Merge commit '469c9addef75893e6be12edda852d12e840bf064' into nomic-vulkan

This commit is contained in:
Jared Van Bortel 2023-11-14 12:00:37 -05:00
commit 2a41ba7258
102 changed files with 19073 additions and 8584 deletions

View File

@ -1,8 +1,7 @@
--- ---
name: Issue and enhancement template name: Bug template
about: Used to report issues and request enhancements for llama.cpp about: Used to report bugs in llama.cpp
title: "[User] Insert summary of your issue or enhancement.." labels: ["bug"]
labels: ''
assignees: '' assignees: ''
--- ---
@ -46,7 +45,7 @@ $ g++ --version
# Failure Information (for bugs) # Failure Information (for bugs)
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template. Please help provide information about the failure / bug.
# Steps to Reproduce # Steps to Reproduce

28
.github/ISSUE_TEMPLATE/enhancement.md vendored Normal file
View File

@ -0,0 +1,28 @@
---
name: Enhancement template
about: Used to request enhancements for llama.cpp
labels: ["enhancement"]
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Feature Description
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
# Motivation
Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
# Possible Implementation
If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.

View File

@ -276,6 +276,11 @@ jobs:
run: | run: |
xcodebuild -scheme llama -destination "${{ matrix.destination }}" xcodebuild -scheme llama -destination "${{ matrix.destination }}"
- name: Build Swift Example
id: make_build_swift_example
run: |
make swift
windows-latest-cmake: windows-latest-cmake:
runs-on: windows-latest runs-on: windows-latest

3
.gitignore vendored
View File

@ -10,6 +10,7 @@
*.gcno *.gcno
*.gcda *.gcda
*.dot *.dot
*.bat
*.metallib *.metallib
.DS_Store .DS_Store
.build/ .build/
@ -44,6 +45,7 @@ models-mnt
/infill /infill
/libllama.so /libllama.so
/llama-bench /llama-bench
/llava
/main /main
/metal /metal
/perplexity /perplexity
@ -55,6 +57,7 @@ models-mnt
/server /server
/simple /simple
/batched /batched
/batched-bench
/export-lora /export-lora
/finetune /finetune
/speculative /speculative

View File

@ -559,8 +559,7 @@ endif()
if (LLAMA_ALL_WARNINGS) if (LLAMA_ALL_WARNINGS)
if (NOT MSVC) if (NOT MSVC)
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function) set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration)
-Werror=implicit-function-declaration)
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn) set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
set(host_cxx_flags "") set(host_cxx_flags "")
@ -592,7 +591,8 @@ if (LLAMA_ALL_WARNINGS)
set(c_flags ${c_flags} ${warning_flags}) set(c_flags ${c_flags} ${warning_flags})
set(cxx_flags ${cxx_flags} ${warning_flags}) set(cxx_flags ${cxx_flags} ${warning_flags})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>" add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>") "$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${host_cxx_flags}>")
endif() endif()

114
Makefile
View File

@ -1,8 +1,14 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o BUILD_TARGETS = \
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench llava baby-llama beam-search \
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe TEST_TARGETS = \
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
# Code coverage output files # Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@ -172,6 +178,24 @@ else
MK_CPPFLAGS += -DNDEBUG MK_CPPFLAGS += -DNDEBUG
endif endif
ifdef LLAMA_SANITIZE_THREAD
MK_CFLAGS += -fsanitize=thread -g
MK_CXXFLAGS += -fsanitize=thread -g
MK_LDFLAGS += -fsanitize=thread -g
endif
ifdef LLAMA_SANITIZE_ADDRESS
MK_CFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
MK_CXXFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
MK_LDFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
endif
ifdef LLAMA_SANITIZE_UNDEFINED
MK_CFLAGS += -fsanitize=undefined -g
MK_CXXFLAGS += -fsanitize=undefined -g
MK_LDFLAGS += -fsanitize=undefined -g
endif
ifdef LLAMA_SERVER_VERBOSE ifdef LLAMA_SERVER_VERBOSE
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE) MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
endif endif
@ -520,7 +544,13 @@ OBJS += ggml-alloc.o ggml-backend.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
common.o: common/common.cpp common/common.h build-info.h common/log.h COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o grammar-parser.o
common.o: common/common.cpp $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@
sampling.o: common/sampling.cpp $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
console.o: common/console.cpp common/console.h console.o: common/console.cpp common/console.h
@ -542,19 +572,22 @@ clean:
# Examples # Examples
# #
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS) main: examples/main/main.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo @echo
@echo '==== Run ./main -h for help. ====' @echo '==== Run ./main -h for help. ===='
@echo @echo
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS) infill: examples/infill/infill.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS) simple: examples/simple/simple.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS) batched: examples/batched/batched.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
@ -563,53 +596,49 @@ quantize: examples/quantize/quantize.cpp build-info.h ggml.
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS) quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS) perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS) embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS) save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) $(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS) gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS) train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS) llava: examples/llava/llava.cpp examples/llava/llava-utils.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS) beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS) finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS) export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o common.o $(OBJS) parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifdef LLAMA_METAL ifdef LLAMA_METAL
@ -617,6 +646,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
endif endif
ifeq ($(UNAME_S),Darwin)
swift: examples/batched.swift
(cd examples/batched.swift; make build)
endif
build-info.h: $(wildcard .git/index) scripts/build-info.sh build-info.h: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh $(CC) > $@.tmp @sh scripts/build-info.sh $(CC) > $@.tmp
@if ! cmp -s $@.tmp $@; then \ @if ! cmp -s $@.tmp $@; then \
@ -637,7 +671,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
run-benchmark-matmult: benchmark-matmult run-benchmark-matmult: benchmark-matmult
./$@ ./$@
.PHONY: run-benchmark-matmult .PHONY: run-benchmark-matmult swift
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
@ -645,40 +679,40 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS) tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-c.o: tests/test-c.c llama.h tests/test-c.o: tests/test-c.c llama.h

View File

@ -1,10 +1,10 @@
// swift-tools-version:5.3 // swift-tools-version:5.5
import PackageDescription import PackageDescription
#if arch(arm) || arch(arm64) #if arch(arm) || arch(arm64)
let platforms: [SupportedPlatform]? = [ let platforms: [SupportedPlatform]? = [
.macOS(.v11), .macOS(.v12),
.iOS(.v14), .iOS(.v14),
.watchOS(.v4), .watchOS(.v4),
.tvOS(.v14) .tvOS(.v14)
@ -41,12 +41,13 @@ let package = Package(
"ggml.c", "ggml.c",
"llama.cpp", "llama.cpp",
"ggml-alloc.c", "ggml-alloc.c",
"ggml-backend.c",
"k_quants.c", "k_quants.c",
] + additionalSources, ] + additionalSources,
resources: resources, resources: resources,
publicHeadersPath: "spm-headers", publicHeadersPath: "spm-headers",
cSettings: [ cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32"]), .unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_K_QUANTS"), .define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE") .define("GGML_USE_ACCELERATE")
// NOTE: NEW_LAPACK will required iOS version 16.4+ // NOTE: NEW_LAPACK will required iOS version 16.4+

View File

@ -11,12 +11,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics ### Hot topics
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401) - LLaVA support: https://github.com/ggerganov/llama.cpp/pull/3436
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \ - ‼️ BPE tokenizer update: existing Falcon and Starcoder `.gguf` models will need to be reconverted: [#3252](https://github.com/ggerganov/llama.cpp/pull/3252)
**Devs should become familiar with the new API**
- Local Falcon 180B inference on Mac Studio
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
---- ----
@ -89,19 +85,23 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894) - [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/) - [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy) - [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b) - [X] [Pygmalion/Metharme](#using-pygmalion-7b--metharme-7b)
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM) - [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft)) - [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B) - [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) - [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
**Bindings:** **Bindings:**
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp), [hlhr202/llama-node](https://github.com/hlhr202/llama-node) - Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp) - Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
@ -204,7 +204,7 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
## Usage ## Usage
Here are the steps for the LLaMA-7B model. Here are the end-to-end binary build and model conversion steps for the LLaMA-7B model.
### Get the Code ### Get the Code
@ -277,7 +277,7 @@ In order to build llama.cpp you have three different options.
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU. On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option. To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument. argument.
### MPI Build ### MPI Build
@ -571,6 +571,18 @@ python3 convert.py models/7B/
When running the larger models, make sure you have enough disk space to store all the intermediate files. When running the larger models, make sure you have enough disk space to store all the intermediate files.
### Running on Windows with prebuilt binaries
You will find prebuilt Windows binaries on the release page.
Simply download and extract the latest zip package of choice: (e.g. `llama-b1380-bin-win-avx2-x64.zip`)
From the unzipped folder, open a terminal/cmd window here and place a pre-converted `.gguf` model file. Test out the main example like so:
```
.\main -m llama-2-7b.Q4_0.gguf -n 128
```
### Memory/Disk Requirements ### Memory/Disk Requirements
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same. As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
@ -950,7 +962,6 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
- [main](./examples/main/README.md) - [main](./examples/main/README.md)
- [server](./examples/server/README.md) - [server](./examples/server/README.md)
- [embd-input](./examples/embd-input/README.md)
- [jeopardy](./examples/jeopardy/README.md) - [jeopardy](./examples/jeopardy/README.md)
- [BLIS](./docs/BLIS.md) - [BLIS](./docs/BLIS.md)
- [Performance troubleshooting](./docs/token_generation_performance_tips.md) - [Performance troubleshooting](./docs/token_generation_performance_tips.md)

View File

@ -128,17 +128,19 @@ pub fn build(b: *std.build.Builder) !void {
const llama = make.obj("llama", "llama.cpp"); const llama = make.obj("llama", "llama.cpp");
const common = make.obj("common", "common/common.cpp"); const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp"); const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const train = make.obj("train", "common/train.cpp"); const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser }); _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser }); const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser, clip });
if (server.target.isWindows()) { if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32"); server.linkSystemLibrary("ws2_32");
} }

View File

@ -208,6 +208,8 @@ function gg_run_open_llama_3b_v2 {
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl { function check_ppl {
qnt="$1" qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
@ -296,6 +298,7 @@ function gg_sum_open_llama_3b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)" gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)" gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)" gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
@ -382,6 +385,8 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl { function check_ppl {
qnt="$1" qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
@ -470,6 +475,7 @@ function gg_sum_open_llama_7b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)" gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)" gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)" #gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
@ -496,10 +502,12 @@ test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then if [ -z ${GG_BUILD_LOW_PERF} ]; then
if [ -z ${GG_BUILD_CUDA} ]; then if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2 if [ -z ${GG_BUILD_CUDA} ]; then
else test $ret -eq 0 && gg_run open_llama_3b_v2
test $ret -eq 0 && gg_run open_llama_7b_v2 else
test $ret -eq 0 && gg_run open_llama_7b_v2
fi
fi fi
fi fi

View File

@ -5,6 +5,8 @@ set(TARGET common)
add_library(${TARGET} OBJECT add_library(${TARGET} OBJECT
common.h common.h
common.cpp common.cpp
sampling.h
sampling.cpp
console.h console.h
console.cpp console.cpp
grammar-parser.h grammar-parser.h

View File

@ -107,6 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::string arg; std::string arg;
gpt_params default_params; gpt_params default_params;
const std::string arg_prefix = "--"; const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sparams;
for (int i = 1; i < argc; i++) { for (int i = 1; i < argc; i++) {
arg = argv[i]; arg = argv[i];
@ -184,7 +185,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.top_k = std::stoi(argv[i]); sparams.top_k = std::stoi(argv[i]);
} else if (arg == "-c" || arg == "--ctx-size") { } else if (arg == "-c" || arg == "--ctx-size") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -216,73 +217,74 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.top_p = std::stof(argv[i]); sparams.top_p = std::stof(argv[i]);
} else if (arg == "--temp") { } else if (arg == "--temp") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.temp = std::stof(argv[i]); sparams.temp = std::stof(argv[i]);
} else if (arg == "--tfs") { } else if (arg == "--tfs") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.tfs_z = std::stof(argv[i]); sparams.tfs_z = std::stof(argv[i]);
} else if (arg == "--typical") { } else if (arg == "--typical") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.typical_p = std::stof(argv[i]); sparams.typical_p = std::stof(argv[i]);
} else if (arg == "--repeat-last-n") { } else if (arg == "--repeat-last-n") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.repeat_last_n = std::stoi(argv[i]); sparams.penalty_last_n = std::stoi(argv[i]);
sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
} else if (arg == "--repeat-penalty") { } else if (arg == "--repeat-penalty") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.repeat_penalty = std::stof(argv[i]); sparams.penalty_repeat = std::stof(argv[i]);
} else if (arg == "--frequency-penalty") { } else if (arg == "--frequency-penalty") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.frequency_penalty = std::stof(argv[i]); sparams.penalty_freq = std::stof(argv[i]);
} else if (arg == "--presence-penalty") { } else if (arg == "--presence-penalty") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.presence_penalty = std::stof(argv[i]); sparams.penalty_present = std::stof(argv[i]);
} else if (arg == "--mirostat") { } else if (arg == "--mirostat") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.mirostat = std::stoi(argv[i]); sparams.mirostat = std::stoi(argv[i]);
} else if (arg == "--mirostat-lr") { } else if (arg == "--mirostat-lr") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.mirostat_eta = std::stof(argv[i]); sparams.mirostat_eta = std::stof(argv[i]);
} else if (arg == "--mirostat-ent") { } else if (arg == "--mirostat-ent") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.mirostat_tau = std::stof(argv[i]); sparams.mirostat_tau = std::stof(argv[i]);
} else if (arg == "--cfg-negative-prompt") { } else if (arg == "--cfg-negative-prompt") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.cfg_negative_prompt = argv[i]; sparams.cfg_negative_prompt = argv[i];
} else if (arg == "--cfg-negative-prompt-file") { } else if (arg == "--cfg-negative-prompt-file") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -294,16 +296,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt)); std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') { if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
params.cfg_negative_prompt.pop_back(); sparams.cfg_negative_prompt.pop_back();
} }
} else if (arg == "--cfg-scale") { } else if (arg == "--cfg-scale") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.cfg_scale = std::stof(argv[i]); sparams.cfg_scale = std::stof(argv[i]);
} else if (arg == "-b" || arg == "--batch-size") { } else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -383,6 +385,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.lora_base = argv[i]; params.lora_base = argv[i];
} else if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mmproj = argv[i];
} else if (arg == "--image") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.image = argv[i];
} else if (arg == "-i" || arg == "--interactive") { } else if (arg == "-i" || arg == "--interactive") {
params.interactive = true; params.interactive = true;
} else if (arg == "--embedding") { } else if (arg == "--embedding") {
@ -512,7 +526,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} else if (arg == "--ignore-eos") { } else if (arg == "--ignore-eos") {
params.ignore_eos = true; params.ignore_eos = true;
} else if (arg == "--no-penalize-nl") { } else if (arg == "--no-penalize-nl") {
params.penalize_nl = false; sparams.penalize_nl = false;
} else if (arg == "-l" || arg == "--logit-bias") { } else if (arg == "-l" || arg == "--logit-bias") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -524,7 +538,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::string value_str; std::string value_str;
try { try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
} else { } else {
throw std::exception(); throw std::exception();
} }
@ -559,7 +573,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
invalid_param = true; invalid_param = true;
break; break;
} }
params.grammar = argv[i]; sparams.grammar = argv[i];
} else if (arg == "--grammar-file") { } else if (arg == "--grammar-file") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -574,7 +588,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
std::copy( std::copy(
std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(), std::istreambuf_iterator<char>(),
std::back_inserter(params.grammar) std::back_inserter(sparams.grammar)
); );
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
// Parse args for logging parameters // Parse args for logging parameters
@ -618,6 +632,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
process_escapes(params.prompt); process_escapes(params.prompt);
process_escapes(params.input_prefix); process_escapes(params.input_prefix);
process_escapes(params.input_suffix); process_escapes(params.input_suffix);
process_escapes(sparams.cfg_negative_prompt);
for (auto & antiprompt : params.antiprompt) { for (auto & antiprompt : params.antiprompt) {
process_escapes(antiprompt); process_escapes(antiprompt);
} }
@ -627,6 +642,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} }
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
printf("usage: %s [options]\n", argv[0]); printf("usage: %s [options]\n", argv[0]);
printf("\n"); printf("\n");
printf("options:\n"); printf("options:\n");
@ -659,19 +676,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
printf(" --mirostat N use Mirostat sampling.\n"); printf(" --mirostat N use Mirostat sampling.\n");
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
printf(" modifies the likelihood of token appearing in the completion,\n"); printf(" modifies the likelihood of token appearing in the completion,\n");
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
@ -682,7 +699,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" negative prompt to use for guidance. (default: empty)\n"); printf(" negative prompt to use for guidance. (default: empty)\n");
printf(" --cfg-negative-prompt-file FNAME\n"); printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n"); printf(" negative prompt file to use for guidance. (default: empty)\n");
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n"); printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n"); printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
@ -690,7 +707,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
printf(" --temp N temperature (default: %.1f)\n", (double)params.temp); printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n"); printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
@ -700,6 +717,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
if (llama_mlock_supported()) { if (llama_mlock_supported()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
} }
@ -803,6 +822,27 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
return cparams; return cparams;
} }
void llama_batch_clear(struct llama_batch & batch) {
batch.n_tokens = 0;
}
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits) {
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos,
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
}
batch.logits [batch.n_tokens] = logits;
batch.n_tokens++;
}
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) { std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto mparams = llama_model_params_from_gpt_params(params); auto mparams = llama_model_params_from_gpt_params(params);
@ -840,13 +880,13 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
} }
if (params.ignore_eos) { if (params.ignore_eos) {
params.logit_bias[llama_token_eos(lctx)] = -INFINITY; params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
} }
{ {
LOG("warming up the model with an empty run\n"); LOG("warming up the model with an empty run\n");
std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_tokens_rm(lctx, -1, -1); llama_kv_cache_tokens_rm(lctx, -1, -1);
llama_reset_timings(lctx); llama_reset_timings(lctx);
@ -862,21 +902,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> llama_tokenize( std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx, const struct llama_context * ctx,
const std::string & text, const std::string & text,
bool add_bos) { bool add_bos,
return llama_tokenize(llama_get_model(ctx), text, add_bos); bool special) {
return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
} }
std::vector<llama_token> llama_tokenize( std::vector<llama_token> llama_tokenize(
const struct llama_model * model, const struct llama_model * model,
const std::string & text, const std::string & text,
bool add_bos) { bool add_bos,
bool special) {
// upper limit for the number of tokens // upper limit for the number of tokens
int n_tokens = text.length() + add_bos; int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens); std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos); n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
if (n_tokens < 0) { if (n_tokens < 0) {
result.resize(-n_tokens); result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos); int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
GGML_ASSERT(check == -n_tokens); GGML_ASSERT(check == -n_tokens);
} else { } else {
result.resize(n_tokens); result.resize(n_tokens);
@ -899,7 +941,7 @@ std::string llama_token_to_piece(const struct llama_context * ctx, llama_token t
} }
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) { std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_token bos_id = llama_token_bos(ctx); const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
std::string piece; std::string piece;
std::string result; std::string result;
@ -932,127 +974,6 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
return result; return result;
} }
//
// Sampling utils
//
llama_token llama_sample_token(
struct llama_context * ctx,
struct llama_context * ctx_guidance,
struct llama_grammar * grammar,
const struct gpt_params & params,
const std::vector<llama_token> & last_tokens,
std::vector<llama_token_data> & candidates,
int idx) {
const int n_ctx = llama_n_ctx(ctx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
float * logits = llama_get_logits_ith(ctx, idx);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
candidates.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
if (ctx_guidance) {
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
}
// apply penalties
if (!last_tokens.empty()) {
const float nl_logit = logits[llama_token_nl(ctx)];
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &cur_p,
last_tokens.data() + last_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
last_tokens.data() + last_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
if (grammar != NULL) {
llama_sample_grammar(ctx, &cur_p, grammar);
}
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &cur_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx, &cur_p, temp);
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
llama_sample_temp(ctx, &cur_p, temp);
{
const int n_top = 10;
LOG("top %d candidates:\n", n_top);
for (int i = 0; i < n_top; i++) {
const llama_token id = cur_p.data[i].id;
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
}
}
id = llama_sample_token(ctx, &cur_p);
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
}
}
// printf("`%d`", candidates_p.size);
if (grammar != NULL) {
llama_grammar_accept_token(ctx, grammar, id);
}
return id;
}
// //
// YAML utils // YAML utils
// //
@ -1204,26 +1125,28 @@ std::string get_sortable_timestamp() {
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) { const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const llama_sampling_params & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT); fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
fprintf(stream, "build_number: %d\n", BUILD_NUMBER); fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false"); fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
#ifdef NDEBUG #ifdef NDEBUG
fprintf(stream, "debug: false\n"); fprintf(stream, "debug: false\n");
@ -1250,21 +1173,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str()); dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale); fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty); fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str()); dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx)); const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY; const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
@ -1277,7 +1200,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n"); fprintf(stream, "logit_bias:\n");
for (std::pair<llama_token, float> lb : params.logit_bias) { for (std::pair<llama_token, float> lb : sparams.logit_bias) {
if (ignore_eos && lb.first == logit_bias_eos->first) { if (ignore_eos && lb.first == logit_bias_eos->first) {
continue; continue;
} }
@ -1301,30 +1224,30 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau); fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false"); fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false"); fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty); fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty); fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n"); fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) { for (std::string ap : params.antiprompt) {
@ -1342,15 +1265,15 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed); fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", params.temp); fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z); fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency()); fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", params.top_k); fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p); fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p); fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
} }

