||
@ -771,7 +795,7 @@ void llama_backend_init(bool numa) {
|
||||
// needed to initialize f16 tables
|
||||
{
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = {0};
|
||||
params.buffer = NULL;
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_free(ctx);
|
||||
}
|
||||
@ -940,30 +964,30 @@ static void llama_model_load_internal(
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
model.backend_cpu = ggml_backend_cpu_init();
|
||||
ggml_backend * backend_gpu = &model.backend_cpu; // hack until we have a proper backend selection
|
||||
ggml_backend * backend_gpu = model.backend_cpu; // hack until we have a proper backend selection
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (n_gpu_layers > 0) {
|
||||
model.backend_cuda = ggml_backend_cuda_init();
|
||||
backend_gpu = &model.backend_cuda;
|
||||
backend_gpu = model.backend_cuda;
|
||||
}
|
||||
#endif
|
||||
|
||||
// assign splits to the backends
|
||||
const int i_gpu_start = std::max(0, (int)n_layer - n_gpu_layers);
|
||||
model.backend_input = n_gpu_layers > (int)n_layer ? backend_gpu : &model.backend_cpu;
|
||||
model.backend_output = n_gpu_layers > 0 ? backend_gpu : &model.backend_cpu;
|
||||
model.backend_inp = n_gpu_layers > (int)n_layer ? backend_gpu : model.backend_cpu;
|
||||
model.backend_out = n_gpu_layers > 0 ? backend_gpu : model.backend_cpu;
|
||||
model.backend_layers.resize(n_layer);
|
||||
std::fill(model.backend_layers.begin(), model.backend_layers.begin() + i_gpu_start, &model.backend_cpu);
|
||||
std::fill(model.backend_layers.begin(), model.backend_layers.begin() + i_gpu_start, model.backend_cpu);
|
||||
std::fill(model.backend_layers.begin() + i_gpu_start, model.backend_layers.end(), backend_gpu);
|
||||
|
||||
// calculate the size of each context
|
||||
std::unordered_map<struct ggml_backend *, size_t> ctx_sizes;
|
||||
for (const llama_load_tensor & lt : ml->tensors_map.tensors) {
|
||||
if (lt.name == "tok_embeddings.weight") {
|
||||
ctx_sizes[model.backend_input] += lt.size;
|
||||
ctx_sizes[model.backend_inp] += lt.size;
|
||||
}
|
||||
else if (lt.name == "norm.weight" || lt.name == "output.weight") {
|
||||
ctx_sizes[model.backend_output] += lt.size;
|
||||
ctx_sizes[model.backend_out] += lt.size;
|
||||
}
|
||||
else {
|
||||
// parse layer number from name
|
||||
@ -980,14 +1004,14 @@ static void llama_model_load_internal(
|
||||
// TODO: generalize support for mmap
|
||||
size_t mmap_size = 0;
|
||||
if (ml->use_mmap) {
|
||||
mmap_size = ctx_sizes[&model.backend_cpu];
|
||||
ctx_sizes[&model.backend_cpu] = 0;
|
||||
mmap_size = ctx_sizes[model.backend_cpu];
|
||||
ctx_sizes[model.backend_cpu] = 0;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: ggml ctx sizes:\n", __func__);
|
||||
for (const auto & it : ctx_sizes) {
|
||||
fprintf(stderr, "%8s = %7.2f MB", ggml_backend_name(it.first), it.second / 1024.0 / 1024.0);
|
||||
if (it.first == &model.backend_cpu && ml->use_mmap) {
|
||||
if (it.first == model.backend_cpu && ml->use_mmap) {
|
||||
fprintf(stderr, " + %7.2f MB (mmap)", mmap_size / 1024.0 / 1024.0);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
@ -996,10 +1020,10 @@ static void llama_model_load_internal(
|
||||
// create the buffers and contexts
|
||||
{
|
||||
size_t cpu_num_tensors = ml->tensors_map.tensors.size();
|
||||
size_t ctx_size = ctx_sizes[&model.backend_cpu];
|
||||
model.buf_cpu = ggml_backend_alloc_buffer(&model.backend_cpu, ctx_size, cpu_num_tensors);
|
||||
size_t ctx_size = ctx_sizes[model.backend_cpu];
|
||||
model.buf_cpu = ggml_buffer_alloc(model.backend_cpu, ctx_size, cpu_num_tensors);
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = &model.buf_cpu;
|
||||
params.buffer = model.buf_cpu;
|
||||
params.no_alloc = ml->use_mmap;
|
||||
model.ctx_cpu = ggml_init(params);
|
||||
if (!model.ctx_cpu) {
|
||||
@ -1011,10 +1035,10 @@ static void llama_model_load_internal(
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (n_gpu_layers > 0) {
|
||||
size_t gpu_num_tensors = ml->tensors_map.tensors.size();