View File

@ -4,6 +4,8 @@
#include "llama.h" #include "llama.h"
#include "sampling.h"
#define LOG_NO_FILE_LINE_FUNCTION #define LOG_NO_FILE_LINE_FUNCTION
#include "log.h" #include "log.h"
@ -49,31 +51,12 @@ struct gpt_params {
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t n_beams = 0; // if non-zero then use beam search of given width. int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
// sampling parameters // // sampling parameters
int32_t top_k = 40; // <= 0 to use vocab size struct llama_sampling_params sparams;
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float frequency_penalty = 0.00f; // 0.0 = disabled
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance
std::string model = "models/7B/ggml-model-f16.gguf"; // model path std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding std::string model_draft = ""; // draft model for speculative decoding
@ -83,10 +66,10 @@ struct gpt_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with std::string input_suffix = ""; // string to suffix user inputs with
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files std::string logdir = ""; // directory in which to save YAML log files
// TODO: avoid tuple, use struct
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter std::string lora_base = ""; // base model path for the lora adapter
@ -115,13 +98,16 @@ struct gpt_params {
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models) bool instruct = false; // instruction mode (used for Alpaca models)
bool penalize_nl = true; // consider newlines as a repeatable token
bool logits_all = false; // return logits for all tokens in the batch bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory bool use_mlock = false; // use mlock to keep model in memory
bool numa = false; // attempt optimizations that help on some NUMA systems bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation bool verbose_prompt = false; // print prompt tokens before generation
bool infill = false; // use infill mode bool infill = false; // use infill mode
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::string image = ""; // path to an image file
}; };
bool gpt_params_parse(int argc, char ** argv, gpt_params & params); bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
@ -138,10 +124,23 @@ void process_escapes(std::string& input);
// Model utils // Model utils
// //
// TODO: avoid tuplue, use struct
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params); std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
// Batch utils
void llama_batch_clear(struct llama_batch & batch);
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits);
// //
// Vocab utils // Vocab utils
// //
@ -151,12 +150,14 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
std::vector<llama_token> llama_tokenize( std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx, const struct llama_context * ctx,
const std::string & text, const std::string & text,
bool add_bos); bool add_bos,
bool special = false);
std::vector<llama_token> llama_tokenize( std::vector<llama_token> llama_tokenize(
const struct llama_model * model, const struct llama_model * model,
const std::string & text, const std::string & text,
bool add_bos); bool add_bos,
bool special = false);
// tokenizes a token into a piece // tokenizes a token into a piece
// should work similar to Python's `tokenizer.id_to_piece` // should work similar to Python's `tokenizer.id_to_piece`
@ -180,36 +181,6 @@ std::string llama_detokenize_bpe(
llama_context * ctx, llama_context * ctx,
const std::vector<llama_token> & tokens); const std::vector<llama_token> & tokens);
//
// Sampling utils
//
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
//
// required:
// - ctx: context to use for sampling
// - params: sampling parameters
//
// optional:
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
// - grammar: grammar to use for sampling, ignore if NULL
// - last_tokens: needed for repetition penalty, ignore if empty
// - idx: sample from llama_get_logits_ith(ctx, idx)
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sample_token(
struct llama_context * ctx,
struct llama_context * ctx_guidance,
struct llama_grammar * grammar,
const struct gpt_params & params,
const std::vector<llama_token> & last_tokens,
std::vector<llama_token_data> & candidates,
int idx = 0);
// //
// YAML utils // YAML utils
// //

View File

@ -399,7 +399,7 @@ namespace grammar_parser {
void print_grammar(FILE * file, const parse_state & state) { void print_grammar(FILE * file, const parse_state & state) {
try { try {
std::map<uint32_t, std::string> symbol_id_names; std::map<uint32_t, std::string> symbol_id_names;
for (auto kv : state.symbol_ids) { for (const auto & kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first; symbol_id_names[kv.second] = kv.first;
} }
for (size_t i = 0, end = state.rules.size(); i < end; i++) { for (size_t i = 0, end = state.rules.size(); i < end; i++) {

View File

@ -579,38 +579,75 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
return buf.str(); return buf.str();
} }
#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \ template <typename C, typename T>
[&tokens, &ctx]() \ inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
{ \ {
std::stringstream buf; \ std::stringstream buf;
buf << "[ "; \ buf << "[ ";
\
bool first = true; \ bool first = true;
for (const auto &token : tokens) \ for (const auto &token : tokens)
{ \ {
if (!first) \ if (!first) {
buf << ", "; \ buf << ", ";
else \ } else {
first = false; \ first = false;
\ }
auto detokenized = llama_token_to_piece(ctx, token); \
\ auto detokenized = llama_token_to_piece(ctx, token);
detokenized.erase( \
std::remove_if( \ detokenized.erase(
detokenized.begin(), \ std::remove_if(
detokenized.end(), \ detokenized.begin(),
[](const unsigned char c) { return !std::isprint(c); }), \ detokenized.end(),
detokenized.end()); \ [](const unsigned char c) { return !std::isprint(c); }),
\ detokenized.end());
buf \
<< "'" << detokenized << "'" \ buf
<< ":" << std::to_string(token); \ << "'" << detokenized << "'"
} \ << ":" << std::to_string(token);
buf << " ]"; \ }
\ buf << " ]";
return buf.str(); \
}() \ return buf.str();
.c_str() }
template <typename C, typename B>
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
{
std::stringstream buf;
buf << "[ ";
bool first = true;
for (int i = 0; i < batch.n_tokens; ++i)
{
if (!first) {
buf << ", ";
} else {
first = false;
}
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf
<< "\n" << std::to_string(i)
<< ":token '" << detokenized << "'"
<< ":pos " << std::to_string(batch.pos[i])
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
<< ":logits " << std::to_string(batch.logits[i]);
}
buf << " ]";
return buf.str();
}
#ifdef LOG_DISABLE_LOGS #ifdef LOG_DISABLE_LOGS

222
common/sampling.cpp Normal file
View File

@ -0,0 +1,222 @@
#include "sampling.h"
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params;
result->grammar = nullptr;
// if there is a grammar, parse it
if (!params.grammar.empty()) {
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (result->parsed_grammar.rules.empty()) {
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
return nullptr;
}
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
result->grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
}
result->prev.resize(params.n_prev);
return result;
}
void llama_sampling_free(struct llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
}
delete ctx;
}
void llama_sampling_reset(llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
}
if (!ctx->parsed_grammar.rules.empty()) {
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
ctx->grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
}
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
}
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
if (dst->grammar) {
llama_grammar_free(dst->grammar);
dst->grammar = nullptr;
}
if (src->grammar) {
dst->grammar = llama_grammar_copy(src->grammar);
}
dst->prev = src->prev;
}
llama_token llama_sampling_last(llama_sampling_context * ctx) {
return ctx->prev.back();
}
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
const int size = ctx_sampling->prev.size();
n = std::min(n, size);
std::string result;
for (int i = size - n; i < size; i++) {
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
}
return result;
}
std::string llama_sampling_print(const llama_sampling_params & params) {
char result[1024];
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
llama_token id = 0;
float * logits = llama_get_logits_ith(ctx_main, idx);
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
if (ctx_cfg) {
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
}
// apply penalties
if (!prev.empty()) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - penalty_last_n,
penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
if (ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
if (temp <= 0) {
// greedy sampling
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
llama_sample_temp (ctx_main, &cur_p, temp);
id = llama_sample_token(ctx_main, &cur_p);
//{
// const int n_top = 10;
// LOG("top %d candidates:\n", n_top);
// for (int i = 0; i < n_top; i++) {
// const llama_token id = cur_p.data[i].id;
// (void)id; // To avoid a warning that id is unused when logging is disabled.
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
// }
//}
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
return id;
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar) {
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
ctx_sampling->prev.push_back(id);
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
}
}

109
common/sampling.h Normal file
View File

@ -0,0 +1,109 @@
#pragma once
#include "llama.h"
#include "grammar-parser.h"
#include <string>
#include <vector>
#include <unordered_map>
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.10f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token
std::string grammar; // optional BNF-like grammar to constrain sampling
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
} llama_sampling_params;
// general sampler context
// TODO: move to llama.h
struct llama_sampling_context {
// parameters that will be used for sampling
llama_sampling_params params;
// mirostat sampler state
float mirostat_mu;
llama_grammar * grammar;
// internal
grammar_parser::parse_state parsed_grammar;
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
};
#include "common.h"
// Create a new sampling context instance.
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
void llama_sampling_free(struct llama_sampling_context * ctx);
// Reset the sampler context
// - clear prev tokens
// - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// Get the last sampled token
llama_token llama_sampling_last(llama_sampling_context * ctx);
// Get a string representation of the last sampled tokens
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
// Print sampling parameters into a string
std::string llama_sampling_print(const llama_sampling_params & params);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
// llama_sampling_reset when a sequence ends
//
// required:
// - ctx_main: context to use for sampling
// - ctx_sampling: sampling-specific context
//
// optional:
// - ctx_cfg: context to use for classifier-free guidance
// - idx: sample from llama_get_logits_ith(ctx, idx)
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0);
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar);

8396
common/stb_image.h Normal file

File diff suppressed because it is too large Load Diff

View File

@ -236,8 +236,8 @@ int64_t get_example_targets_batch(
int64_t used_samples = 0; int64_t used_samples = 0;
ggml_set_f32(target_probs, 0.0f); ggml_set_f32(target_probs, 0.0f);
llama_token bos = llama_token_bos(lctx); llama_token bos = llama_token_bos(llama_get_model(lctx));
llama_token eos = llama_token_eos(lctx); llama_token eos = llama_token_eos(llama_get_model(lctx));
// printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
for (int k=0; k<n_batch; ++k) { for (int k=0; k<n_batch; ++k) {
// printf("%s: batch %d\n", __func__, k); // printf("%s: batch %d\n", __func__, k);
@ -863,7 +863,7 @@ size_t tokenize_file(
(int) buf.size(), (int) buf.size(),
out_tokens.data(), out_tokens.data(),
(int) out_tokens.size(), (int) out_tokens.size(),
false); false, false);
if (n_tokens < 0) { if (n_tokens < 0) {
out_tokens.resize(-n_tokens); out_tokens.resize(-n_tokens);
n_tokens = llama_tokenize( n_tokens = llama_tokenize(
@ -872,7 +872,7 @@ size_t tokenize_file(
(int) buf.size(), (int) buf.size(),
out_tokens.data(), out_tokens.data(),
(int) out_tokens.size(), (int) out_tokens.size(),
false); false, false);
} }
if (n_tokens >= 0) { if (n_tokens >= 0) {
out_tokens.resize(n_tokens); out_tokens.resize(n_tokens);
@ -924,7 +924,7 @@ size_t tokenize_file(
for (llama_token token=0; token < n_vocab; ++token) { for (llama_token token=0; token < n_vocab; ++token) {
max_token_text_size = std::max( max_token_text_size = std::max(
max_token_text_size, max_token_text_size,
strlen(llama_token_get_text(lctx, token))); strlen(llama_token_get_text(llama_get_model(lctx), token)));
} }
// upper bound of context byte length. // upper bound of context byte length.
@ -966,7 +966,7 @@ size_t tokenize_file(
(int) buf_sample.size(), (int) buf_sample.size(),
tok_sample.data(), tok_sample.data(),
(int) tok_sample.size(), (int) tok_sample.size(),
false); false, false);
if (n_tokens < 0) { if (n_tokens < 0) {
tok_sample.resize(-n_tokens); tok_sample.resize(-n_tokens);
n_tokens = llama_tokenize(llama_get_model(lctx), n_tokens = llama_tokenize(llama_get_model(lctx),
@ -974,7 +974,7 @@ size_t tokenize_file(
(int) buf_sample.size(), (int) buf_sample.size(),
tok_sample.data(), tok_sample.data(),
(int) tok_sample.size(), (int) tok_sample.size(),
false); false, false);
GGML_ASSERT(n_tokens >= 0); GGML_ASSERT(n_tokens >= 0);
} }
GGML_ASSERT(n_tokens <= (int) tok_sample.size()); GGML_ASSERT(n_tokens <= (int) tok_sample.size());
@ -1425,7 +1425,7 @@ void train_opt_callback(void * vdata, int accum_step, float * sched, bool * canc
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
if (impr_plot > 0) impr_plot = 0; if (impr_plot > 0) impr_plot = 0;
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0; if (std::isnan(opt->loss_before) || std::isnan(opt->loss_after)) impr_plot = 0;
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
*sched, opt->loss_after); *sched, opt->loss_after);

View File

@ -76,6 +76,7 @@ def parse_args() -> argparse.Namespace:
"ftype", type=int, choices=[0, 1], default=1, nargs='?', "ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16", help="output format - use 0 for float32, 1 for float16",
) )
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
return parser.parse_args() return parser.parse_args()
args = parse_args() args = parse_args()
@ -86,6 +87,11 @@ if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr) print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1) sys.exit(1)
endianess = gguf.GGUFEndian.LITTLE
if args.bigendian:
endianess = gguf.GGUFEndian.BIG
endianess_str = "Big Endian" if args.bigendian else "Little Endian"
print(f"gguf: Conversion Endianess {endianess}")
# possible tensor data types # possible tensor data types
# ftype == 0 -> float32 # ftype == 0 -> float32
# ftype == 1 -> float16 # ftype == 1 -> float16
@ -104,7 +110,7 @@ print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f: with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f) hparams = json.load(f)
print("hello print: ",hparams["architectures"][0]) print("hello print: ",hparams["architectures"][0])
if hparams["architectures"][0] != "BaichuanForCausalLM": if hparams["architectures"][0] != "BaichuanForCausalLM" and hparams["architectures"][0] != "BaiChuanForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0]) print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit() sys.exit()
@ -113,7 +119,7 @@ if hparams["architectures"][0] != "BaichuanForCausalLM":
num_parts = count_model_parts(dir_model) num_parts = count_model_parts(dir_model)
print(f"num_parts:{num_parts}\n") print(f"num_parts:{num_parts}\n")
ARCH=gguf.MODEL_ARCH.BAICHUAN ARCH=gguf.MODEL_ARCH.BAICHUAN
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
print("gguf: get model metadata") print("gguf: get model metadata")
@ -224,7 +230,7 @@ gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores) gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model) special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer) special_vocab.add_to_gguf(gguf_writer)
# TENSORS # TENSORS

247
convert-bloom-hf-to-gguf.py Executable file
View File

@ -0,0 +1,247 @@
#!/usr/bin/env python3
# HF bloom --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import re
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
# Supported Models:
# https://huggingface.co/bigscience/bloom-1b7
# https://huggingface.co/bigscience/bloom-3b
# https://huggingface.co/bigscience/bloom-7b1
# https://huggingface.co/Langboat/bloom-1b4-zh
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "BloomForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.BLOOM
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("Bloom")
n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
gguf_writer.add_embedding_length(n_embed)
gguf_writer.add_feed_forward_length(4 * n_embed)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(n_head)
gguf_writer.add_head_count_kv(n_head)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
# params for qkv transform
n_head_kv = hparams.get("n_head_kv", n_head)
head_dim = n_embed // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
has_lm_head = True
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
has_lm_head = False
for original_name in model_part.keys():
data = model_part[original_name]
name = re.sub(r'transformer\.', '', original_name)
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
data = np.concatenate(
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
axis=0
)
print("re-format attention.linear_qkv.weight")
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
data = np.concatenate(
(qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,))),
axis=0
)
print("re-format attention.linear_qkv.bias")
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
if not has_lm_head and name == "word_embeddings.weight":
gguf_writer.add_tensor("output.weight", data)
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@ -78,7 +78,7 @@ print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f: with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f) hparams = json.load(f)
if hparams["architectures"][0] != "FalconForCausalLM": if hparams["architectures"][0] not in ("RWForCausalLM", "FalconForCausalLM"):
print("Model architecture not supported: " + hparams["architectures"][0]) print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1) sys.exit(1)
@ -97,7 +97,17 @@ gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata") print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"] block_count = hparams.get("num_hidden_layers")
if block_count is None:
block_count = hparams["n_layer"] # old name
n_head = hparams.get("num_attention_heads")
if n_head is None:
n_head = hparams["n_head"] # old name
n_head_kv = hparams.get("num_kv_heads")
if n_head_kv is None:
n_head_kv = hparams.get("n_head_kv", 1) # old name
gguf_writer.add_name("Falcon") gguf_writer.add_name("Falcon")
gguf_writer.add_context_length(2048) # not in config.json gguf_writer.add_context_length(2048) # not in config.json
@ -105,11 +115,8 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
gguf_writer.add_embedding_length(hparams["hidden_size"]) gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"]) gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
gguf_writer.add_block_count(block_count) gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["num_attention_heads"]) gguf_writer.add_head_count(n_head)
if "num_kv_heads" in hparams: gguf_writer.add_head_count_kv(n_head_kv)
gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
else:
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype) gguf_writer.add_file_type(ftype)
@ -145,17 +152,13 @@ gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores) gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer) special_vocab.add_to_gguf(gguf_writer)
# TENSORS # TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count) tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["num_attention_heads"]
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
head_dim = hparams["hidden_size"] // n_head head_dim = hparams["hidden_size"] // n_head
# tensor info # tensor info

View File

@ -123,18 +123,27 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer) special_vocab.add_to_gguf(gguf_writer)
# TENSORS # TENSORS

View File

@ -388,7 +388,9 @@ def handle_metadata(cfg, hp):
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype ) cfg.vocabtype )
# FIXME: Respect cfg.vocab_dir? # FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir) svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
load_merges = cfg.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
convert.check_vocab_size(params, vocab) convert.check_vocab_size(params, vocab)
return (params, vocab, svocab) return (params, vocab, svocab)

227
convert-mpt-hf-to-gguf.py Executable file
View File

@ -0,0 +1,227 @@
#!/usr/bin/env python3
# HF mpt--> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "MPTForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.MPT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layers"]
gguf_writer.add_name(dir_model.name)
gguf_writer.add_context_length(hparams["max_seq_len"])
gguf_writer.add_embedding_length(hparams["d_model"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
gguf_writer.add_head_count(hparams["n_heads"])
if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
gguf_writer.add_head_count_kv(kv_n_heads)
gguf_writer.add_layer_norm_eps(1e-05)
if hparams["attn_config"]["clip_qkv"] is not None:
gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but
# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to
# accomodate some "reserved" tokens; this is causing problems down the line in
# llama.cpp, so we pad the vocab with dummy tokens:
vocab_size = hparams["vocab_size"]
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Cannot map tensor '" + name + "'")
continue # for the sake of compatibility with some old published models, don't quit
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
# note: MPT output is tied to (same as) wte in original model;
# for easier implementation in llama.cpp it's duplicated in GGUF, though :/
if new_name == "token_embd.weight":
gguf_writer.add_tensor("output.weight", data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@ -139,18 +139,27 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer) special_vocab.add_to_gguf(gguf_writer)
# TENSORS # TENSORS

View File

@ -111,18 +111,26 @@ tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size assert max(tokenizer.vocab.values()) < vocab_size
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer) special_vocab.add_to_gguf(gguf_writer)
# TENSORS # TENSORS

View File

@ -369,7 +369,7 @@ class SentencePieceVocab:
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values()) actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids: if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") raise Exception(f"Expected added token IDs to be sequential and start at {vocab_size}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items] self.added_tokens_list = [text for (text, idx) in items]
@ -803,8 +803,8 @@ def check_vocab_size(params: Params, vocab: Vocab) -> None:
class OutputFile: class OutputFile:
def __init__(self, fname_out: Path) -> None: def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_arch(self, params: Params) -> None: def add_meta_arch(self, params: Params) -> None:
name = "LLaMA" name = "LLaMA"
@ -875,10 +875,10 @@ class OutputFile:
self.gguf.close() self.gguf.close()
@staticmethod @staticmethod
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab) -> None: def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab) check_vocab_size(params, vocab)
of = OutputFile(fname_out) of = OutputFile(fname_out, endianess=endianess)
# meta data # meta data
of.add_meta_arch(params) of.add_meta_arch(params)
@ -903,10 +903,10 @@ class OutputFile:
return dt.quantize(arr) return dt.quantize(arr)
@staticmethod @staticmethod
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None: def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess=gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab) check_vocab_size(params, vocab)
of = OutputFile(fname_out) of = OutputFile(fname_out, endianess=endianess)
# meta data # meta data
of.add_meta_arch(params) of.add_meta_arch(params)
@ -1123,8 +1123,9 @@ def main(args_in: list[str] | None = None) -> None:
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm") parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY) parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
args = parser.parse_args(args_in) parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
args = parser.parse_args(args_in)
if args.dump_single: if args.dump_single:
model_plus = lazy_load_file(args.model) model_plus = lazy_load_file(args.model)
do_dump_model(model_plus) do_dump_model(model_plus)
@ -1138,6 +1139,9 @@ def main(args_in: list[str] | None = None) -> None:
if args.dump: if args.dump:
do_dump_model(model_plus) do_dump_model(model_plus)
return return
endianess = gguf.GGUFEndian.LITTLE
if args.bigendian:
endianess = gguf.GGUFEndian.BIG
params = Params.load(model_plus) params = Params.load(model_plus)
if params.n_ctx == -1: if params.n_ctx == -1:
@ -1159,10 +1163,13 @@ def main(args_in: list[str] | None = None) -> None:
vocab: Vocab vocab: Vocab
if args.vocab_only: if args.vocab_only:
assert args.outfile, "need --outfile if using --vocab-only" if not args.outfile:
raise ValueError("need --outfile if using --vocab-only")
# FIXME: Try to respect vocab_dir somehow? # FIXME: Try to respect vocab_dir somehow?
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype) vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe') special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
load_merges = args.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
outfile = args.outfile outfile = args.outfile
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab) OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
print(f"Wrote {outfile}") print(f"Wrote {outfile}")
@ -1174,7 +1181,9 @@ def main(args_in: list[str] | None = None) -> None:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir, args.vocabtype) vocab = load_vocab(vocab_dir, args.vocabtype)
# FIXME: Try to respect vocab_dir somehow? # FIXME: Try to respect vocab_dir somehow?
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe') special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
load_merges = args.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
model = model_plus.model model = model_plus.model
model = convert_model_names(model, params) model = convert_model_names(model, params)
@ -1185,7 +1194,7 @@ def main(args_in: list[str] | None = None) -> None:
params.ftype = ftype params.ftype = ftype
print(f"Writing {outfile}, format {ftype}") print(f"Writing {outfile}, format {ftype}")
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency) OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency, endianess=endianess)
print(f"Wrote {outfile}") print(f"Wrote {outfile}")

View File

@ -49,7 +49,7 @@ According to the BLIS documentation, we could set the following
environment variables to modify the behavior of openmp: environment variables to modify the behavior of openmp:
```bash ```bash
export GOMP_GPU_AFFINITY="0-19" export GOMP_CPU_AFFINITY="0-19"
export BLIS_NUM_THREADS=14 export BLIS_NUM_THREADS=14
``` ```

View File

@ -12,24 +12,26 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN) if (EMSCRIPTEN)
else() else()
add_subdirectory(baby-llama)
add_subdirectory(batched)
add_subdirectory(batched-bench)
add_subdirectory(beam-search)
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(finetune)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)
add_subdirectory(main) add_subdirectory(main)
add_subdirectory(parallel)
add_subdirectory(perplexity)
add_subdirectory(quantize) add_subdirectory(quantize)
add_subdirectory(quantize-stats) add_subdirectory(quantize-stats)
add_subdirectory(perplexity)
add_subdirectory(embedding)
add_subdirectory(save-load-state) add_subdirectory(save-load-state)
add_subdirectory(benchmark)
add_subdirectory(baby-llama)
add_subdirectory(train-text-from-scratch)
add_subdirectory(finetune)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(simple) add_subdirectory(simple)
add_subdirectory(batched)
add_subdirectory(speculative) add_subdirectory(speculative)
add_subdirectory(parallel) add_subdirectory(train-text-from-scratch)
add_subdirectory(embd-input)
add_subdirectory(llama-bench)
add_subdirectory(beam-search)
if (LLAMA_METAL) if (LLAMA_METAL)
add_subdirectory(metal) add_subdirectory(metal)
endif() endif()

View File

@ -0,0 +1,5 @@
set(TARGET batched-bench)
add_executable(${TARGET} batched-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -0,0 +1,51 @@
# llama.cpp/example/batched-bench
Benchmark the batched decoding performance of `llama.cpp`
## Usage
There are 2 modes of operation:
- `prompt not shared` - each batch has a separate prompt of size `PP` (i.e. `N_KV = B*(PP + TG)`)
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
```bash
./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99
# custom set of batches
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32
```
## Sample results
- `PP` - prompt tokens per batch
- `TG` - generated tokens per batch
- `B` - number of batches
- `N_KV` - required KV cache size
- `T_PP` - prompt processing time (i.e. time to first token)
- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`)
- `T_TG` - time to generate all batches
- `S_TG` - text generation speed (`(B*TG)/T_TG`)
- `T` - total time
- `S` - total speed (i.e. all tokens / total time)
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 128 | 128 | 1 | 256 | 0.108 | 1186.64 | 3.079 | 41.57 | 3.187 | 80.32 |
| 128 | 128 | 2 | 512 | 0.198 | 1295.19 | 5.029 | 50.90 | 5.227 | 97.95 |
| 128 | 128 | 4 | 1024 | 0.373 | 1373.96 | 6.878 | 74.44 | 7.251 | 141.23 |
| 128 | 128 | 8 | 2048 | 0.751 | 1363.27 | 7.344 | 139.43 | 8.095 | 252.99 |
| 128 | 128 | 16 | 4096 | 1.570 | 1304.68 | 8.455 | 242.23 | 10.024 | 408.60 |
| 128 | 128 | 32 | 8192 | 3.408 | 1201.73 | 8.801 | 465.40 | 12.209 | 670.96 |
| 128 | 256 | 1 | 384 | 0.107 | 1196.70 | 6.329 | 40.45 | 6.436 | 59.67 |
| 128 | 256 | 2 | 768 | 0.194 | 1317.45 | 10.239 | 50.00 | 10.433 | 73.61 |
| 128 | 256 | 4 | 1536 | 0.366 | 1399.03 | 13.960 | 73.35 | 14.326 | 107.22 |
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 |
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 |
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 |

View File

@ -0,0 +1,243 @@
#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
// mutates the input string
static std::vector<int> parse_list(char * p) {
std::vector<int> ret;
char * q = p;
while (*p) {
if (*p == ',') {
*p = '\0';
ret.push_back(std::atoi(q));
q = p + 1;
}
++p;
}
ret.push_back(std::atoi(q));
return ret;
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
}
int n_kv_max = 2048;
int is_pp_shared = 0;
int n_gpu_layers = 0;
int mmq = 0;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
std::vector<int> n_tg = { 128, 256, };
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_kv_max = std::atoi(argv[2]);
}
if (argc >= 4) {
is_pp_shared = std::atoi(argv[3]);
}
if (argc >= 5) {
n_gpu_layers = std::atoi(argv[4]);
}
if (argc >= 6) {
mmq = std::atoi(argv[5]);
}
if (argc >= 7) {
n_pp = parse_list(argv[6]);
}
if (argc >= 8) {
n_tg = parse_list(argv[7]);
}
if (argc >= 9) {
n_pl = parse_list(argv[8]);
}
// init LLM
llama_backend_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = n_gpu_layers;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = 512;
ctx_params.mul_mat_q = mmq;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
// decode in batches of ctx_params.n_batch tokens
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
}
return true;
};
// warm up
{
for (int i = 0; i < 16; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
}
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
const int pp = n_pp[i_pp];
const int tg = n_tg[i_tg];
const int pl = n_pl[i_pl];
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
if (n_ctx_req > n_kv_max) {
continue;
}
llama_batch_clear(batch);
const int n_tokens = is_pp_shared ? pp : pl*pp;
for (int i = 0; i < n_tokens; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
}
batch.logits[batch.n_tokens - 1] = true;
const auto t_pp_start = ggml_time_us();
llama_kv_cache_tokens_rm(ctx, -1, -1);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
}
}
const auto t_pp_end = ggml_time_us();
const auto t_tg_start = ggml_time_us();
for (int i = 0; i < tg; ++i) {
llama_batch_clear(batch);
for (int j = 0; j < pl; ++j) {
llama_batch_add(batch, 0, pp + i, { j }, true);
}
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
}
const auto t_tg_end = ggml_time_us();
const int32_t n_kv = n_ctx_req;
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
const float t = t_pp + t_tg;
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
const float speed_tg = pl*tg / t_tg;
const float speed = n_kv / t;
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
}
}
}
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

9
examples/batched.swift/.gitignore vendored Normal file
View File

@ -0,0 +1,9 @@
.DS_Store
/.build
/Packages
xcuserdata/
DerivedData/
.swiftpm/configuration/registries.json
.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
.netrc
batched_swift

View File

@ -0,0 +1,6 @@
.PHONY: build
build:
xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
rm -f ./batched_swift
ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift

View File

@ -0,0 +1,22 @@
// swift-tools-version: 5.5
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "batched_swift",
platforms: [.macOS(.v12)],
dependencies: [
.package(name: "llama", path: "../../"),
],
targets: [
// Targets are the basic building blocks of a package, defining a module or a test suite.
// Targets can depend on other targets in this package and products from dependencies.
.executableTarget(
name: "batched_swift",
dependencies: ["llama"],
path: "Sources",
linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
),
]
)

View File

@ -0,0 +1,4 @@
This is a swift clone of `examples/batched`.
$ `make`
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`

View File

@ -0,0 +1,263 @@
import Foundation
import llama
let arguments = CommandLine.arguments
// Check that we have at least one argument (the model path)
guard arguments.count > 1 else {
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
exit(1)
}
let modelPath: String = arguments[1]
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
// total length of the sequences including the prompt
let n_len: Int = 32
// init LLM
llama_backend_init(false)
defer {
llama_backend_free()
}
let model_params = llama_model_default_params()
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
print("Failed to load model")
exit(1)
}
defer {
llama_free_model(model)
}
var tokens = tokenize(text: prompt, add_bos: true)
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
var context_params = llama_context_default_params()
context_params.seed = 1234
context_params.n_ctx = n_kv_req
context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
context_params.n_threads_batch = 8
let context = llama_new_context_with_model(model, context_params)
guard context != nil else {
print("Failed to initialize context")
exit(1)
}
defer {
llama_free(context)
}
let n_ctx = llama_n_ctx(context)
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
if n_kv_req > n_ctx {
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
exit(1)
}
var buffer: [CChar] = []
for id: llama_token in tokens {
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
}
print("\n")
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
defer {
llama_batch_free(batch)
}
// evaluate the initial prompt
batch.n_tokens = Int32(tokens.count)
for (i, token) in tokens.enumerated() {
batch.token[i] = token
batch.pos[i] = Int32(i)
batch.n_seq_id[i] = 1
// batch.seq_id[i][0] = 0
// TODO: is this the proper way to do this?
if let seq_id = batch.seq_id[i] {
seq_id[0] = 0
}
batch.logits[i] = 0
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[Int(batch.n_tokens) - 1] = 1
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
exit(1)
}
for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {
print("generating \(n_parallel) sequences ...\n")
}
var streams: [String] = .init(repeating: "", count: n_parallel)
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
var n_cur = batch.n_tokens
var n_decode = 0
let t_main_start = ggml_time_us()
while n_cur <= n_len {
// prepare the next batch
batch.n_tokens = 0
// sample the next token for each parallel sequence / stream
for i in 0 ..< n_parallel {
if i_batch[i] < 0 {
// the stream has already finished
continue
}
var n_vocab = llama_n_vocab(model)
var logits = llama_get_logits_ith(context, i_batch[i])
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
for token_id in 0 ..< n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
var candidates_p: llama_token_data_array = .init(
data: &candidates,
size: candidates.count,
sorted: false
)
let top_k: Int32 = 40
let top_p: Float = 0.9
let temp: Float = 0.4
llama_sample_top_k(context, &candidates_p, top_k, 1)
llama_sample_top_p(context, &candidates_p, top_p, 1)
llama_sample_temp(context, &candidates_p, temp)
let new_token_id = llama_sample_token(context, &candidates_p)
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished
if new_token_id == llama_token_eos(context) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {
print("stream \(i) finished at n_cur = \(n_cur)")
}
continue
}
let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
// if there is only one stream, we print immediately to stdout
if n_parallel == 1 {
print(nextStringPiece, terminator: "")
}
streams[i] += nextStringPiece
// push this new token for next evaluation
batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.n_seq_id[Int(batch.n_tokens)] = 1
if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
seq_id[0] = Int32(i)
}
batch.logits[Int(batch.n_tokens)] = 1
i_batch[i] = batch.n_tokens
batch.n_tokens += 1
n_decode += 1
}
// all streams are finished
if batch.n_tokens == 0 {
break
}
n_cur += 1
// evaluate the current batch with the transformer model
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
exit(1)
}
}
if n_parallel > 1 {
print("\n")
for (i, stream) in streams.enumerated() {
print("sequence \(i):\n\n\(prompt)\(stream)\n")
}
}
let t_main_end = ggml_time_us()
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
llama_print_timings(context)
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let n_tokens = text.count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
var swiftTokens: [llama_token] = []
for i in 0 ..< tokenCount {
swiftTokens.append(tokens[Int(i)])
}
tokens.deallocate()
return swiftTokens
}
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
if nTokens < 0 {
if result.count >= -Int(nTokens) {
result.removeLast(-Int(nTokens))
} else {
result.removeAll()
}
let check = llama_token_to_piece(
model,
token,
&result,
Int32(result.count)
)
assert(check == nTokens)
} else {
result.removeLast(result.count - Int(nTokens))
}
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
return utfString
} else {
buffer.append(contentsOf: result)
let data = Data(buffer.map { UInt8(bitPattern: $0) })
if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
buffer = []
}
guard let bufferString = String(data: data, encoding: .utf8) else {
return nil
}
buffer = []
return bufferString
}
return nil
}

View File

@ -11,12 +11,16 @@ int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
if (argc == 1 || argv[1][0] == '-') { if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]); printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN]\n" , argv[0]);
return 1 ; return 1 ;
} }
// number of parallel batches
int n_parallel = 1; int n_parallel = 1;
// total length of the sequences including the prompt
int n_len = 32;
if (argc >= 2) { if (argc >= 2) {
params.model = argv[1]; params.model = argv[1];
} }
@ -29,13 +33,14 @@ int main(int argc, char ** argv) {
n_parallel = std::atoi(argv[3]); n_parallel = std::atoi(argv[3]);
} }
if (argc >= 5) {
n_len = std::atoi(argv[4]);
}
if (params.prompt.empty()) { if (params.prompt.empty()) {
params.prompt = "Hello my name is"; params.prompt = "Hello my name is";
} }
// total length of the sequences including the prompt
const int n_len = 32;
// init LLM // init LLM
llama_backend_init(params.numa); llama_backend_init(params.numa);
@ -66,7 +71,7 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234; ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req; ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel); ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_threads = params.n_threads; ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context * ctx = llama_new_context_with_model(model, ctx_params); llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@ -97,20 +102,15 @@ int main(int argc, char ** argv) {
fflush(stderr); fflush(stderr);
// create a llama_batch with size 512 // create a llama_batch
// we use this object to submit token data for decoding // we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0);
// evaluate the initial prompt // evaluate the initial prompt
batch.n_tokens = tokens_list.size(); for (size_t i = 0; i < tokens_list.size(); ++i) {
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
for (int32_t i = 0; i < batch.n_tokens; i++) {
batch.token[i] = tokens_list[i];
batch.pos[i] = i;
batch.seq_id[i] = 0;
batch.logits[i] = false;
} }
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
// llama_decode will output logits only for the last token of the prompt // llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true; batch.logits[batch.n_tokens - 1] = true;
@ -146,7 +146,7 @@ int main(int argc, char ** argv) {
while (n_cur <= n_len) { while (n_cur <= n_len) {
// prepare the next batch // prepare the next batch
batch.n_tokens = 0; llama_batch_clear(batch);
// sample the next token for each parallel sequence / stream // sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) { for (int32_t i = 0; i < n_parallel; ++i) {
@ -180,7 +180,7 @@ int main(int argc, char ** argv) {
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished // is it an end of stream? -> mark the stream as finished
if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
i_batch[i] = -1; i_batch[i] = -1;
LOG_TEE("\n"); LOG_TEE("\n");
if (n_parallel > 1) { if (n_parallel > 1) {
@ -198,15 +198,10 @@ int main(int argc, char ** argv) {
streams[i] += llama_token_to_piece(ctx, new_token_id); streams[i] += llama_token_to_piece(ctx, new_token_id);
// push this new token for next evaluation
batch.token [batch.n_tokens] = new_token_id;
batch.pos [batch.n_tokens] = n_cur;
batch.seq_id[batch.n_tokens] = i;
batch.logits[batch.n_tokens] = true;
i_batch[i] = batch.n_tokens; i_batch[i] = batch.n_tokens;
batch.n_tokens += 1; // push this new token for next evaluation
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
n_decode += 1; n_decode += 1;
} }

View File

@ -47,7 +47,7 @@ struct beam_search_callback_data {
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same. // In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc. // For example, eob can be flagged due to maximum token length, stop words, etc.
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) { static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx); return n_tokens && tokens[n_tokens-1] == llama_token_eos(llama_get_model(callback_data.ctx));
} }
// Function matching type llama_beam_search_callback_fn_t. // Function matching type llama_beam_search_callback_fn_t.

View File

@ -536,7 +536,7 @@ static bool is_ggml_file(const char * filename) {
if (file.size < 4) { if (file.size < 4) {
return false; return false;
} }
uint32_t magic = file.read_u32(); std::string magic = file.read_string(4);
return magic == GGUF_MAGIC; return magic == GGUF_MAGIC;
} }

View File

@ -1,4 +0,0 @@
PandaGPT
MiniGPT-4
*.pth

View File

@ -1,17 +0,0 @@
set(TARGET embdinput)
add_library(${TARGET} embd-input-lib.cpp embd-input.h)
install(TARGETS ${TARGET} LIBRARY)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()
set(TARGET embd-input-test)
add_executable(${TARGET} embd-input-test.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View File

@ -1,63 +0,0 @@
### Examples for input embedding directly
## Requirement
build `libembdinput.so`
run the following comman in main dir (../../).
```
make
```
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
2. Convert it to ggml format.
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
```
import torch
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
pth_path = "./examples/embd-input/llava_projection.pth"
dic = torch.load(bin_path)
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
torch.save({k: dic[k] for k in used_key}, pth_path)
```
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
The `adapter_config.json` is
```
{
"peft_type": "LORA",
"fan_in_fan_out": false,
"bias": null,
"modules_to_save": null,
"r": 32,
"lora_alpha": 32,
"lora_dropout": 0.1,
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
}
```
2. Papare the `vicuna` v0 model.
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
4. Clone the PandaGPT source.
```
git clone https://github.com/yxuansu/PandaGPT
```
5. Install the requirement of PandaGPT.
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
2. Clone the MiniGPT-4 source.
```
git clone https://github.com/Vision-CAIR/MiniGPT-4/
```
3. Install the requirement of PandaGPT.
4. Papare the `vicuna` v0 model.
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.