|
||||
size_t ctx_size = ctx_sizes[&model.backend_cuda];
|
||||
model.buf_cuda = ggml_backend_alloc_buffer(&model.backend_cuda, ctx_size, gpu_num_tensors);
|
||||
size_t ctx_size = ctx_sizes[model.backend_cuda];
|
||||
model.buf_cuda = ggml_buffer_alloc(model.backend_cuda, ctx_size, gpu_num_tensors);
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = &model.buf_cuda;
|
||||
params.buffer = model.buf_cuda;
|
||||
model.ctx_cuda = ggml_init(params);
|
||||
if (!model.ctx_cuda) {
|
||||
throw std::runtime_error(format("ggml_init() failed for CUDA backend"));
|
||||
@ -1025,9 +1049,9 @@ static void llama_model_load_internal(
|
||||
|
||||
// TODO: clean this
|
||||
ggml_context * ctx_input = model.ctx_cpu;
|
||||
if (model.backend_input == backend_gpu) ctx_input = ctx_gpu;
|
||||
if (model.backend_inp == backend_gpu) ctx_input = ctx_gpu;
|
||||
ggml_context * ctx_output = model.ctx_cpu;
|
||||
if (model.backend_output == backend_gpu) ctx_output = ctx_gpu;
|
||||
if (model.backend_out == backend_gpu) ctx_output = ctx_gpu;
|
||||
std::vector<ggml_context *> ctx_layers(n_layer, model.ctx_cpu);
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
if (model.backend_layers[i] == backend_gpu) {
|
||||
@ -1181,18 +1205,18 @@ static ggml_graph_splits llama_build_graph(
|
||||
// initialize contexts for every backend
|
||||
|
||||
struct ggml_context * ctx_cpu = nullptr;
|
||||
if (lctx.buf_compute_cpu.mem_size > 0) {
|
||||
if (lctx.buf_compute_cpu != nullptr) {
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = &lctx.buf_compute_cpu;
|
||||
params.buffer = lctx.buf_compute_cpu;
|
||||
params.compute_type = compute_type;
|
||||
ctx_cpu = ggml_init(params);
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
struct ggml_context * ctx_cuda = nullptr;
|
||||
if (lctx.buf_compute_cuda.mem_size > 0) {
|
||||
if (lctx.buf_compute_cuda != nullptr) {
|
||||
struct ggml_init_params params = ggml_init_params_default();
|
||||
params.buffer = &lctx.buf_compute_cuda;
|
||||
params.buffer = lctx.buf_compute_cuda;
|
||||
params.compute_type = compute_type;
|
||||
ctx_cuda = ggml_init(params);
|
||||
}
|
||||
@ -1204,26 +1228,30 @@ static ggml_graph_splits llama_build_graph(
|
||||
struct ggml_context * ctx_o = nullptr;
|
||||
struct ggml_context * ctx_kv = nullptr;
|
||||
|
||||
if (lctx.model.backend_input == &lctx.model.backend_cpu) ctx_i = ctx_cpu;
|
||||
if (lctx.model.backend_output == &lctx.model.backend_cpu) ctx_o = ctx_cpu;
|
||||
if (lctx.model.backend_inp == lctx.model.backend_cpu) ctx_i = ctx_cpu;
|
||||
if (lctx.model.backend_out == lctx.model.backend_cpu) ctx_o = ctx_cpu;
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (lctx.model.backend_input == &lctx.model.backend_cuda) ctx_i = ctx_cuda;
|
||||
if (lctx.model.backend_output == &lctx.model.backend_cuda) ctx_o = ctx_cuda;
|
||||
if (lctx.model.backend_inp == lctx.model.backend_cuda) ctx_i = ctx_cuda;
|
||||
if (lctx.model.backend_out == lctx.model.backend_cuda) ctx_o = ctx_cuda;
|
||||
#endif
|
||||
for (int il = 0; il < n_layer; il++) {
|
||||
if (lctx.model.backend_layers[il] == &lctx.model.backend_cpu) ctx_ls[il] = ctx_cpu;
|
||||
if (lctx.model.backend_layers[il] == lctx.model.backend_cpu) ctx_ls[il] = ctx_cpu;
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (lctx.model.backend_layers[il] == &lctx.model.backend_cuda) ctx_ls[il] = ctx_cuda;
|
||||
if (lctx.model.backend_layers[il] == lctx.model.backend_cuda) ctx_ls[il] = ctx_cuda;
|
||||
#endif
|
||||
}
|
||||
if (lctx.backend_kv == &lctx.model.backend_cpu) ctx_kv = ctx_cpu;
|
||||
if (lctx.backend_kv == lctx.model.backend_cpu) ctx_kv = ctx_cpu;
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (lctx.backend_kv == &lctx.model.backend_cuda) ctx_kv = ctx_cuda;
|
||||
if (lctx.backend_kv == lctx.model.backend_cuda) ctx_kv = ctx_cuda;
|
||||
#endif
|
||||
|
||||
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
// reuse the scale tensor for all layers since it requires a memory transfer
|
||||
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx_kv, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
|
||||
|
||||
if (embeddings_input) {
|
||||
// use embeddings as input
|
||||
struct ggml_tensor * embd_in = lctx.graph_embeddings_in;
|
||||
@ -1236,10 +1264,6 @@ static ggml_graph_splits llama_build_graph(
|
||||
inpL = ggml_get_rows(ctx_i, model.tok_embeddings, token_in);
|
||||
}
|
||||
|
||||
// reuse the scale tensor for all layers since it requires a memory transfer
|
||||
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx_kv, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
|
||||
|
||||
struct ggml_tensor * cur = nullptr;
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_context * ctx_l = ctx_ls[il];
|
||||
@ -1540,16 +1564,16 @@ static bool llama_eval_internal(
|
||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||
n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
|
||||
ggml_backend_cpu_set_n_threads(const_cast<ggml_backend*>(&model.backend_cpu), n_threads);
|
||||
ggml_backend_cpu_set_n_threads(const_cast<ggml_backend*>(model.backend_cpu), n_threads);
|
||||
|
||||
struct ggml_graph_splits splits = llama_build_graph(lctx, N, n_past, embd_input);
|
||||
|
||||
if (tokens != nullptr) {
|
||||
// copy the tokens to the input tensor
|
||||
ggml_backend_set_tensor_async(lctx.graph_tokens_in, tokens, 0, N*ggml_element_size(lctx.graph_tokens_in));
|
||||
ggml_backend_tensor_set_async(lctx.graph_tokens_in, tokens, 0, N*ggml_element_size(lctx.graph_tokens_in));
|
||||
} else {
|
||||
// copy the embeddings to the input tensor
|
||||
ggml_backend_set_tensor_async(lctx.graph_embeddings_in, embd, 0, N*n_embd*ggml_element_size(lctx.graph_embeddings_in));
|
||||
ggml_backend_tensor_set_async(lctx.graph_embeddings_in, embd, 0, N*n_embd*ggml_element_size(lctx.graph_embeddings_in));
|
||||
}
|
||||
|
||||
// run the computation
|
||||
@ -1577,11 +1601,11 @@ static bool llama_eval_internal(
|
||||
|
||||
if (lctx.logits_all) {
|
||||
logits_out.resize(n_vocab * N);
|
||||
ggml_backend_get_tensor_async(lctx.graph_logits, logits_out.data(), 0, N*n_vocab*sizeof(float));
|
||||
ggml_backend_tensor_get_async(lctx.graph_logits, logits_out.data(), 0, N*n_vocab*sizeof(float));
|
||||
} else {
|
||||
// return result for just the last token
|
||||
logits_out.resize(n_vocab);
|
||||
ggml_backend_get_tensor_async(lctx.graph_logits, logits_out.data(), 0, n_vocab*sizeof(float));
|
||||
ggml_backend_tensor_get_async(lctx.graph_logits, logits_out.data(), 0, n_vocab*sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
@ -1589,13 +1613,13 @@ static bool llama_eval_internal(
|
||||
if (!lctx.embedding.empty()) {
|
||||
auto & embedding_out = lctx.embedding;
|
||||
embedding_out.resize(n_embd);
|
||||
ggml_backend_get_tensor_async(lctx.graph_embeddings_out, embedding_out.data(), 0, n_embd*sizeof(float));
|
||||
ggml_backend_tensor_get_async(lctx.graph_embeddings_out, embedding_out.data(), 0, n_embd*sizeof(float));
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
// wait for the async copy to finish
|
||||
if (lctx.model.n_gpu_layers > 0) {
|
||||
ggml_backend_synchronize(const_cast<ggml_backend*>(&lctx.model.backend_cuda));
|
||||
ggml_backend_synchronize(const_cast<ggml_backend*>(lctx.model.backend_cuda));
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -2063,7 +2087,7 @@ void llama_sample_classifier_free_guidance(
|
||||
struct llama_context * guidance_ctx,
|
||||
float scale,
|
||||
float smooth_factor) {
|
||||
int64_t t_start_sample_us = t_start_sample_us = ggml_time_us();
|
||||
int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
assert(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
@ -2608,13 +2632,13 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
// TODO: choose backend depending on n_layers/low_vram
|
||||
#ifdef GGML_USE_CUDA
|
||||
if ((uint32_t)params.n_gpu_layers >= model->hparams.n_layer/2) {
|
||||
ctx->backend_kv = &model->backend_cuda;
|
||||
if ((uint32_t)params.n_gpu_layers >= model->hparams.n_layer/2 && !params.low_vram) {