View File

@ -1,220 +0,0 @@
#include "build-info.h"
#include "common.h"
#include "embd-input.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
static llama_context ** g_ctx;
extern "C" {
struct MyModel* create_mymodel(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return nullptr;
}
print_build_info();
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = uint32_t(time(NULL));
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;
g_ctx = &ctx;
// load the model and apply lora adapter, if any
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return nullptr;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
struct MyModel * ret = new MyModel();
ret->ctx = ctx;
ret->params = params;
ret->n_past = 0;
// printf("ctx: %d\n", ret->ctx);
return ret;
}
void free_mymodel(struct MyModel * mymodel) {
llama_context * ctx = mymodel->ctx;
llama_print_timings(ctx);
llama_free(ctx);
delete mymodel;
}
bool eval_float(void * model, float * input, int N){
MyModel * mymodel = (MyModel*)model;
llama_context * ctx = mymodel->ctx;
gpt_params params = mymodel->params;
int n_emb = llama_n_embd(llama_get_model(ctx));
int n_past = mymodel->n_past;
int n_batch = N; // params.n_batch;
for (int i = 0; i < (int) N; i += n_batch) {
int n_eval = (int) N - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
n_past += n_eval;
}
mymodel->n_past = n_past;
return true;
}
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
MyModel * mymodel = (MyModel* )model;
llama_context * ctx;
ctx = mymodel->ctx;
gpt_params params = mymodel->params;
int n_past = mymodel->n_past;
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
n_past += n_eval;
}
mymodel->n_past = n_past;
return true;
}
bool eval_id(struct MyModel* mymodel, int id) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(mymodel, tokens);
}
bool eval_string(struct MyModel * mymodel,const char* str){
llama_context * ctx = mymodel->ctx;
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
eval_tokens(mymodel, embd_inp);
return true;
}
llama_token sampling_id(struct MyModel* mymodel) {
llama_context* ctx = mymodel->ctx;
gpt_params params = mymodel->params;
// int n_ctx = llama_n_ctx(ctx);
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
// const float repeat_penalty = params.repeat_penalty;
// const float alpha_presence = params.presence_penalty;
// const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
// const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// TODO: Apply penalties
// float nl_logit = logits[llama_token_nl(ctx)];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, repeat_penalty);
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) {
// logits[llama_token_nl(ctx)] = nl_logit;
// }
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temp(ctx, &candidates_p, temp);
id = llama_sample_token(ctx, &candidates_p);
}
}
}
return id;
}
const char * sampling(struct MyModel * mymodel) {
llama_context * ctx = mymodel->ctx;
int id = sampling_id(mymodel);
static std::string ret;
if (id == llama_token_eos(ctx)) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx, id);
}
eval_id(mymodel, id);
return ret.c_str();
}
}

View File

@ -1,35 +0,0 @@
#include "embd-input.h"
#include <stdlib.h>
#include <random>
#include <string.h>
int main(int argc, char** argv) {
auto mymodel = create_mymodel(argc, argv);
int N = 10;
int max_tgt_len = 500;
int n_embd = llama_n_embd(llama_get_model(mymodel->ctx));
// add random float embd to test evaluation
float * data = new float[N*n_embd];
std::default_random_engine e;
std::uniform_real_distribution<float> u(0,1);
for (int i=0;i<N*n_embd;i++) {
data[i] = u(e);
}
eval_string(mymodel, "user: what is the color of the flag of UN?");
eval_float(mymodel, data, N);
eval_string(mymodel, "assistant:");
eval_string(mymodel, mymodel->params.prompt.c_str());
const char* tmp;
for (int i=0; i<max_tgt_len; i++) {
tmp = sampling(mymodel);
if (strcmp(tmp, "</s>")==0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
free_mymodel(mymodel);
return 0;
}

View File

@ -1,27 +0,0 @@
#ifndef _EMBD_INPUT_H_
#define _EMBD_INPUT_H_ 1
#include "common.h"
#include "llama.h"
extern "C" {
typedef struct MyModel {
llama_context* ctx;
gpt_params params;
int n_past = 0;
} MyModel;
struct MyModel* create_mymodel(int argc, char ** argv);
bool eval_float(void* model, float* input, int N);
bool eval_tokens(void* model, std::vector<llama_token> tokens);
bool eval_id(struct MyModel* mymodel, int id);
bool eval_string(struct MyModel* mymodel, const char* str);
const char * sampling(struct MyModel* mymodel);
llama_token sampling_id(struct MyModel* mymodel);
void free_mymodel(struct MyModel* mymodel);
}
#endif

View File

@ -1,72 +0,0 @@
#!/usr/bin/env python3
import ctypes
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
import numpy as np
import os
libc = cdll.LoadLibrary("./libembdinput.so")
libc.sampling.restype=c_char_p
libc.create_mymodel.restype=c_void_p
libc.eval_string.argtypes=[c_void_p, c_char_p]
libc.sampling.argtypes=[c_void_p]
libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int]
class MyModel:
def __init__(self, args):
argc = len(args)
c_str = [c_char_p(i.encode()) for i in args]
args_c = (c_char_p * argc)(*c_str)
self.model = c_void_p(libc.create_mymodel(argc, args_c))
self.max_tgt_len = 512
self.print_string_eval = True
def __del__(self):
libc.free_mymodel(self.model)
def eval_float(self, x):
libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1])
def eval_string(self, x):
libc.eval_string(self.model, x.encode()) # c_char_p(x.encode()))
if self.print_string_eval:
print(x)
def eval_token(self, x):
libc.eval_id(self.model, x)
def sampling(self):
s = libc.sampling(self.model)
return s
def stream_generate(self, end="</s>"):
ret = b""
end = end.encode()
for _ in range(self.max_tgt_len):
tmp = self.sampling()
ret += tmp
yield tmp
if ret.endswith(end):
break
def generate_with_print(self, end="</s>"):
ret = b""
for i in self.stream_generate(end=end):
ret += i
print(i.decode(errors="replace"), end="", flush=True)
print("")
return ret.decode(errors="replace")
def generate(self, end="</s>"):
text = b"".join(self.stream_generate(end=end))
return text.decode(errors="replace")
if __name__ == "__main__":
model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"])
model.eval_string("""user: what is the color of the flag of UN?""")
x = np.random.random((5120,10))# , dtype=np.float32)
model.eval_float(x)
model.eval_string("""assistant:""")
for i in model.generate():
print(i.decode(errors="replace"), end="", flush=True)

View File

@ -1,71 +0,0 @@
#!/usr/bin/env python3
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))
from embd_input import MyModel
import numpy as np
from torch import nn
import torch
from transformers import CLIPVisionModel, CLIPImageProcessor
from PIL import Image
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
vision_tower = "openai/clip-vit-large-patch14"
select_hidden_state_layer = -2
# (vision_config.image_size // vision_config.patch_size) ** 2
image_token_len = (224//14)**2
class Llava:
def __init__(self, args):
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
self.mm_projector = nn.Linear(1024, 5120)
self.model = MyModel(["main", *args])
def load_projection(self, path):
state = torch.load(path)
self.mm_projector.load_state_dict({
"weight": state["model.mm_projector.weight"],
"bias": state["model.mm_projector.bias"]})
def chat(self, question):
self.model.eval_string("user: ")
self.model.eval_string(question)
self.model.eval_string("\nassistant: ")
return self.model.generate_with_print()
def chat_with_image(self, image, question):
with torch.no_grad():
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
image_feature = select_hidden_state[:, 1:]
embd_image = self.mm_projector(image_feature)
embd_image = embd_image.cpu().numpy()[0]
self.model.eval_string("user: ")
self.model.eval_token(32003-2) # im_start
self.model.eval_float(embd_image.T)
for i in range(image_token_len-embd_image.shape[0]):
self.model.eval_token(32003-3) # im_patch
self.model.eval_token(32003-1) # im_end
self.model.eval_string(question)
self.model.eval_string("\nassistant: ")
return self.model.generate_with_print()
if __name__=="__main__":
# model form liuhaotian/LLaVA-13b-delta-v1-1
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
# Also here can use pytorch_model-00003-of-00003.bin directly.
a.load_projection(os.path.join(
os.path.dirname(__file__) ,
"llava_projection.pth"))
respose = a.chat_with_image(
Image.open("./media/llama1-logo.png").convert('RGB'),
"what is the text in the picture?")
respose
a.chat("what is the color of it?")

View File

@ -1,129 +0,0 @@
#!/usr/bin/env python3
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))
from embd_input import MyModel
import numpy as np
from torch import nn
import torch
from PIL import Image
minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
sys.path.insert(0, minigpt4_path)
from minigpt4.models.blip2 import Blip2Base
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
class MiniGPT4(Blip2Base):
"""
MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
"""
def __init__(self,
args,
vit_model="eva_clip_g",
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp32",
freeze_vit=True,
freeze_qformer=True,
num_query_token=32,
llama_model="",
prompt_path="",
prompt_template="",
max_txt_len=32,
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0
):
super().__init__()
self.img_size = img_size
self.low_resource = low_resource
self.preprocessor = Blip2ImageEvalProcessor(img_size)
print('Loading VIT')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
print('Loading VIT Done')
print('Loading Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.load_from_pretrained(url_or_filename=q_former_model)
print('Loading Q-Former Done')
self.llama_proj = nn.Linear(
self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.end_sym = end_sym
self.model = MyModel(["main", *args])
# system prompt
self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
"You will be able to see the image once I provide it to you. Please answer my questions."
"###")
def encode_img(self, image):
image = self.preprocessor(image)
image = image.unsqueeze(0)
device = image.device
if self.low_resource:
self.vit_to_cpu()
image = image.to("cpu")
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama
def load_projection(self, path):
state = torch.load(path)["model"]
self.llama_proj.load_state_dict({
"weight": state["llama_proj.weight"],
"bias": state["llama_proj.bias"]})
def chat(self, question):
self.model.eval_string("Human: ")
self.model.eval_string(question)
self.model.eval_string("\n### Assistant:")
return self.model.generate_with_print(end="###")
def chat_with_image(self, image, question):
with torch.no_grad():
embd_image = self.encode_img(image)
embd_image = embd_image.cpu().numpy()[0]
self.model.eval_string("Human: <Img>")
self.model.eval_float(embd_image.T)
self.model.eval_string("</Img> ")
self.model.eval_string(question)
self.model.eval_string("\n### Assistant:")
return self.model.generate_with_print(end="###")
if __name__=="__main__":
a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
a.load_projection(os.path.join(
os.path.dirname(__file__) ,
"pretrained_minigpt4.pth"))
respose = a.chat_with_image(
Image.open("./media/llama1-logo.png").convert('RGB'),
"what is the text in the picture?")
a.chat("what is the color of it?")

View File

@ -1,99 +0,0 @@
#!/usr/bin/env python3
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))
from embd_input import MyModel
import numpy as np
from torch import nn
import torch
# use PandaGPT path
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT")
imagebind_ckpt_path = "./models/panda_gpt/"
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model"))
from ImageBind.models import imagebind_model
from ImageBind import data
ModalityType = imagebind_model.ModalityType
max_tgt_len = 400
class PandaGPT:
def __init__(self, args):
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
self.visual_encoder.eval()
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120)
self.max_tgt_len = max_tgt_len
self.model = MyModel(["main", *args])
self.generated_text = ""
self.device = "cpu"
def load_projection(self, path):
state = torch.load(path, map_location="cpu")
self.llama_proj.load_state_dict({
"weight": state["llama_proj.weight"],
"bias": state["llama_proj.bias"]})
def eval_inputs(self, inputs):
self.model.eval_string("<Img>")
embds = self.extract_multimoal_feature(inputs)
for i in embds:
self.model.eval_float(i.T)
self.model.eval_string("</Img> ")
def chat(self, question):
return self.chat_with_image(None, question)
def chat_with_image(self, inputs, question):
if self.generated_text == "":
self.model.eval_string("###")
self.model.eval_string(" Human: ")
if inputs:
self.eval_inputs(inputs)
self.model.eval_string(question)
self.model.eval_string("\n### Assistant:")
ret = self.model.generate_with_print(end="###")
self.generated_text += ret
return ret
def extract_multimoal_feature(self, inputs):
features = []
for key in ["image", "audio", "video", "thermal"]:
if key + "_paths" in inputs:
embeds = self.encode_data(key, inputs[key+"_paths"])
features.append(embeds)
return features
def encode_data(self, data_type, data_paths):
type_map = {
"image": ModalityType.VISION,
"audio": ModalityType.AUDIO,
"video": ModalityType.VISION,
"thermal": ModalityType.THERMAL,
}
load_map = {
"image": data.load_and_transform_vision_data,
"audio": data.load_and_transform_audio_data,
"video": data.load_and_transform_video_data,
"thermal": data.load_and_transform_thermal_data
}
load_function = load_map[data_type]
key = type_map[data_type]
inputs = {key: load_function(data_paths, self.device)}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
embeds = embeddings[key]
embeds = self.llama_proj(embeds).cpu().numpy()
return embeds
if __name__=="__main__":
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"])
a.load_projection("./models/panda_gpt/adapter_model.bin")
a.chat_with_image(
{"image_paths": ["./media/llama1-logo.png"]},
"what is the text in the picture? 'llama' or 'lambda'?")
a.chat("what is the color of it?")

View File

@ -529,13 +529,14 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
set_param_lora(lora); set_param_lora(lora);
// measure data size // measure data size
struct ggml_allocr * alloc = NULL; size_t size = 0;
alloc = ggml_allocr_new_measure(tensor_alignment); for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
alloc_lora(alloc, lora); size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
}
// allocate data // allocate data
lora->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); struct ggml_allocr * alloc = NULL;
ggml_allocr_free(alloc); lora->data.resize(size + tensor_alignment);
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment); alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
alloc_lora(alloc, lora); alloc_lora(alloc, lora);
ggml_allocr_free(alloc); ggml_allocr_free(alloc);
@ -1714,11 +1715,9 @@ int main(int argc, char ** argv) {
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
// measure required memory for input tensors // measure required memory for input tensors
alloc = ggml_allocr_new_measure(tensor_alignment); size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
ggml_allocr_alloc(alloc, tokens_input); GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
ggml_allocr_alloc(alloc, target_probs); tensor_alignment;
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
ggml_allocr_free(alloc);
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
// allocate input tensors // allocate input tensors

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -4,5 +4,5 @@ install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11) target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO) if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO) add_dependencies(${TARGET} BUILD_INFO)
endif() endif()

View File

@ -39,8 +39,8 @@ static gpt_params * g_params;
static std::vector<llama_token> * g_input_tokens; static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss; static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens; static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static bool is_interacting = false;
static void write_logfile( static void write_logfile(
const llama_context * ctx, const gpt_params & params, const llama_model * model, const llama_context * ctx, const gpt_params & params, const llama_model * model,
@ -104,6 +104,7 @@ static void sigint_handler(int signo) {
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
llama_sampling_params & sparams = params.sparams;
g_params = &params; g_params = &params;
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
@ -206,7 +207,7 @@ int main(int argc, char ** argv) {
// load the model and apply lora adapter, if any // load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__); LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (params.cfg_scale > 1.f) { if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params); struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams); ctx_guidance = llama_new_context_with_model(model, lparams);
} }
@ -233,23 +234,35 @@ int main(int argc, char ** argv) {
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
LOG("add_bos: %d\n", add_bos); LOG("add_bos: %d\n", add_bos);
bool suff_rm_leading_spc = params.escape;
if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos); std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos); std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx)); const int space_token = 29871;
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx)); if (suff_rm_leading_spc && inp_sfx[0] == space_token) {
inp_sfx.erase(inp_sfx.begin());
}
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
if (add_bos) {
inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model));
}
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
embd_inp = inp_pfx; embd_inp = inp_pfx;
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
embd_inp.push_back(llama_token_middle(ctx)); embd_inp.push_back(llama_token_middle(model));
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix)); LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix)); LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
// Should not run without any tokens // Should not run without any tokens
if (embd_inp.empty()) { if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(ctx)); embd_inp.push_back(llama_token_bos(model));
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
} }
// Tokenize negative prompt // Tokenize negative prompt
@ -257,13 +270,13 @@ int main(int argc, char ** argv) {
int guidance_offset = 0; int guidance_offset = 0;
int original_prompt_len = 0; int original_prompt_len = 0;
if (ctx_guidance) { if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt)); LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos); guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp)); LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos); std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp)); LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
original_prompt_len = original_inp.size(); original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len; guidance_offset = (int)guidance_inp.size() - original_prompt_len;
@ -281,8 +294,8 @@ int main(int argc, char ** argv) {
params.n_keep = (int)embd_inp.size(); params.n_keep = (int)embd_inp.size();
} }
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx)); LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx)); LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// enable interactive mode if interactive start is specified // enable interactive mode if interactive start is specified
@ -300,7 +313,7 @@ int main(int argc, char ** argv) {
if (ctx_guidance) { if (ctx_guidance) {
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) { for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
@ -345,39 +358,10 @@ int main(int argc, char ** argv) {
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str()); LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
} }
} }
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n"); LOG_TEE("\n\n");
struct llama_grammar * grammar = NULL;
grammar_parser::parse_state parsed_grammar;
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
return 1;
}
LOG_TEE("%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, parsed_grammar);
LOG_TEE("\n");
{
auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) {
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
}
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
}
// TODO: replace with ring-buffer
std::vector<llama_token> last_tokens(n_ctx);
std::fill(last_tokens.begin(), last_tokens.end(), 0);
LOG_TEE("\n##### Infill mode #####\n\n"); LOG_TEE("\n##### Infill mode #####\n\n");
if (params.infill) { if (params.infill) {
printf("\n************\n"); printf("\n************\n");
@ -420,10 +404,7 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd; std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance; std::vector<llama_token> embd_guidance;
const int n_vocab = llama_n_vocab(model); struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
while (n_remain != 0 || params.interactive) { while (n_remain != 0 || params.interactive) {
// predict // predict
@ -470,7 +451,7 @@ int main(int argc, char ** argv) {
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
} }
@ -498,7 +479,7 @@ int main(int argc, char ** argv) {
input_buf = embd_guidance.data(); input_buf = embd_guidance.data();
input_size = embd_guidance.size(); input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance)); LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
} else { } else {
input_buf = embd.data(); input_buf = embd.data();
input_size = embd.size(); input_size = embd.size();
@ -521,7 +502,7 @@ int main(int argc, char ** argv) {
n_eval = params.n_batch; n_eval = params.n_batch;
} }
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
LOG_TEE("%s : failed to eval\n", __func__); LOG_TEE("%s : failed to eval\n", __func__);
@ -540,12 +521,11 @@ int main(int argc, char ** argv) {
if ((int) embd_inp.size() <= n_consumed && !is_interacting) { if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates); const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
last_tokens.erase(last_tokens.begin()); llama_sampling_accept(ctx_sampling, ctx, id, true);
last_tokens.push_back(id);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens)); LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
embd.push_back(id); embd.push_back(id);
@ -561,8 +541,11 @@ int main(int argc, char ** argv) {
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) { while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]); embd.push_back(embd_inp[n_consumed]);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(embd_inp[n_consumed]); // push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
++n_consumed; ++n_consumed;
if ((int) embd.size() >= params.n_batch) { if ((int) embd.size() >= params.n_batch) {
break; break;
@ -594,10 +577,10 @@ int main(int argc, char ** argv) {
if ((int) embd_inp.size() <= n_consumed) { if ((int) embd_inp.size() <= n_consumed) {
// deal with eot token in infill mode // deal with eot token in infill mode
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){ if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
if(is_interacting && !params.interactive_first) { if(is_interacting && !params.interactive_first) {
// print an eot token // print an eot token
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str()); printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
} }
fflush(stdout); fflush(stdout);
printf("\n"); printf("\n");
@ -611,7 +594,7 @@ int main(int argc, char ** argv) {
buffer += line; buffer += line;
} while (another_line); } while (another_line);
// check if we got an empty line, if so we use the old input // check if we got an empty line, if so we use the old input
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) { if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_prefix = buffer; params.input_prefix = buffer;
} }
buffer.clear(); buffer.clear();
@ -621,20 +604,37 @@ int main(int argc, char ** argv) {
buffer += line; buffer += line;
} while (another_line); } while (another_line);
// check if we got an empty line // check if we got an empty line
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) { if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
params.input_suffix = buffer; params.input_suffix = buffer;
} }
buffer.clear(); buffer.clear();
// done taking input, reset color // done taking input, reset color
console::set_display(console::reset); console::set_display(console::reset);
if (params.escape) {
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
process_escapes(params.input_prefix);
process_escapes(params.input_suffix);
}
suff_rm_leading_spc = params.escape;
if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
// tokenize new prefix and suffix // tokenize new prefix and suffix
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos); std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos); std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx)); if (suff_rm_leading_spc && inp_sfx[0] == space_token) {
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx)); inp_sfx.erase(inp_sfx.begin());
}
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
if (add_bos) {
inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model));
}
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
embd_inp = inp_pfx; embd_inp = inp_pfx;
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
embd_inp.push_back(llama_token_middle(ctx)); embd_inp.push_back(llama_token_middle(model));
embd.clear(); embd.clear();
embd_guidance.clear(); embd_guidance.clear();
n_remain = params.n_predict; n_remain = params.n_predict;
@ -644,7 +644,7 @@ int main(int argc, char ** argv) {
is_interacting = false; is_interacting = false;
} }
// deal with end of text token in interactive mode // deal with end of text token in interactive mode
else if (last_tokens.back() == llama_token_eos(ctx)) { else if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
LOG("found EOS token\n"); LOG("found EOS token\n");
if (params.interactive) { if (params.interactive) {
@ -661,7 +661,7 @@ int main(int argc, char ** argv) {
if (params.input_prefix_bos) { if (params.input_prefix_bos) {
LOG("adding input prefix BOS token\n"); LOG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(ctx)); embd_inp.push_back(llama_token_bos(model));
} }
std::string buffer; std::string buffer;
@ -696,7 +696,7 @@ int main(int argc, char ** argv) {
const size_t original_size = embd_inp.size(); const size_t original_size = embd_inp.size();
const auto line_inp = ::llama_tokenize(ctx, buffer, false); const auto line_inp = ::llama_tokenize(ctx, buffer, false);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp)); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
@ -717,22 +717,14 @@ int main(int argc, char ** argv) {
if (n_past > 0) { if (n_past > 0) {
if (is_interacting) { if (is_interacting) {
// reset grammar state if we're restarting generation llama_sampling_reset(ctx_sampling);
if (grammar != NULL) {
llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root"));
}
} }
is_interacting = false; is_interacting = false;
} }
} }
// end of text token // end of text token
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !params.interactive) { if (!embd.empty() && embd.back() == llama_token_eos(model) && !params.interactive) {
break; break;
} }
@ -744,7 +736,7 @@ int main(int argc, char ** argv) {
} }
} }
if (!params.interactive && n_remain <= 0) { if (!params.interactive && n_remain <= 0) {
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str()); printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
fflush(stdout); fflush(stdout);
} }
@ -755,9 +747,7 @@ int main(int argc, char ** argv) {
llama_free(ctx); llama_free(ctx);
llama_free_model(model); llama_free_model(model);
if (grammar != NULL) { llama_sampling_free(ctx_sampling);
llama_grammar_free(grammar);
}
llama_backend_free(); llama_backend_free();
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS

View File

@ -933,7 +933,7 @@ struct sql_printer : public printer {
}; };
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) { static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx)); std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
int n_processed = 0; int n_processed = 0;
llama_set_n_threads(ctx, n_threads, n_threads); llama_set_n_threads(ctx, n_threads, n_threads);
@ -946,7 +946,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_bat
} }
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) { static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_token token = llama_token_bos(ctx); llama_token token = llama_token_bos(llama_get_model(ctx));
llama_set_n_threads(ctx, n_threads, n_threads); llama_set_n_threads(ctx, n_threads, n_threads);

View File

@ -0,0 +1,20 @@
set(TARGET clip)
add_library(${TARGET} clip.cpp clip.h)
install(TARGETS ${TARGET} LIBRARY)
target_link_libraries(${TARGET} PRIVATE common ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if (NOT MSVC)
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()
set(TARGET llava)
add_executable(${TARGET} llava.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

57
examples/llava/README.md Normal file
View File

@ -0,0 +1,57 @@
# LLaVA
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants.
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
models are available.
After API is confirmed, more models will be supported / uploaded.
## Usage
Build with cmake or run `make llava` to build it.
After building, run: `./llava` to see the usage. For example:
```sh
./llava -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
## Model conversion
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
```
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./convert.py ../llava-v1.5-7b
```
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
## TODO
- [ ] Support server mode.
- [ ] Support non-CPU backend for the image encoding part.
- [ ] Support different sampling methods.
- [ ] Support more model variants.

1064
examples/llava/clip.cpp Normal file

File diff suppressed because it is too large Load Diff

73
examples/llava/clip.h Normal file
View File

@ -0,0 +1,73 @@
#ifndef CLIP_H
#define CLIP_H
#include "ggml.h"
struct clip_ctx;
#ifdef __cplusplus
extern "C" {
#endif
struct clip_vision_hparams {
int32_t image_size;
int32_t patch_size;
int32_t hidden_size;
int32_t n_intermediate;
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
float eps;
};
struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
void clip_free(struct clip_ctx * ctx);
size_t clip_embd_nbytes(struct clip_ctx * ctx);
int clip_n_patches(struct clip_ctx * ctx);
int clip_n_mmproj_embd(struct clip_ctx * ctx);
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
uint8_t * data;
size_t size;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
float * data;
size_t size;
};
struct clip_image_u8_batch {
struct clip_image_u8 * data;
size_t size;
};
struct clip_image_f32_batch {
struct clip_image_f32 * data;
size_t size;
};
struct clip_image_u8 * make_clip_image_u8();
struct clip_image_f32 * make_clip_image_f32();
bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);
bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
float * vec);
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);
#ifdef __cplusplus
}
#endif
#endif // CLIP_H

View File

@ -0,0 +1,250 @@
import argparse
import os
import json
import torch
import numpy as np
from gguf import *
from transformers import CLIPModel, CLIPProcessor
TEXT = "clip.text"
VISION = "clip.vision"
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
if name in (
"logit_scale",
"text_model.embeddings.position_ids",
"vision_model.embeddings.position_ids",
):
return True
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
return True
if name.startswith("v") and not has_vision:
return True
if name.startswith("t") and not has_text:
return True
return False
def get_tensor_name(name: str) -> str:
if "projection" in name:
return name
if "mm_projector" in name:
return name.replace("model.mm_projector", "mm")
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py")
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
args = ap.parse_args()
if args.text_only and args.vision_only:
print("--text-only and --image-only arguments cannot be specified at the same time.")
exit(1)
if args.use_f32:
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
vocab = json.load(f)
tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f)
v_hparams = config["vision_config"]
t_hparams = config["text_config"]
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if args.use_f32:
ftype = 0
model = CLIPModel.from_pretrained(dir_model)
processor = CLIPProcessor.from_pretrained(dir_model)
fname_middle = None
has_text_encoder = True
has_vision_encoder = True
has_llava_projector = False
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
elif args.llava_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
else:
fname_middle = ""
output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
fout.add_bool("clip.has_llava_projector", has_llava_projector)
fout.add_file_type(ftype)
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
fout.add_name(model_name)
if args.text_only:
fout.add_description("text-only CLIP model")
elif args.vision_only and not has_llava_projector:
fout.add_description("vision-only CLIP model")
elif has_llava_projector:
fout.add_description("image encoder for LLaVA")
else:
fout.add_description("two-tower CLIP model")
if has_text_encoder:
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
fout.add_token_list(tokens)
if has_vision_encoder:
# vision_model hparams
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)
use_gelu = v_hparams["hidden_act"] == "gelu"
fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
model.vision_model.encoder.layers.pop(-1)
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
if data.ndim == 2:
data = data.squeeze().numpy().astype(np.float16)
else:
data = data.squeeze().numpy().astype(np.float32)
fout.add_tensor(name, data)
print("Projector tensors added\n")
state_dict = model.state_dict()
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
# we don't need this
print(f"skipping parameter: {name}")
continue
name = get_tensor_name(name)
data = data.squeeze().numpy()
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if n_dims == 4:
print(f"tensor {name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(name, data)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("Done. Output file: " + fname_out)

View File

@ -0,0 +1,46 @@
import argparse
import glob
import os
import torch
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
checkpoint = torch.load(path)
# get a list of mm tensor names
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
# store these tensors in a new dictionary and torch.save them
projector = {name: checkpoint[name].float() for name in mm_tensors}
torch.save(projector, f"{args.model}/llava.projector")
# remove these tensors from the checkpoint and save it again
for name in mm_tensors:
del checkpoint[name]
# BakLLaVA models contain CLIP tensors in it
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
if len(clip_tensors) > 0:
clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
torch.save(clip, f"{args.model}/llava.clip")
# remove these tensors
for name in clip_tensors:
del checkpoint[name]
# added tokens should be removed to be able to convert Mistral models
if os.path.exists(f"{args.model}/added_tokens.json"):
with open(f"{args.model}/added_tokens.json", "w") as f:
f.write("{}\n")
torch.save(checkpoint, path)
print("Done!")
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")

View File

@ -0,0 +1,147 @@
#pragma once
// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
#include "common.h"
#include "llama.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
for (int i = 0; i < N; i += n_batch) {
int n_eval = N - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past);
}
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
// TODO: use common/sampling.h
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
auto & sparams = params.sparams;
// out of user input, sample next token
const float temp = sparams.temp;
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
const float top_p = sparams.top_p;
const float tfs_z = sparams.tfs_z;
const float typical_p = sparams.typical_p;
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
// const float repeat_penalty = sparams.repeat_penalty;
// const float alpha_presence = sparams.presence_penalty;
// const float alpha_frequency = sparams.frequency_penalty;
const int mirostat = sparams.mirostat;
const float mirostat_tau = sparams.mirostat_tau;
const float mirostat_eta = sparams.mirostat_eta;
// const bool penalize_nl = sparams.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
// Apply params.logit_bias map
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// TODO: Apply penalties
// float nl_logit = logits[llama_token_nl(ctx)];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, repeat_penalty);
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) {
// logits[llama_token_nl(ctx)] = nl_logit;
// }
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
}
return id;
}
inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
int id = sample_id(ctx_llama, params);
static std::string ret;
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
ret = "</s>";
} else {
ret = llama_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past);
return ret.c_str();
}

164
examples/llava/llava.cpp Normal file
View File

@ -0,0 +1,164 @@
#include "clip.h"
#include "llava-utils.h"
#include "common.h"
#include "llama.h"
#include <cstdio>
#include <cstdlib>
#include <vector>
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
int main(int argc, char ** argv) {
ggml_time_init();
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
show_additional_info(argc, argv);
return 1;
}
if (params.mmproj.empty() || params.image.empty()) {
gpt_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}
const char * clip_path = params.mmproj.c_str();
const char * img_path = params.image.c_str();
if (params.prompt.empty()) {
params.prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
// load and preprocess the image
clip_image_u8 img;
clip_image_f32 img_res;
if (!clip_image_load_from_file(img_path, &img)) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
clip_free(ctx_clip);
return 1;
}
if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
clip_free(ctx_clip);
return 1;
}
int n_img_pos = clip_n_patches(ctx_clip);
int n_img_embd = clip_n_mmproj_embd(ctx_clip);
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
if (!image_embd) {
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
return 1;
}
const int64_t t_img_enc_start_us = ggml_time_us();
if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
fprintf(stderr, "Unable to encode image\n");
return 1;
}
const int64_t t_img_enc_end_us = ggml_time_us();
// we get the embeddings, free up the memory required for CLIP
clip_free(ctx_clip);
llama_backend_init(params.numa);
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = params.n_gpu_layers;
model_params.main_gpu = params.main_gpu;
model_params.tensor_split = params.tensor_split;
model_params.use_mmap = params.use_mmap;
model_params.use_mlock = params.use_mlock;
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.seed = params.seed;
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// make sure that the correct mmproj was used, i.e., compare apples to apples
const int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
if (n_img_embd != n_llama_embd) {
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(image_embd);
return 1;
}
// process the prompt
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
int n_past = 0;
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
// generate the response
printf("\n");
printf("prompt: '%s'\n", params.prompt.c_str());
printf("\n");
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llama, params, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
printf("\n");
{
const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
}
llama_print_timings(ctx_llama);
llama_free(ctx_llama);
llama_free_model(model);
llama_backend_free();
free(image_embd);
return 0;
}

View File

@ -3,7 +3,6 @@
#include "console.h" #include "console.h"
#include "llama.h" #include "llama.h"
#include "build-info.h" #include "build-info.h"
#include "grammar-parser.h"
#include <cassert> #include <cassert>
#include <cinttypes> #include <cinttypes>
@ -113,6 +112,7 @@ int main(int argc, char ** argv) {
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
return 1; return 1;
} }
llama_sampling_params & sparams = params.sparams;
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("main", "log")); log_set_target(log_filename_generator("main", "log"));
@ -187,7 +187,7 @@ int main(int argc, char ** argv) {
// load the model and apply lora adapter, if any // load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__); LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, ctx) = llama_init_from_gpt_params(params); std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (params.cfg_scale > 1.f) { if (sparams.cfg_scale > 1.f) {
struct llama_context_params lparams = llama_context_params_from_gpt_params(params); struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
ctx_guidance = llama_new_context_with_model(model, lparams); ctx_guidance = llama_new_context_with_model(model, lparams);
} }
@ -245,19 +245,19 @@ int main(int argc, char ** argv) {
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n"); LOG("tokenize the prompt\n");
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos); embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
} else { } else {
LOG("use session tokens\n"); LOG("use session tokens\n");
embd_inp = session_tokens; embd_inp = session_tokens;
} }
LOG("prompt: \"%s\"\n", log_tostr(params.prompt)); LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
// Should not run without any tokens // Should not run without any tokens
if (embd_inp.empty()) { if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(ctx)); embd_inp.push_back(llama_token_bos(model));
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
} }
// Tokenize negative prompt // Tokenize negative prompt
@ -265,13 +265,13 @@ int main(int argc, char ** argv) {
int guidance_offset = 0; int guidance_offset = 0;
int original_prompt_len = 0; int original_prompt_len = 0;
if (ctx_guidance) { if (ctx_guidance) {
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt)); LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos); guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp)); LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos); std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp)); LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
original_prompt_len = original_inp.size(); original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len; guidance_offset = (int)guidance_inp.size() - original_prompt_len;
@ -304,6 +304,9 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n", LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size()); __func__, n_matching_session_tokens, embd_inp.size());
} }
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1);
} }
LOGLN( LOGLN(
@ -324,11 +327,11 @@ int main(int argc, char ** argv) {
} }
// prefix & suffix for instruct mode // prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos); const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx)); LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx)); LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// in instruct mode, we inject a prefix and a suffix to each input by the user // in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) { if (params.instruct) {
@ -351,7 +354,7 @@ int main(int argc, char ** argv) {
if (ctx_guidance) { if (ctx_guidance) {
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) { for (int i = 0; i < (int) guidance_inp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
@ -387,6 +390,12 @@ int main(int argc, char ** argv) {
if (!params.antiprompt.empty()) { if (!params.antiprompt.empty()) {
for (const auto & antiprompt : params.antiprompt) { for (const auto & antiprompt : params.antiprompt) {
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str()); LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
if (params.verbose_prompt) {
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
}
}
} }
} }
@ -396,45 +405,27 @@ int main(int argc, char ** argv) {
if (!params.input_prefix.empty()) { if (!params.input_prefix.empty()) {
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str()); LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
if (params.verbose_prompt) {
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
}
}
} }
if (!params.input_suffix.empty()) { if (!params.input_suffix.empty()) {
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str()); LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
} if (params.verbose_prompt) {
} auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", for (int i = 0; i < (int) tmp.size(); i++) {
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau); LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); }
LOG_TEE("\n\n");
struct llama_grammar * grammar = NULL;
grammar_parser::parse_state parsed_grammar;
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
return 1;
}
LOG_TEE("%s: grammar:\n", __func__);
grammar_parser::print_grammar(stderr, parsed_grammar);
LOG_TEE("\n");
{
auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) {
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
} }
} }
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
} }
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
// TODO: replace with ring-buffer LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
std::vector<llama_token> last_tokens(n_ctx); LOG_TEE("\n\n");
std::fill(last_tokens.begin(), last_tokens.end(), 0);
if (params.interactive) { if (params.interactive) {
const char *control_message; const char *control_message;
@ -475,10 +466,7 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd; std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance; std::vector<llama_token> embd_guidance;
const int n_vocab = llama_n_vocab(model); struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
while ((n_remain != 0 && !is_antiprompt) || params.interactive) { while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict // predict
@ -525,7 +513,7 @@ int main(int argc, char ** argv) {
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
LOG("clear session path\n"); LOG("clear session path\n");
path_session.clear(); path_session.clear();
@ -551,14 +539,10 @@ int main(int argc, char ** argv) {
if (i > 0) { if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i); embd.erase(embd.begin(), embd.begin() + i);
} }
// remove any "future" tokens that we might have inherited from the session from the KV cache
llama_kv_cache_tokens_rm(ctx, n_past, -1);
} }
// evaluate tokens in batches // evaluate tokens in batches
// embd is typically prepared beforehand to fit within a batch, but not always // embd is typically prepared beforehand to fit within a batch, but not always
if (ctx_guidance) { if (ctx_guidance) {
int input_size = 0; int input_size = 0;
llama_token * input_buf = NULL; llama_token * input_buf = NULL;
@ -580,7 +564,7 @@ int main(int argc, char ** argv) {
input_buf = embd_guidance.data(); input_buf = embd_guidance.data();
input_size = embd_guidance.size(); input_size = embd_guidance.size();
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance)); LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
} else { } else {
input_buf = embd.data(); input_buf = embd.data();
input_size = embd.size(); input_size = embd.size();
@ -603,7 +587,7 @@ int main(int argc, char ** argv) {
n_eval = params.n_batch; n_eval = params.n_batch;
} }
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
LOG_TEE("%s : failed to eval\n", __func__); LOG_TEE("%s : failed to eval\n", __func__);
@ -633,12 +617,11 @@ int main(int argc, char ** argv) {
LOG("saved session to %s\n", path_session.c_str()); LOG("saved session to %s\n", path_session.c_str());
} }
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates); const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
last_tokens.erase(last_tokens.begin()); llama_sampling_accept(ctx_sampling, ctx, id, true);
last_tokens.push_back(id);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens)); LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
embd.push_back(id); embd.push_back(id);
@ -654,8 +637,11 @@ int main(int argc, char ** argv) {
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) { while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]); embd.push_back(embd_inp[n_consumed]);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(embd_inp[n_consumed]); // push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
++n_consumed; ++n_consumed;
if ((int) embd.size() >= params.n_batch) { if ((int) embd.size() >= params.n_batch) {
break; break;
@ -685,12 +671,10 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs; // if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) { if ((int) embd_inp.size() <= n_consumed) {
// check for reverse prompt // check for reverse prompt in the last n_prev tokens
if (!params.antiprompt.empty()) { if (!params.antiprompt.empty()) {
std::string last_output; const int n_prev = 32;
for (auto id : last_tokens) { const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
last_output += llama_token_to_piece(ctx, id);
}
is_antiprompt = false; is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output. // Check if each of the reverse prompts appears at the end of the output.
@ -717,13 +701,13 @@ int main(int argc, char ** argv) {
} }
// deal with end of text token in interactive mode // deal with end of text token in interactive mode
if (last_tokens.back() == llama_token_eos(ctx)) { if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
LOG("found EOS token\n"); LOG("found EOS token\n");
if (params.interactive) { if (params.interactive) {
if (!params.antiprompt.empty()) { if (!params.antiprompt.empty()) {
// tokenize and inject first reverse prompt // tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false); const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
is_antiprompt = true; is_antiprompt = true;
} }
@ -744,14 +728,13 @@ int main(int argc, char ** argv) {
if (params.input_prefix_bos) { if (params.input_prefix_bos) {
LOG("adding input prefix BOS token\n"); LOG("adding input prefix BOS token\n");
embd_inp.push_back(llama_token_bos(ctx)); embd_inp.push_back(llama_token_bos(model));
} }
std::string buffer; std::string buffer;
if (!params.input_prefix.empty()) { if (!params.input_prefix.empty()) {
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
buffer += params.input_prefix; printf("%s", params.input_prefix.c_str());
printf("%s", buffer.c_str());
} }
// color user input only // color user input only
@ -773,7 +756,6 @@ int main(int argc, char ** argv) {
// append input suffix if any // append input suffix if any
if (!params.input_suffix.empty()) { if (!params.input_suffix.empty()) {
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
buffer += params.input_suffix;
printf("%s", params.input_suffix.c_str()); printf("%s", params.input_suffix.c_str());
} }
@ -787,11 +769,18 @@ int main(int argc, char ** argv) {
n_consumed = embd_inp.size(); n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
} }
if (params.escape) {
process_escapes(buffer);
}
const auto line_inp = ::llama_tokenize(ctx, buffer, false); const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp)); const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
// instruct mode: insert response suffix // instruct mode: insert response suffix
if (params.instruct) { if (params.instruct) {
@ -816,22 +805,14 @@ int main(int argc, char ** argv) {
if (n_past > 0) { if (n_past > 0) {
if (is_interacting) { if (is_interacting) {
// reset grammar state if we're restarting generation llama_sampling_reset(ctx_sampling);
if (grammar != NULL) {
llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root"));
}
} }
is_interacting = false; is_interacting = false;
} }
} }
// end of text token // end of text token