|
||||
ctx->backend_kv = model->backend_cuda;
|
||||
} else {
|
||||
ctx->backend_kv = &model->backend_cpu;
|
||||
ctx->backend_kv = model->backend_cpu;
|
||||
}
|
||||
#else
|
||||
ctx->backend_kv = &model->backend_cpu;
|
||||
ctx->backend_kv = model->backend_cpu;
|
||||
#endif
|
||||
|
||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
@ -2639,10 +2663,12 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
// TODO: size the buffers more accurately - depends on improved memory management
|
||||
ctx->buf_compute_cpu = ggml_backend_alloc_buffer(&model->backend_cpu, MEM_REQ_EVAL().at(ctx->model.type), 2048);
|
||||
ctx->buf_compute_cpu = ggml_buffer_alloc(model->backend_cpu, MEM_REQ_EVAL().at(ctx->model.type), 2048);
|
||||
// TODO: pinned memory for faster host-device transfers
|
||||
//ggml_cuda_host_register(*(void**)ctx->buf_compute_cpu.backend_buffer, MEM_REQ_EVAL().at(ctx->model.type) + 128*2048);
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (params.n_gpu_layers > 0) {
|
||||
ctx->buf_compute_cuda = ggml_backend_alloc_buffer(&model->backend_cuda, MEM_REQ_EVAL().at(ctx->model.type), 2048);
|
||||
ctx->buf_compute_cuda = ggml_buffer_alloc(model->backend_cuda, MEM_REQ_EVAL().at(ctx->model.type), 2048);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -2653,10 +2679,10 @@ struct llama_context * llama_new_context_with_model(
|
||||
buf_input_size += hparams.n_ctx * ggml_type_size(GGML_TYPE_F32); // input tokens
|
||||
// TODO: input embeddings should be optional to save memory
|
||||
buf_input_size += hparams.n_embd * hparams.n_ctx * ggml_type_size(GGML_TYPE_F32); // input embeddings
|
||||
ctx->buf_input = ggml_backend_alloc_buffer(model->backend_input, buf_input_size, 2);
|
||||
ctx->buf_input = ggml_buffer_alloc(model->backend_inp, buf_input_size, 2);
|
||||
|
||||
struct ggml_init_params ggml_params = ggml_init_params_default();
|
||||
ggml_params.buffer = &ctx->buf_input;
|
||||
ggml_params.buffer = ctx->buf_input;
|
||||
ggml_context * ctx0 = ggml_init(ggml_params);
|
||||
|
||||
ctx->graph_tokens_in = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, hparams.n_ctx);
|
||||
@ -2677,10 +2703,10 @@ struct llama_context * llama_new_context_with_model(
|
||||
if (params.embedding) {
|
||||
buf_output_size += hparams.n_embd * ggml_type_size(GGML_TYPE_F32);
|
||||
}
|
||||
ctx->buf_output = ggml_backend_alloc_buffer(model->backend_output, buf_output_size, 2);
|
||||
ctx->buf_output = ggml_buffer_alloc(model->backend_out, buf_output_size, 2);
|
||||
|
||||
struct ggml_init_params ggml_params = ggml_init_params_default();
|
||||
ggml_params.buffer = &ctx->buf_output;
|
||||
ggml_params.buffer = ctx->buf_output;
|
||||
ggml_context * ctx0 = ggml_init(ggml_params);
|
||||
|
||||
ctx->graph_logits = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, hparams.n_vocab, params.logits_all ? hparams.n_ctx : 1);
|
||||
@ -2706,7 +2732,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: layer backends: ", __func__);
|
||||
fprintf(stderr, "input: %s, ", ggml_backend_name(ctx->model.backend_input));
|
||||
fprintf(stderr, "input: %s, ", ggml_backend_name(ctx->model.backend_inp));
|
||||
|
||||
int start = 0;
|
||||
struct ggml_backend * prev_backend = ctx->model.backend_layers[0];
|
||||
@ -2721,7 +2747,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
prev_backend = ctx->model.backend_layers[i];
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "output: %s, ", ggml_backend_name(ctx->model.backend_output));
|
||||
fprintf(stderr, "output: %s, ", ggml_backend_name(ctx->model.backend_out));
|
||||
fprintf(stderr, "kv: %s\n", ggml_backend_name(ctx->backend_kv));
|
||||
|
||||
#ifdef GGML_USE_MPI
|
||||
@ -2753,6 +2779,7 @@ struct llama_context * llama_init_from_file(
|
||||
}
|
||||
|
||||
void llama_free(struct llama_context * ctx) {
|
||||
// TODO: free buffers - move this to destructor like llama_model
|
||||
if (ctx->model_owner) {
|
||||
delete &ctx->model;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user