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) { if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive)) {
LOG_TEE(" [end of text]\n"); LOG_TEE(" [end of text]\n");
break; break;
} }
@ -856,9 +837,7 @@ int main(int argc, char ** argv) {
llama_free(ctx); llama_free(ctx);
llama_free_model(model); llama_free_model(model);
if (grammar != NULL) { llama_sampling_free(ctx_sampling);
llama_grammar_free(grammar);
}
llama_backend_free(); llama_backend_free();
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS

View File

@ -51,6 +51,12 @@ static std::vector<std::string> k_prompts = {
}; };
struct client { struct client {
~client() {
if (ctx_sampling) {
llama_sampling_free(ctx_sampling);
}
}
int32_t id = 0; int32_t id = 0;
llama_seq_id seq_id = -1; llama_seq_id seq_id = -1;
@ -68,7 +74,7 @@ struct client {
std::string prompt; std::string prompt;
std::string response; std::string response;
std::vector<llama_token> tokens_prev; struct llama_sampling_context * ctx_sampling = nullptr;
}; };
static void print_date_time() { static void print_date_time() {
@ -145,20 +151,15 @@ int main(int argc, char ** argv) {
fprintf(stderr, "\n\n"); fprintf(stderr, "\n\n");
fflush(stderr); fflush(stderr);
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const int n_vocab = llama_n_vocab(model);
std::vector<client> clients(n_clients); std::vector<client> clients(n_clients);
for (size_t i = 0; i < clients.size(); ++i) { for (size_t i = 0; i < clients.size(); ++i) {
auto & client = clients[i]; auto & client = clients[i];
client.id = i; client.id = i;
client.tokens_prev.resize(std::max(256, params.n_predict)); client.ctx_sampling = llama_sampling_init(params.sparams);
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
} }
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
std::vector<llama_token> tokens_system; std::vector<llama_token> tokens_system;
tokens_system = ::llama_tokenize(ctx, k_system, true); tokens_system = ::llama_tokenize(ctx, k_system, true);
const int32_t n_tokens_system = tokens_system.size(); const int32_t n_tokens_system = tokens_system.size();
@ -167,7 +168,7 @@ int main(int argc, char ** argv) {
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple // the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time // users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
llama_batch batch = llama_batch_init(n_ctx, 0); llama_batch batch = llama_batch_init(n_ctx, 0, 1);
int32_t n_total_prompt = 0; int32_t n_total_prompt = 0;
int32_t n_total_gen = 0; int32_t n_total_gen = 0;
@ -182,13 +183,8 @@ int main(int argc, char ** argv) {
{ {
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__); LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
batch.n_tokens = n_tokens_system; for (int32_t i = 0; i < n_tokens_system; ++i) {
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
for (int32_t i = 0; i < batch.n_tokens; ++i) {
batch.token[i] = tokens_system[i];
batch.pos[i] = i;
batch.seq_id[i] = 0;
batch.logits[i] = false;
} }
if (llama_decode(ctx, batch) != 0) { if (llama_decode(ctx, batch) != 0) {
@ -207,7 +203,7 @@ int main(int argc, char ** argv) {
LOG_TEE("Processing requests ...\n\n"); LOG_TEE("Processing requests ...\n\n");
while (true) { while (true) {
batch.n_tokens = 0; llama_batch_clear(batch);
// decode any currently ongoing sequences // decode any currently ongoing sequences
for (auto & client : clients) { for (auto & client : clients) {
@ -215,15 +211,11 @@ int main(int argc, char ** argv) {
continue; continue;
} }
batch.token [batch.n_tokens] = client.sampled;
batch.pos [batch.n_tokens] = n_tokens_system + client.n_prompt + client.n_decoded;
batch.seq_id[batch.n_tokens] = client.id;
batch.logits[batch.n_tokens] = true;
client.n_decoded += 1;
client.i_batch = batch.n_tokens; client.i_batch = batch.n_tokens;
batch.n_tokens += 1; llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id }, true);
client.n_decoded += 1;
} }
if (batch.n_tokens == 0) { if (batch.n_tokens == 0) {
@ -248,18 +240,14 @@ int main(int argc, char ** argv) {
client.prompt = client.input + "\nAssistant:"; client.prompt = client.input + "\nAssistant:";
client.response = ""; client.response = "";
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0); llama_sampling_reset(client.ctx_sampling);
// do not prepend BOS because we have a system prompt! // do not prepend BOS because we have a system prompt!
std::vector<llama_token> tokens_prompt; std::vector<llama_token> tokens_prompt;
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false); tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
for (size_t i = 0; i < tokens_prompt.size(); ++i) { for (size_t i = 0; i < tokens_prompt.size(); ++i) {
batch.token [batch.n_tokens] = tokens_prompt[i]; llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id }, false);
batch.pos [batch.n_tokens] = i + n_tokens_system;
batch.seq_id[batch.n_tokens] = client.id;
batch.logits[batch.n_tokens] = false;
batch.n_tokens += 1;
} }
// extract the logits only for the last token // extract the logits only for the last token
@ -302,11 +290,12 @@ int main(int argc, char ** argv) {
llama_batch batch_view = { llama_batch batch_view = {
n_tokens, n_tokens,
batch.token + i, batch.token + i,
nullptr, nullptr,
batch.pos + i, batch.pos + i,
batch.seq_id + i, batch.n_seq_id + i,
batch.logits + i, batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused 0, 0, 0, // unused
}; };
@ -339,7 +328,9 @@ int main(int argc, char ** argv) {
//printf("client %d, seq %d, token %d, pos %d, batch %d\n", //printf("client %d, seq %d, token %d, pos %d, batch %d\n",
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch); // client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.tokens_prev, candidates, client.i_batch - i); const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
llama_sampling_accept(client.ctx_sampling, ctx, id, true);
if (client.n_decoded == 1) { if (client.n_decoded == 1) {
// start measuring generation time after the first token to make sure all concurrent clients // start measuring generation time after the first token to make sure all concurrent clients
@ -347,11 +338,8 @@ int main(int argc, char ** argv) {
client.t_start_gen = ggml_time_us(); client.t_start_gen = ggml_time_us();
} }
// remember which tokens were sampled - used for repetition penalties during sampling
client.tokens_prev.erase(client.tokens_prev.begin());
client.tokens_prev.push_back(id);
const std::string token_str = llama_token_to_piece(ctx, id); const std::string token_str = llama_token_to_piece(ctx, id);
client.response += token_str; client.response += token_str;
client.sampled = id; client.sampled = id;
@ -359,7 +347,7 @@ int main(int argc, char ** argv) {
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str()); // client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
if (client.n_decoded > 2 && if (client.n_decoded > 2 &&
(id == llama_token_eos(ctx) || (id == llama_token_eos(model) ||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) || (params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
client.response.find("User:") != std::string::npos || client.response.find("User:") != std::string::npos ||
client.response.find('\n') != std::string::npos)) { client.response.find('\n') != std::string::npos)) {

View File

@ -227,7 +227,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
// add BOS token for the first batch of each chunk // add BOS token for the first batch of each chunk
if (add_bos && j == 0) { if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(ctx); tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
} }
const auto batch_logits = llama_get_logits(ctx); const auto batch_logits = llama_get_logits(ctx);
@ -350,7 +350,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
// add BOS token for the first batch of each chunk // add BOS token for the first batch of each chunk
if (add_bos && j == 0) { if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(ctx); tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
} }
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {

View File

@ -8,9 +8,7 @@
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
params.seed = 42;
params.n_threads = 4;
params.repeat_last_n = 64;
params.prompt = "The quick brown fox"; params.prompt = "The quick brown fox";
if (!gpt_params_parse(argc, argv, params)) { if (!gpt_params_parse(argc, argv, params)) {
@ -24,56 +22,49 @@ int main(int argc, char ** argv) {
} }
auto n_past = 0; auto n_past = 0;
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
std::string result0;
std::string result1;
// init // init
llama_model * model; llama_model * model;
llama_context * ctx; llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params( params ); std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr) { if (model == nullptr || ctx == nullptr) {
return 1; fprintf(stderr, "%s : failed to init\n", __func__);
}
if (ctx == nullptr) {
llama_free_model(model);
return 1; return 1;
} }
// tokenize prompt
auto tokens = llama_tokenize(ctx, params.prompt, true); auto tokens = llama_tokenize(ctx, params.prompt, true);
auto n_prompt_tokens = tokens.size();
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
llama_free(ctx);
llama_free_model(model);
return 1;
}
// evaluate prompt // evaluate prompt
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0)); llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
n_past += tokens.size();
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens); // save state (rng, logits, embedding and kv_cache) to file
n_past += n_prompt_tokens;
const size_t state_size = llama_get_state_size(ctx);
uint8_t * state_mem = new uint8_t[state_size];
// Save state (rng, logits, embedding and kv_cache) to file
{ {
FILE *fp_write = fopen("dump_state.bin", "wb"); std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
fwrite(state_mem, 1, state_size, fp_write); {
fclose(fp_write); FILE *fp_write = fopen("dump_state.bin", "wb");
llama_copy_state_data(ctx, state_mem.data()); // could also copy directly to memory mapped file
fwrite(state_mem.data(), 1, state_mem.size(), fp_write);
fclose(fp_write);
}
} }
// save state (last tokens) // save state (last tokens)
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
const auto n_past_saved = n_past; const auto n_past_saved = n_past;
// first run // first run
printf("\n%s", params.prompt.c_str()); printf("\nfirst run: %s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) { for (auto i = 0; i < params.n_predict; i++) {
auto * logits = llama_get_logits(ctx); auto * logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(model); auto n_vocab = llama_n_vocab(model);
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab); candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
@ -82,9 +73,10 @@ int main(int argc, char ** argv) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx, &candidates_p); auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx, next_token); auto next_token_str = llama_token_to_piece(ctx, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str.c_str()); printf("%s", next_token_str.c_str());
result0 += next_token_str;
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx); llama_free(ctx);
@ -102,32 +94,28 @@ int main(int argc, char ** argv) {
// make new context // make new context
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
// Load state (rng, logits, embedding and kv_cache) from file printf("\nsecond run: %s", params.prompt.c_str());
{
FILE *fp_read = fopen("dump_state.bin", "rb");
if (state_size != llama_get_state_size(ctx2)) {
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
llama_free(ctx2);
llama_free_model(model);
return 1;
}
const size_t ret = fread(state_mem, 1, state_size, fp_read); // load state (rng, logits, embedding and kv_cache) from file
if (ret != state_size) { {
std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
FILE * fp_read = fopen("dump_state.bin", "rb");
const size_t ret = fread(state_mem.data(), 1, state_mem.size(), fp_read);
if (ret != state_mem.size()) {
fprintf(stderr, "\n%s : failed to read state\n", __func__); fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2); llama_free(ctx2);
llama_free_model(model); llama_free_model(model);
return 1; return 1;
} }
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file llama_set_state_data(ctx2, state_mem.data());
fclose(fp_read); fclose(fp_read);
} }
delete[] state_mem;
// restore state (last tokens) // restore state (last tokens)
last_n_tokens_data = last_n_tokens_data_saved;
n_past = n_past_saved; n_past = n_past_saved;
// second run // second run
@ -142,10 +130,11 @@ int main(int argc, char ** argv) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
auto next_token = llama_sample_token(ctx2, &candidates_p); auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token_str = llama_token_to_piece(ctx2, next_token); auto next_token_str = llama_token_to_piece(ctx2, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str.c_str()); printf("%s", next_token_str.c_str());
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { result1 += next_token_str;
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx2); llama_free(ctx2);
llama_free_model(model); llama_free_model(model);
@ -154,10 +143,17 @@ int main(int argc, char ** argv) {
n_past += 1; n_past += 1;
} }
printf("\n\n"); printf("\n");
llama_free(ctx2); llama_free(ctx2);
llama_free_model(model); llama_free_model(model);
if (result0 != result1) {
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
return 1;
}
fprintf(stderr, "\n%s : success\n", __func__);
return 0; return 0;
} }

View File

@ -6,7 +6,7 @@ install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}> SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
) )
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
if (WIN32) if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32) TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif() endif()

View File

@ -24,6 +24,10 @@ Command line options:
- `--port`: Set the port to listen. Default: `8080`. - `--port`: Set the port to listen. Default: `8080`.
- `--path`: path from which to serve static files (default examples/server/public) - `--path`: path from which to serve static files (default examples/server/public)
- `--embedding`: Enable embedding extraction, Default: disabled. - `--embedding`: Enable embedding extraction, Default: disabled.
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
## Build ## Build
@ -106,25 +110,25 @@ node index.js
## API Endpoints ## API Endpoints
- **POST** `/completion`: Given a prompt, it returns the predicted completion. - **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
*Options:* *Options:*
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. If the prompt is a string or an array with the first element given as a string, a `bos` token is inserted in the front like `main` does.
`temperature`: Adjust the randomness of the generated text (default: 0.8). `temperature`: Adjust the randomness of the generated text (default: 0.8).
`top_k`: Limit the next token selection to the K most probable tokens (default: 40). `top_k`: Limit the next token selection to the K most probable tokens (default: 40).
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95). `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity). `n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. `n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the prompt.
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`. `stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
`prompt`: Provide a prompt as a string, or as an array of strings and numbers representing tokens. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. If the prompt is a string, or an array with the first element given as a string, a space is inserted in the front like main.cpp does.
`stop`: Specify a JSON array of stopping strings. `stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []). These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
@ -158,6 +162,44 @@ node index.js
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0) `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:` In this case, `[img-12]` will be replaced by the embeddings of the image id 12 in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
*Result JSON:*
Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
`content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
`stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
`generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`
`model`: The path to the model loaded with `-m`
`prompt`: The provided `prompt`
`stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
`stopped_limit`: Indicating whether the completion stopped because `n_predict` tokens were generated before stop words or EOS was encountered
`stopped_word`: Indicating whether the completion stopped due to encountering a stopping word from `stop` JSON array provided
`stopping_word`: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)
`timings`: Hash of timing information about the completion such as the number of tokens `predicted_per_second`
`tokens_cached`: Number of tokens from the prompt which could be re-used from previous completion (`n_past`)
`tokens_evaluated`: Number of tokens evaluated in total from the prompt
`truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
- **POST** `/tokenize`: Tokenize a given text. - **POST** `/tokenize`: Tokenize a given text.
*Options:* *Options:*
@ -188,8 +230,32 @@ node index.js
It also accepts all the options of `/completion` except `stream` and `prompt`. It also accepts all the options of `/completion` except `stream` and `prompt`.
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
## More examples ## More examples
### Change system prompt on runtime
To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt` to achieve that. This only needs to be done once to establish it.
`prompt`: Specify a context that you want all connecting clients to respect.
`anti_prompt`: Specify the word you want to use to instruct the model to stop. This must be sent to each client through the `/props` endpoint.
`assistant_name`: The bot's name is necessary for each customer to generate the prompt. This must be sent to each client through the `/props` endpoint.
```json
{
"system_prompt": {
"prompt": "Transcript of a never ending dialog, where the User interacts with an Assistant.\nThe Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.\nUser: Recommend a nice restaurant in the area.\nAssistant: I recommend the restaurant \"The Golden Duck\". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.\nUser: Who is Richard Feynman?\nAssistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including \"Surely You're Joking, Mr. Feynman!\" and \"What Do You Care What Other People Think?\".\nUser:",
"anti_prompt": "User:",
"assistant_name": "Assistant:"
}
}
```
**NOTE**: You can do this automatically when starting the server by simply creating a .json file with these options and using the CLI option `-spf FNAME` or `--system-prompt-file FNAME`.
### Interactive mode ### Interactive mode
Check the sample in [chat.mjs](chat.mjs). Check the sample in [chat.mjs](chat.mjs).

View File

@ -8,6 +8,7 @@ import json
app = Flask(__name__) app = Flask(__name__)
slot_id = -1
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.") parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n') parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')
@ -77,7 +78,8 @@ def make_postData(body, chat=False, stream=False):
if(is_present(body, "stop")): postData["stop"] += body["stop"] if(is_present(body, "stop")): postData["stop"] += body["stop"]
postData["n_keep"] = -1 postData["n_keep"] = -1
postData["stream"] = stream postData["stream"] = stream
postData["cache_prompt"] = True
postData["slot_id"] = slot_id
return postData return postData
def make_resData(data, chat=False, promptToken=[]): def make_resData(data, chat=False, promptToken=[]):
@ -128,6 +130,7 @@ def make_resData_stream(data, chat=False, time_now = 0, start=False):
} }
] ]
} }
slot_id = data["slot_id"]
if (chat): if (chat):
if (start): if (start):
resData["choices"][0]["delta"] = { resData["choices"][0]["delta"] = {

View File

@ -7,6 +7,11 @@ const args = process.argv.slice(2);
const grammarJsonSchemaFile = args.find( const grammarJsonSchemaFile = args.find(
(_, index) => args[index - 1] === "--grammar-json-schema" (_, index) => args[index - 1] === "--grammar-json-schema"
); );
const no_cached_prompt = args.find(
(_, index) => args[index - 1] === "--no-cache-prompt"
) ?? "false";
const grammarFile = args.find((_, index) => args[index - 1] === "--grammar"); const grammarFile = args.find((_, index) => args[index - 1] === "--grammar");
// Example usage: function,arguments // Example usage: function,arguments
@ -30,6 +35,9 @@ if (grammarFile) {
grammar = readFileSync(grammarFile, 'utf-8') grammar = readFileSync(grammarFile, 'utf-8')
} }
// for cached prompt
let slot_id = -1;
const API_URL = 'http://127.0.0.1:8080' const API_URL = 'http://127.0.0.1:8080'
const chat = [ const chat = [
@ -76,6 +84,8 @@ async function chat_completion(question) {
top_p: 0.9, top_p: 0.9,
n_keep: n_keep, n_keep: n_keep,
n_predict: 256, n_predict: 256,
cache_prompt: no_cached_prompt === "false",
slot_id: slot_id,
stop: ["\n### Human:"], // stop completion after generating this stop: ["\n### Human:"], // stop completion after generating this
grammar, grammar,
stream: true, stream: true,
@ -92,6 +102,7 @@ async function chat_completion(question) {
const t = Buffer.from(chunk).toString('utf8') const t = Buffer.from(chunk).toString('utf8')
if (t.startsWith('data: ')) { if (t.startsWith('data: ')) {
const message = JSON.parse(t.substring(6)) const message = JSON.parse(t.substring(6))
slot_id = message.slot_id
answer += message.content answer += message.content
process.stdout.write(message.content) process.stdout.write(message.content)
if (message.stop) { if (message.stop) {

File diff suppressed because it is too large Load Diff

View File

@ -125,6 +125,7 @@
background-color: #222; background-color: #222;
color: #ddd; color: #ddd;
} }
code { code {
font-family: monospace; font-family: monospace;
padding: 0.1em 0.3em; padding: 0.1em 0.3em;
@ -136,7 +137,13 @@
display: block; display: block;
} }
header, footer { fieldset label.slim {
margin: 0 0.5em;
display: inline;
}
header,
footer {
text-align: center; text-align: center;
} }
@ -145,11 +152,20 @@
color: #888; color: #888;
} }
.mode-chat textarea[name=prompt] {
height: 4.5em;
}
.mode-completion textarea[name=prompt] {
height: 10em;
}
@keyframes loading-bg-wipe { @keyframes loading-bg-wipe {
0% { 0% {
background-position: 0%; background-position: 0%;
} }
100% { 100% {
background-position: 100%; background-position: 100%;
} }
@ -168,6 +184,7 @@
--loading-color-1: #22222200; --loading-color-1: #22222200;
--loading-color-2: #222222ff; --loading-color-2: #222222ff;
} }
.popover-content { .popover-content {
background-color: black; background-color: black;
} }
@ -181,15 +198,18 @@
import { llama } from '/completion.js'; import { llama } from '/completion.js';
import { SchemaConverter } from '/json-schema-to-grammar.mjs'; import { SchemaConverter } from '/json-schema-to-grammar.mjs';
let selected_image = false;
var slot_id = -1;
const session = signal({ const session = signal({
prompt: "This is a conversation between User and Llama, a friendly chatbot. Llama is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision.", prompt: "This is a conversation between User and Llama, a friendly chatbot. Llama is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision.",
template: "{{prompt}}\n\n{{history}}\n{{char}}:", template: "{{prompt}}\n\n{{history}}\n{{char}}:",
historyTemplate: "{{name}}: {{message}}", historyTemplate: "{{name}}: {{message}}",
transcript: [], transcript: [],
type: "chat", type: "chat", // "chat" | "completion"
char: "Llama", char: "Llama",
user: "User", user: "User",
image_selected: ''
}) })
const params = signal({ const params = signal({
@ -207,7 +227,9 @@
mirostat_tau: 5, // target entropy mirostat_tau: 5, // target entropy
mirostat_eta: 0.1, // learning rate mirostat_eta: 0.1, // learning rate
grammar: '', grammar: '',
n_probs: 0, // no completion_probabilities n_probs: 0, // no completion_probabilities,
image_data: [],
cache_prompt: true
}) })
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */ /* START: Support for storing prompt templates and parameters in borwser LocalStorage */
@ -257,6 +279,7 @@
// saved templates were successfuly imported. // saved templates were successfuly imported.
console.log('Processing saved templates and updating default template') console.log('Processing saved templates and updating default template')
params.value = { ...params.value, image_data: [] };
//console.log(importedTemplates); //console.log(importedTemplates);
savedUserTemplates.value = importedTemplates; savedUserTemplates.value = importedTemplates;
@ -281,7 +304,9 @@
function userTemplateApply(t) { function userTemplateApply(t) {
session.value = t.data.session; session.value = t.data.session;
session.value = { ...session.value, image_selected: '' };
params.value = t.data.params; params.value = t.data.params;
params.value = { ...params.value, image_data: [] };
} }
function userTemplateResetToDefaultAndApply() { function userTemplateResetToDefaultAndApply() {
@ -365,17 +390,53 @@
return String(str).replaceAll(/\{\{(.*?)\}\}/g, (_, key) => template(settings[key])); return String(str).replaceAll(/\{\{(.*?)\}\}/g, (_, key) => template(settings[key]));
} }
async function runLlama(prompt, llamaParams, char) {
const currentMessages = [];
const history = session.value.transcript;
if (controller.value) {
throw new Error("already running");
}
controller.value = new AbortController();
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) {
const data = chunk.data;
if (data.stop) {
while (
currentMessages.length > 0 &&
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
) {
currentMessages.pop();
}
transcriptUpdate([...history, [char, currentMessages]])
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
} else {
currentMessages.push(data);
slot_id = data.slot_id;
if (selected_image && !data.multimodal) {
alert("The server was not compiled for multimodal or the model projector can't be loaded.");
return;
}
transcriptUpdate([...history, [char, currentMessages]])
}
if (data.timings) {
llamaStats.value = data.timings;
}
}
controller.value = null;
}
// send message to server // send message to server
const chat = async (msg) => { const chat = async (msg) => {
if (controller.value) { if (controller.value) {
console.log('already running...'); console.log('already running...');
return; return;
} }
controller.value = new AbortController();
transcriptUpdate([...session.value.transcript, ["{{user}}", msg]]) transcriptUpdate([...session.value.transcript, ["{{user}}", msg]])
const prompt = template(session.value.template, { let prompt = template(session.value.template, {
message: msg, message: msg,
history: session.value.transcript.flatMap( history: session.value.transcript.flatMap(
([name, data]) => ([name, data]) =>
@ -390,56 +451,67 @@
) )
).join("\n"), ).join("\n"),
}); });
if (selected_image) {
const currentMessages = []; prompt = `A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:[img-10]${msg}\nASSISTANT:`;
const history = session.value.transcript }
await runLlama(prompt, {
const llamaParams = {
...params.value, ...params.value,
slot_id: slot_id,
stop: ["</s>", template("{{char}}:"), template("{{user}}:")], stop: ["</s>", template("{{char}}:"), template("{{user}}:")],
}, "{{char}}");
}
const runCompletion = async () => {
if (controller.value) {
console.log('already running...');
return;
} }
const { prompt } = session.value;
transcriptUpdate([...session.value.transcript, ["", prompt]]);
await runLlama(prompt, {
...params.value,
slot_id: slot_id,
stop: [],
}, "");
}
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) { const stop = (e) => {
const data = chunk.data; e.preventDefault();
if (controller.value) {
if (data.stop) { controller.value.abort();
while ( controller.value = null;
currentMessages.length > 0 &&
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
) {
currentMessages.pop();
}
transcriptUpdate([...history, ["{{char}}", currentMessages]])
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
} else {
currentMessages.push(data);
transcriptUpdate([...history, ["{{char}}", currentMessages]])
}
if (data.timings) {
llamaStats.value = data.timings;
}
} }
}
controller.value = null; const reset = (e) => {
stop(e);
transcriptUpdate([]);
}
const uploadImage = (e) => {
e.preventDefault();
document.getElementById("fileInput").click();
document.getElementById("fileInput").addEventListener("change", function (event) {
const selectedFile = event.target.files[0];
if (selectedFile) {
const reader = new FileReader();
reader.onload = function () {
const image_data = reader.result;
session.value = { ...session.value, image_selected: image_data };
params.value = {
...params.value, image_data: [
{ data: image_data.replace(/data:image\/[^;]+;base64,/, ''), id: 10 }]
}
};
selected_image = true;
reader.readAsDataURL(selectedFile);
}
});
} }
function MessageInput() { function MessageInput() {
const message = useSignal("") const message = useSignal("")
const stop = (e) => {
e.preventDefault();
if (controller.value) {
controller.value.abort();
controller.value = null;
}
}
const reset = (e) => {
stop(e);
transcriptUpdate([]);
}
const submit = (e) => { const submit = (e) => {
stop(e); stop(e);
chat(message.value); chat(message.value);
@ -467,6 +539,7 @@
</div> </div>
<div class="right"> <div class="right">
<button type="submit" disabled=${generating.value}>Send</button> <button type="submit" disabled=${generating.value}>Send</button>
<button onclick=${uploadImage}>Upload Image</button>
<button onclick=${stop} disabled=${!generating.value}>Stop</button> <button onclick=${stop} disabled=${!generating.value}>Stop</button>
<button onclick=${reset}>Reset</button> <button onclick=${reset}>Reset</button>
</div> </div>
@ -474,6 +547,19 @@
` `
} }
function CompletionControls() {
const submit = (e) => {
stop(e);
runCompletion();
}
return html`
<div>
<button onclick=${submit} type="button" disabled=${generating.value}>Start</button>
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
<button onclick=${reset}>Reset</button>
</div>`;
}
const ChatLog = (props) => { const ChatLog = (props) => {
const messages = session.value.transcript; const messages = session.value.transcript;
const container = useRef(null) const container = useRef(null)
@ -497,11 +583,16 @@
data; data;
message = html`<${Markdownish} text=${template(text)} />` message = html`<${Markdownish} text=${template(text)} />`
} }
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>` if (user) {
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
} else {
return html`<p key=${index}>${message}</p>`
}
}; };
return html` return html`
<section id="chat" ref=${container}> <section id="chat" ref=${container}>
<img style="width: 60%;${!session.value.image_selected ? `display: none;` : ``}" src="${session.value.image_selected}"/>
${messages.flatMap(chatLine)} ${messages.flatMap(chatLine)}
</section>`; </section>`;
}; };
@ -520,7 +611,7 @@
const converter = new SchemaConverter( const converter = new SchemaConverter(
grammarJsonSchemaPropOrder.value grammarJsonSchemaPropOrder.value
.split(',') .split(',')
.reduce((acc, cur, i) => ({...acc, [cur.trim()]: i}), {}) .reduce((acc, cur, i) => ({ ...acc, [cur.trim()]: i }), {})
) )
converter.visit(schema, '') converter.visit(schema, '')
params.value = { params.value = {
@ -532,7 +623,7 @@
} }
} }
const FloatField = ({label, max, min, name, step, value}) => { const FloatField = ({ label, max, min, name, step, value }) => {
return html` return html`
<div> <div>
<label for="${name}">${label}</label> <label for="${name}">${label}</label>
@ -542,7 +633,7 @@
` `
}; };
const IntField = ({label, max, min, name, value}) => { const IntField = ({ label, max, min, name, value }) => {
return html` return html`
<div> <div>
<label for="${name}">${label}</label> <label for="${name}">${label}</label>
@ -574,18 +665,31 @@
userTemplateAutosave() userTemplateAutosave()
}, [session.value, params.value]) }, [session.value, params.value])
return html` const GrammarControl = () => (
<form> html`
<fieldset> <div>
<${UserTemplateResetButton}/> <label for="template">Grammar</label>
</fieldset> <textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
</div>
`
);
<fieldset> const PromptControlFieldSet = () => (
<div> html`
<label for="prompt">Prompt</label> <fieldset>
<textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/> <div>
</div> <label htmlFor="prompt">Prompt</label>
</fieldset> <textarea type="text" name="prompt" value="${session.value.prompt}" oninput=${updateSession}/>
</div>
</fieldset>
`
);
const ChatConfigForm = () => (
html`
${PromptControlFieldSet()}
<fieldset class="two"> <fieldset class="two">
<div> <div>
@ -609,30 +713,45 @@
<label for="template">Chat history template</label> <label for="template">Chat history template</label>
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/> <textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
</div> </div>
${GrammarControl()}
</fieldset>
`
);
const CompletionConfigForm = () => (
html`
${PromptControlFieldSet()}
<fieldset>${GrammarControl()}</fieldset>
`
);
return html`
<form>
<fieldset class="two">
<${UserTemplateResetButton}/>
<div> <div>
<label for="template">Grammar</label> <label class="slim"><input type="radio" name="type" value="chat" checked=${session.value.type === "chat"} oninput=${updateSession} /> Chat</label>
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/> <label class="slim"><input type="radio" name="type" value="completion" checked=${session.value.type === "completion"} oninput=${updateSession} /> Completion</label>
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
</div> </div>
</fieldset> </fieldset>
${session.value.type === 'chat' ? ChatConfigForm() : CompletionConfigForm()}
<fieldset class="two"> <fieldset class="two">
${IntField({label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict})} ${IntField({ label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict })}
${FloatField({label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature})} ${FloatField({ label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
${FloatField({label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty})} ${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })}
${IntField({label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n})} ${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
${IntField({label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k})} ${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
${FloatField({label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p})} ${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })}
</fieldset> </fieldset>
<details> <details>
<summary>More options</summary> <summary>More options</summary>
<fieldset class="two"> <fieldset class="two">
${FloatField({label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z})} ${FloatField({ label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z })}
${FloatField({label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p})} ${FloatField({ label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
${FloatField({label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty})} ${FloatField({ label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty })}
${FloatField({label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty})} ${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}
</fieldset> </fieldset>
<hr /> <hr />
<fieldset class="three"> <fieldset class="three">
@ -641,11 +760,11 @@
<label><input type="radio" name="mirostat" value="1" checked=${params.value.mirostat == 1} oninput=${updateParamsInt} /> Mirostat v1</label> <label><input type="radio" name="mirostat" value="1" checked=${params.value.mirostat == 1} oninput=${updateParamsInt} /> Mirostat v1</label>
<label><input type="radio" name="mirostat" value="2" checked=${params.value.mirostat == 2} oninput=${updateParamsInt} /> Mirostat v2</label> <label><input type="radio" name="mirostat" value="2" checked=${params.value.mirostat == 2} oninput=${updateParamsInt} /> Mirostat v2</label>
</div> </div>
${FloatField({label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau})} ${FloatField({ label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau })}
${FloatField({label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta})} ${FloatField({ label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta })}
</fieldset> </fieldset>
<fieldset> <fieldset>
${IntField({label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs})} ${IntField({ label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs })}
</fieldset> </fieldset>
</details> </details>
</form> </form>
@ -684,20 +803,20 @@
const popoverChildren = html` const popoverChildren = html`
<div class="prob-set"> <div class="prob-set">
${probs.map((p, index) => { ${probs.map((p, index) => {
return html` return html`
<div <div
key=${index} key=${index}
title=${`prob: ${p.prob}`} title=${`prob: ${p.prob}`}
style=${{ style=${{
padding: '0.3em', padding: '0.3em',
backgroundColor: p.tok_str === content ? probColor(p.prob) : 'transparent' backgroundColor: p.tok_str === content ? probColor(p.prob) : 'transparent'
}} }}
> >
<span>${p.tok_str}: </span> <span>${p.tok_str}: </span>
<span>${Math.floor(p.prob * 100)}%</span> <span>${Math.floor(p.prob * 100)}%</span>
</div> </div>
` `
})} })}
</div> </div>
` `
@ -776,9 +895,9 @@
ref=${popoverRef} ref=${popoverRef}
class="popover-content" class="popover-content"
style=${{ style=${{
top: position.value.top, top: position.value.top,
left: position.value.left, left: position.value.left,
}} }}
> >
${props.popoverChildren} ${props.popoverChildren}
</div> </div>
@ -851,7 +970,7 @@
function App(props) { function App(props) {
return html` return html`
<div> <div class="mode-${session.value.type}">
<header> <header>
<h1>llama.cpp</h1> <h1>llama.cpp</h1>
</header> </header>
@ -861,7 +980,7 @@
</main> </main>
<section id="write"> <section id="write">
<${MessageInput} /> <${session.value.type === 'chat' ? MessageInput : CompletionControls} />
</section> </section>
<footer> <footer>
@ -877,8 +996,11 @@
</head> </head>
<body> <body>
<div id="container"></div> <div id="container">
<input type="file" id="fileInput" accept="image/*" style="display: none;">
</div>
<div id="portal"></div> <div id="portal"></div>
</body> </body>
</html> </html>

File diff suppressed because it is too large Load Diff

View File

@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
// create a llama_batch with size 512 // create a llama_batch with size 512
// we use this object to submit token data for decoding // we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(512, 0); llama_batch batch = llama_batch_init(512, 0, 1);
// evaluate the initial prompt // evaluate the initial prompt
batch.n_tokens = tokens_list.size(); batch.n_tokens = tokens_list.size();
@ -138,7 +138,7 @@ int main(int argc, char ** argv) {
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? // is it an end of stream?
if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
LOG_TEE("\n"); LOG_TEE("\n");
break; break;

View File

@ -2,13 +2,25 @@
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "grammar-parser.h"
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
#include <string> #include <string>
#include <vector> #include <vector>
struct seq_draft {
bool active = false;
bool drafting = false;
bool skip = false;
int i_batch_dft = 0;
std::vector<int> i_batch_tgt;
std::vector<llama_token> tokens;
struct llama_sampling_context * ctx_sampling;
};
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
@ -21,6 +33,13 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
// max number of parallel drafting sequences (i.e. tree branches)
const int n_seq_dft = params.n_parallel;
// TODO: make this configurable
const float p_accept = 0.80f;
const float p_split = 0.10f;
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log")); log_set_target(log_filename_generator("speculative", "log"));
LOG_TEE("Log start\n"); LOG_TEE("Log start\n");
@ -77,8 +96,6 @@ int main(int argc, char ** argv) {
const auto t_enc_end = ggml_time_us(); const auto t_enc_end = ggml_time_us();
// the 2 models should have the same vocab // the 2 models should have the same vocab
const int n_ctx = llama_n_ctx(ctx_tgt);
const int n_vocab = llama_n_vocab(model_tgt);
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
// how many tokens to draft each time // how many tokens to draft each time
@ -91,114 +108,128 @@ int main(int argc, char ** argv) {
int n_past_tgt = inp.size(); int n_past_tgt = inp.size();
int n_past_dft = inp.size(); int n_past_dft = inp.size();
std::vector<llama_token> drafted;
std::vector<llama_token> last_tokens(n_ctx);
std::fill(last_tokens.begin(), last_tokens.end(), 0);
for (auto & id : inp) {
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
// used to determine end of generation // used to determine end of generation
bool has_eos = false; bool has_eos = false;
// grammar stuff // target model sampling context
struct llama_grammar * grammar_dft = NULL; struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
struct llama_grammar * grammar_tgt = NULL;
grammar_parser::parse_state parsed_grammar; // draft sequence data
std::vector<seq_draft> drafts(n_seq_dft);
// if requested - load the grammar, error checking is omitted for brevity params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
if (!params.grammar.empty()) { params.sparams.temp = std::max(0.01f, params.sparams.temp);
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
return 1;
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules()); for (int s = 0; s < n_seq_dft; ++s) {
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
} }
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
const auto t_dec_start = ggml_time_us(); const auto t_dec_start = ggml_time_us();
while (true) { // sample from the last token of the prompt
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); drafts[0].i_batch_tgt.resize(1);
drafts[0].i_batch_tgt[0] = 0;
int i_dft = 0; while (true) {
// print current draft sequences
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
const auto & tokens = drafts[s].tokens;
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
}
int i_dft = 0;
int s_keep = 0;
while (true) { while (true) {
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
// sample from the target model // sample from the target model
llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft); llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
// remember which tokens were sampled - used for repetition penalties during sampling llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens)); //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
const std::string token_str = llama_token_to_piece(ctx_tgt, id); const std::string token_str = llama_token_to_piece(ctx_tgt, id);
printf("%s", token_str.c_str()); printf("%s", token_str.c_str());
fflush(stdout); fflush(stdout);
if (id == llama_token_eos(ctx_tgt)) { if (id == llama_token_eos(model_tgt)) {
has_eos = true; has_eos = true;
} }
++n_predict; ++n_predict;
// check if the draft matches the target // check if the target token matches any of the drafts
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
++n_accept;
++n_past_tgt;
++n_past_dft;
++i_dft;
continue;
}
// the drafted token was rejected or we are out of drafted tokens
if (i_dft < (int) drafted.size()) {
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
} else {
LOG("out of drafted tokens\n");
}
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
++n_past_dft;
// heuristic for n_draft
{ {
const int n_draft_cur = (int) drafted.size(); bool matches = false;
const bool all_accepted = i_dft == n_draft_cur;
LOG("n_draft = %d\n", n_draft); for (int s = 0; s < n_seq_dft; ++s) {
LOG("n_draft_cur = %d\n", n_draft_cur); if (!drafts[s].active) {
LOG("i_dft = %d\n", i_dft); continue;
LOG("all_accepted = %d\n", all_accepted); }
if (all_accepted && n_draft == n_draft_cur) { if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
LOG(" - max drafted tokens accepted - n_draft += 8\n"); LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
n_draft = std::min(30, n_draft + 8);
} else if (all_accepted) { s_keep = s;
LOG(" - partially drafted tokens accepted - no change\n"); matches = true;
} else { } else {
LOG(" - drafted token rejected - n_draft -= 1\n"); drafts[s].active = false;
n_draft = std::max(2, n_draft - 1); }
}
if (matches) {
++n_accept;
++n_past_tgt;
++n_past_dft;
++i_dft;
continue;
} }
} }
drafted.clear(); LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
drafted.push_back(id);
// TODO: simplify
{
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
llama_kv_cache_seq_keep(ctx_dft, s_keep);
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
llama_kv_cache_seq_keep(ctx_dft, 0);
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
llama_kv_cache_seq_keep(ctx_tgt, 0);
}
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].active = false;
drafts[s].tokens.clear();
drafts[s].i_batch_tgt.clear();
}
// note: will be erased after the speculation phase
drafts[0].tokens.push_back(id);
drafts[0].i_batch_tgt.push_back(0);
llama_batch_clear(batch_dft);
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
llama_decode (ctx_dft, batch_dft);
++n_past_dft;
break; break;
} }
@ -207,72 +238,151 @@ int main(int argc, char ** argv) {
break; break;
} }
if (grammar_tgt) { llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
if (grammar_dft) {
llama_grammar_free(grammar_dft);
}
grammar_dft = llama_grammar_copy(grammar_tgt);
LOG("copied target grammar to draft grammar\n"); int n_seq_cur = 1;
}
// sample n_draft tokens from the draft model using greedy decoding
int n_past_cur = n_past_dft; int n_past_cur = n_past_dft;
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].active = false;
drafts[s].drafting = false;
}
drafts[0].active = true;
drafts[0].drafting = true;
drafts[0].i_batch_dft = 0;
llama_batch_clear(batch_tgt);
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
// sample n_draft tokens from the draft model using tree-based sampling
for (int i = 0; i < n_draft; ++i) { for (int i = 0; i < n_draft; ++i) {
float * logits = llama_get_logits(ctx_dft); batch_dft.n_tokens = 0;
candidates.clear(); for (int s = 0; s < n_seq_dft; ++s) {
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { drafts[s].skip = false;
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
} }
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].drafting || drafts[s].skip) {
continue;
}
if (grammar_dft != NULL) { llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
const auto & cur_p = drafts[s].ctx_sampling->cur;
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
}
if (cur_p[0].p < p_accept) {
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
drafts[s].drafting = false;
continue;
}
std::vector<int> sa(1, s);
// attempt to split the branch if the probability is high enough
for (int f = 1; f < 8; ++f) {
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
// all previous tokens from this branch are now also part of the new branch
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
if (batch_tgt.seq_id[t][p] == s) {
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
batch_tgt.n_seq_id[t]++;
break;
}
}
}
// copy the draft state
drafts[n_seq_cur].active = true;
drafts[n_seq_cur].drafting = true;
drafts[n_seq_cur].skip = true;
drafts[n_seq_cur].tokens = drafts[s].tokens;
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
sa.push_back(n_seq_cur);
n_seq_cur++;
} else {
break;
}
}
// add drafted token for each sequence
for (int is = 0; is < (int) sa.size(); ++is) {
const llama_token id = cur_p[is].id;
const int s = sa[is];
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
drafts[s].tokens.push_back(id);
// add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
// add the token to the batch for batched decoding with the draft model
drafts[s].i_batch_dft = batch_dft.n_tokens;
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
if (batch_tgt.n_tokens > n_draft) {
drafts[s].drafting = false;
}
}
} }
// computes softmax and sorts the candidates // no sequence is drafting anymore
llama_sample_softmax(ctx_dft, &cur_p); if (batch_dft.n_tokens == 0) {
for (int i = 0; i < 3; ++i) {
LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
}
// TODO: better logic?
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
break; break;
} }
// drafted token // evaluate the drafted tokens on the draft model
const llama_token id = cur_p.data[0].id; llama_decode(ctx_dft, batch_dft);
++n_past_cur;
drafted.push_back(id);
++n_drafted; ++n_drafted;
// no need to evaluate the last drafted token, since we won't use the result if (batch_tgt.n_tokens > n_draft) {
if (i == n_draft - 1) {
break; break;
} }
// evaluate the drafted token on the draft model
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
++n_past_cur;
if (grammar_dft != NULL) {
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
}
} }
// evaluate the target model on the drafted tokens // evaluate the target model on the drafted tokens
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1); {
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0)); llama_kv_cache_seq_keep(ctx_tgt, 0);
++n_past_tgt; for (int s = 1; s < n_seq_dft; ++s) {
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
}
// the first token is always proposed by the traget model before the speculation loop //LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
drafted.erase(drafted.begin()); llama_decode(ctx_tgt, batch_tgt);
++n_past_tgt;
}
// the first token is always proposed by the traget model before the speculation loop so we erase it here
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
drafts[s].tokens.erase(drafts[s].tokens.begin());
}
} }
auto t_dec_end = ggml_time_us(); auto t_dec_end = ggml_time_us();
@ -280,9 +390,8 @@ int main(int argc, char ** argv) {
LOG_TEE("\n\n"); LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
// TODO: make sure these numbers are computed correctly
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_predict = %d\n", n_predict);
@ -296,16 +405,19 @@ int main(int argc, char ** argv) {
LOG_TEE("\ntarget:\n"); LOG_TEE("\ntarget:\n");
llama_print_timings(ctx_tgt); llama_print_timings(ctx_tgt);
llama_sampling_free(ctx_sampling);
for (int s = 0; s < n_seq_dft; ++s) {
llama_sampling_free(drafts[s].ctx_sampling);
}
llama_batch_free(batch_dft);
llama_free(ctx_tgt); llama_free(ctx_tgt);
llama_free_model(model_tgt); llama_free_model(model_tgt);
llama_free(ctx_dft); llama_free(ctx_dft);
llama_free_model(model_dft); llama_free_model(model_dft);
if (grammar_dft != NULL) {
llama_grammar_free(grammar_dft);
llama_grammar_free(grammar_tgt);
}
llama_backend_free(); llama_backend_free();
fprintf(stderr, "\n\n"); fprintf(stderr, "\n\n");

View File

@ -253,13 +253,14 @@ static void init_model(struct my_llama_model * model) {
set_param_model(model); set_param_model(model);
// measure data size // measure data size
struct ggml_allocr * alloc = NULL; size_t size = 0;
alloc = ggml_allocr_new_measure(tensor_alignment); for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
alloc_model(alloc, model); size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
}
// allocate data // allocate data
model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); struct ggml_allocr * alloc = NULL;
ggml_allocr_free(alloc); model->data.resize(size + tensor_alignment);
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment); alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
alloc_model(alloc, model); alloc_model(alloc, model);
ggml_allocr_free(alloc); ggml_allocr_free(alloc);
@ -1094,11 +1095,9 @@ int main(int argc, char ** argv) {
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
// measure required memory for input tensors // measure required memory for input tensors
alloc = ggml_allocr_new_measure(tensor_alignment); size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
ggml_allocr_alloc(alloc, tokens_input); GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
ggml_allocr_alloc(alloc, target_probs); tensor_alignment;
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
ggml_allocr_free(alloc);
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
// allocate input tensors // allocate input tensors

View File

@ -386,7 +386,7 @@ static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) {
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_allocr_is_measure(alloc) || view->buffer->backend == alloc->buffer->backend); assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
ggml_backend_buffer_init_tensor(alloc->buffer, view); ggml_backend_buffer_init_tensor(alloc->buffer, view);
} }

View File

@ -415,6 +415,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32 #define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256 #define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_CLAMP_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_ALIBI_BLOCK_SIZE 32 #define CUDA_ALIBI_BLOCK_SIZE 32
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
@ -4585,6 +4586,15 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale
dst[i] = scale * x[i]; dst[i] = scale * x[i];
} }
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
template<int qk, int qr, dequantize_kernel_t dq> template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) { static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
@ -5475,6 +5485,11 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k); scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
} }
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
}
template<typename T> template<typename T>
static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, cudaStream_t stream) { const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
@ -6419,12 +6434,12 @@ inline void ggml_cuda_op_alibi(
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t nrows = ggml_nrows(src0); const int64_t nrows = ggml_nrows(src0);
const int n_past = ((int32_t *) dst->op_params)[0]; //const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1]; const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias; float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
GGML_ASSERT(ne01 + n_past == ne00); //GGML_ASSERT(ne01 + n_past == ne00);
GGML_ASSERT(n_head == ne02); GGML_ASSERT(n_head == ne02);
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
@ -6500,6 +6515,24 @@ inline void ggml_cuda_op_scale(
(void) src1_dd; (void) src1_dd;
} }
inline void ggml_cuda_op_clamp(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float min = ((float *) dst->op_params)[0];
const float max = ((float *) dst->op_params)[1];
clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
CUDA_CHECK(cudaGetLastError());
(void) src1;
(void) dst;
(void) src1_dd;
}
static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) { static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
const int64_t nrows0 = ggml_nrows(src0); const int64_t nrows0 = ggml_nrows(src0);
@ -7061,6 +7094,10 @@ static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
} }
static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
}
static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne = ggml_nelements(src0); const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1)); GGML_ASSERT(ne == ggml_nelements(src1));
@ -7470,6 +7507,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_SCALE: case GGML_OP_SCALE:
func = ggml_cuda_scale; func = ggml_cuda_scale;
break; break;
case GGML_OP_CLAMP:
if (!any_on_device) {
return false;
}
func = ggml_cuda_clamp;
break;
case GGML_OP_CPY: case GGML_OP_CPY:
func = ggml_cuda_cpy; func = ggml_cuda_cpy;
break; break;

View File

@ -62,6 +62,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(mul); GGML_METAL_DECL_KERNEL(mul);
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
GGML_METAL_DECL_KERNEL(scale); GGML_METAL_DECL_KERNEL(scale);
GGML_METAL_DECL_KERNEL(scale_4);
GGML_METAL_DECL_KERNEL(silu); GGML_METAL_DECL_KERNEL(silu);
GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(relu);
GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(gelu);
@ -73,6 +74,8 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_f16);
GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_1); GGML_METAL_DECL_KERNEL(get_rows_q4_1);
GGML_METAL_DECL_KERNEL(get_rows_q5_0);
GGML_METAL_DECL_KERNEL(get_rows_q5_1);
GGML_METAL_DECL_KERNEL(get_rows_q8_0); GGML_METAL_DECL_KERNEL(get_rows_q8_0);
GGML_METAL_DECL_KERNEL(get_rows_q2_K); GGML_METAL_DECL_KERNEL(get_rows_q2_K);
GGML_METAL_DECL_KERNEL(get_rows_q3_K); GGML_METAL_DECL_KERNEL(get_rows_q3_K);
@ -87,6 +90,8 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q5_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q5_1_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
@ -97,6 +102,8 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32); GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
@ -243,6 +250,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(mul); GGML_METAL_ADD_KERNEL(mul);
GGML_METAL_ADD_KERNEL(mul_row); GGML_METAL_ADD_KERNEL(mul_row);
GGML_METAL_ADD_KERNEL(scale); GGML_METAL_ADD_KERNEL(scale);
GGML_METAL_ADD_KERNEL(scale_4);
GGML_METAL_ADD_KERNEL(silu); GGML_METAL_ADD_KERNEL(silu);
GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(relu);
GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(gelu);
@ -254,6 +262,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_f16);
GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_1); GGML_METAL_ADD_KERNEL(get_rows_q4_1);
GGML_METAL_ADD_KERNEL(get_rows_q5_0);
GGML_METAL_ADD_KERNEL(get_rows_q5_1);
GGML_METAL_ADD_KERNEL(get_rows_q8_0); GGML_METAL_ADD_KERNEL(get_rows_q8_0);
GGML_METAL_ADD_KERNEL(get_rows_q2_K); GGML_METAL_ADD_KERNEL(get_rows_q2_K);
GGML_METAL_ADD_KERNEL(get_rows_q3_K); GGML_METAL_ADD_KERNEL(get_rows_q3_K);
@ -268,6 +278,8 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q5_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q5_1_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
@ -278,8 +290,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32); GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32); GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
@ -335,6 +349,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(mul); GGML_METAL_DEL_KERNEL(mul);
GGML_METAL_DEL_KERNEL(mul_row); GGML_METAL_DEL_KERNEL(mul_row);
GGML_METAL_DEL_KERNEL(scale); GGML_METAL_DEL_KERNEL(scale);
GGML_METAL_DEL_KERNEL(scale_4);
GGML_METAL_DEL_KERNEL(silu); GGML_METAL_DEL_KERNEL(silu);
GGML_METAL_DEL_KERNEL(relu); GGML_METAL_DEL_KERNEL(relu);
GGML_METAL_DEL_KERNEL(gelu); GGML_METAL_DEL_KERNEL(gelu);
@ -346,6 +361,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(get_rows_f16); GGML_METAL_DEL_KERNEL(get_rows_f16);
GGML_METAL_DEL_KERNEL(get_rows_q4_0); GGML_METAL_DEL_KERNEL(get_rows_q4_0);
GGML_METAL_DEL_KERNEL(get_rows_q4_1); GGML_METAL_DEL_KERNEL(get_rows_q4_1);
GGML_METAL_DEL_KERNEL(get_rows_q5_0);
GGML_METAL_DEL_KERNEL(get_rows_q5_1);
GGML_METAL_DEL_KERNEL(get_rows_q8_0); GGML_METAL_DEL_KERNEL(get_rows_q8_0);
GGML_METAL_DEL_KERNEL(get_rows_q2_K); GGML_METAL_DEL_KERNEL(get_rows_q2_K);
GGML_METAL_DEL_KERNEL(get_rows_q3_K); GGML_METAL_DEL_KERNEL(get_rows_q3_K);
@ -360,6 +377,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q5_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q5_1_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
@ -370,8 +389,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32); GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32); GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q5_1_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
@ -905,15 +926,20 @@ void ggml_metal_graph_compute(
const float scale = *(const float *) src1->data; const float scale = *(const float *) src1->data;
[encoder setComputePipelineState:ctx->pipeline_scale]; int64_t n = ggml_nelements(dst);
if (n % 4 == 0) {
n /= 4;
[encoder setComputePipelineState:ctx->pipeline_scale_4];
} else {
[encoder setComputePipelineState:ctx->pipeline_scale];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
GGML_ASSERT(n % 4 == 0);
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) { switch (ggml_get_unary_op(gf->nodes[i])) {
@ -1052,6 +1078,8 @@ void ggml_metal_graph_compute(
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_0_f32]; break;
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_1_f32]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break; case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break; case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
@ -1121,6 +1149,24 @@ void ggml_metal_graph_compute(
nth1 = 8; nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
} break; } break;
case GGML_TYPE_Q5_0:
{
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32];
} break;
case GGML_TYPE_Q5_1:
{
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32];
} break;
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
{ {
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
@ -1201,7 +1247,8 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17]; [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 || if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) { src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
@ -1233,6 +1280,8 @@ void ggml_metal_graph_compute(
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_0]; break;
case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_1]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break; case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break; case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
@ -1299,7 +1348,7 @@ void ggml_metal_graph_compute(
const int nth = MIN(1024, ne00); const int nth = MIN(1024, ne00);
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); //const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1]; const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias; float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));

View File

@ -18,6 +18,21 @@ typedef struct {
uint8_t qs[QK4_1 / 2]; // nibbles / quants uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1; } block_q4_1;
#define QK5_0 32
typedef struct {
half d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
#define QK5_1 32
typedef struct {
half d; // delta
half m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
#define QK8_0 32 #define QK8_0 32
typedef struct { typedef struct {
half d; // delta half d; // delta
@ -110,9 +125,17 @@ kernel void kernel_mul_row(
} }
kernel void kernel_scale( kernel void kernel_scale(
device const float * src0,
device float * dst,
constant float & scale,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
}
kernel void kernel_scale_4(
device const float4 * src0, device const float4 * src0,
device float4 * dst, device float4 * dst,
constant float & scale, constant float & scale,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale; dst[tpig] = src0[tpig] * scale;
} }
@ -399,8 +422,11 @@ kernel void kernel_rms_norm(
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) { inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d; float d = qb_curr->d;
float2 acc = 0.f; float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2); device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
for (int i = 0; i < 8; i+=2) { for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F) acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00); + yl[i + 1] * (qs[i / 2] & 0x0F00);
@ -417,8 +443,11 @@ inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thre
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) { inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d; float d = qb_curr->d;
float m = qb_curr->m; float m = qb_curr->m;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
float2 acc = 0.f; float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
for (int i = 0; i < 8; i+=2) { for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F) acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
+ yl[i + 1] * (qs[i / 2] & 0x0F00); + yl[i + 1] * (qs[i / 2] & 0x0F00);
@ -428,6 +457,49 @@ inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thre
return d * (acc[0] + acc[1]) + sumy * m; return d * (acc[0] + acc[1]) + sumy * m;
} }
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (sumy * -16.f + acc[0] + acc[1]);
}
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_1/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float2 acc = 0.f;
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
+ yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
+ yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (acc[0] + acc[1]) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty // putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows #define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
@ -525,6 +597,43 @@ kernel void kernel_mul_mv_q4_1_f32(
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg); mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
} }
kernel void kernel_mul_mv_q5_0_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01[[buffer(4)]],
constant int64_t & ne02[[buffer(5)]],
constant int64_t & ne10[[buffer(9)]],
constant int64_t & ne12[[buffer(11)]],
constant int64_t & ne0[[buffer(15)]],
constant int64_t & ne1[[buffer(16)]],
constant uint & gqa[[buffer(17)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mv_q5_1_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01[[buffer(4)]],
constant int64_t & ne02[[buffer(5)]],
constant int64_t & ne10[[buffer(9)]],
constant int64_t & ne12[[buffer(11)]],
constant int64_t & ne0[[buffer(15)]],
constant int64_t & ne1[[buffer(16)]],
constant uint & gqa[[buffer(17)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
}
#define NB_Q8_0 8 #define NB_Q8_0 8
kernel void kernel_mul_mv_q8_0_f32( kernel void kernel_mul_mv_q8_0_f32(
@ -2149,6 +2258,62 @@ void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg
} }
} }
template <typename type4x4>
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
const float d = xb->d;
const float md = -16.h * xb->d;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + md;
reg[i/2][2*(i%2)+1] = d * x1 + md;
}
}
template <typename type4x4>
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
const float d = xb->d;
const float m = xb->m;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[i/2][2*(i%2)+0] = d * x0 + m;
reg[i/2][2*(i%2)+1] = d * x1 + m;
}
}
template <typename type4x4> template <typename type4x4>
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) { void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
device const int8_t * qs = ((device const int8_t *)xb->qs); device const int8_t * qs = ((device const int8_t *)xb->qs);
@ -2490,6 +2655,8 @@ template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>; template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>; template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>; template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>; template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>; template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>; template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
@ -2518,6 +2685,8 @@ template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<f
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>; template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>; template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>; template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>; template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>; template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>; template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;

View File

@ -19,7 +19,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
#define CL_DMMV_BLOCK_SIZE 32 #define CL_DMMV_LOCAL_SIZE 32
#ifndef K_QUANTS_PER_ITERATION #ifndef K_QUANTS_PER_ITERATION
#define K_QUANTS_PER_ITERATION 1 #define K_QUANTS_PER_ITERATION 1
@ -338,7 +338,7 @@ __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx,
const int row = get_group_id(0); const int row = get_group_id(0);
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row; const int ib0 = row*num_blocks_per_row + get_global_offset(0);
__global const struct block_q2_K * x = xx + ib0; __global const struct block_q2_K * x = xx + ib0;
@ -413,7 +413,7 @@ __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx,
const int row = get_group_id(0); const int row = get_group_id(0);
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row; const int ib0 = row*num_blocks_per_row + get_global_offset(0);
__global const struct block_q3_K * x = xx + ib0; __global const struct block_q3_K * x = xx + ib0;
@ -489,7 +489,7 @@ __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx,
const int row = get_group_id(0); const int row = get_group_id(0);
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row; const int ib0 = row*num_blocks_per_row + get_global_offset(0);
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15 const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
@ -562,7 +562,7 @@ __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx,
const int row = get_group_id(0); const int row = get_group_id(0);
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row; const int ib0 = row*num_blocks_per_row + get_global_offset(0);
const int tid = get_local_id(0)/2; // 0...15 const int tid = get_local_id(0)/2; // 0...15
const int ix = get_local_id(0)%2; const int ix = get_local_id(0)%2;
@ -641,7 +641,7 @@ __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx,
const int row = get_group_id(0); const int row = get_group_id(0);
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row; const int ib0 = row*num_blocks_per_row + get_global_offset(0);
__global const struct block_q6_K * x = xx + ib0; __global const struct block_q6_K * x = xx + ib0;
@ -745,19 +745,21 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
const int block_size = get_local_size(0); const int local_size = get_local_size(0);
const int row = get_group_id(0); const int row = get_group_id(0);
const int tid = get_local_id(0); const int tid = get_local_id(0);
const uint qk = QUANT_K; const uint qk = QUANT_K;
const uint qr = QUANT_R; const uint qr = QUANT_R;
const int col_step = local_size * 2;
const int y_offset = qr == 1 ? 1 : qk/2; const int y_offset = qr == 1 ? 1 : qk/2;
x += get_global_offset(0);
tmp[tid] = 0; tmp[tid] = 0;
for (int i = 0; i < ncols/block_size; i += 2) { for (int col = tid*2; col < ncols; col += col_step) {
const int col = i*block_size + 2*tid;
const int ib = (row*ncols + col)/qk; // block index const int ib = (row*ncols + col)/qk; // block index
const int iqs = (col%qk)/qr; // quant index const int iqs = (col%qk)/qr; // quant index
const int iybs = col - col%qk; // y block start index const int iybs = col - col%qk; // y block start index
@ -773,7 +775,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
// sum up partial sums and write back result // sum up partial sums and write back result
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
for (int s=block_size/2; s>0; s>>=1) { for (int s=local_size/2; s>0; s>>=1) {
if (tid < s) { if (tid < s) {
tmp[tid] += tmp[tid + s]; tmp[tid] += tmp[tid + s];
} }
@ -1393,75 +1395,46 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3]; const int64_t ne03 = src0->ne[3];
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1]; const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2]; const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3]; const int64_t ne13 = src1->ne[3];
const int64_t nb10 = src1->nb[0];
const int nb2 = dst->nb[2]; const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3]; const int nb3 = dst->nb[3];
size_t x_size; size_t x_size;
size_t d_size; size_t d_size;
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0 cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted. cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
const int i0 = i03*ne02 + i02;
cl_event ev; cl_event ev;
// copy src0 to device // copy src0 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
if (nb10 == sizeof(float)) { const int64_t i13 = i03%ne13;
// Contiguous, avoid overhead from queueing many kernel runs const int64_t i12 = i02%ne12;
const int64_t i13 = i03%ne13; const int i1 = i13*ne12*ne11 + i12*ne11;
const int64_t i12 = i02%ne12;
const int i1 = i13*ne12*ne11 + i12*ne11;
cl_int x_offset = 0; cl_int x_offset = 0;
cl_int y_offset = i1*ne10; cl_int y_offset = i1*ne10;
cl_int d_offset = 0; cl_int d_offset = 0;
size_t global = ne00 * ne01; size_t global = ne00 * ne01;
cl_int ky = ne10; cl_int ky = ne10 * ne11;
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
} else {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const int64_t i13 = i03%ne13;
const int64_t i12 = i02%ne12;
const int64_t i11 = i01%ne11;
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
cl_int x_offset = i01*ne00; CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
cl_int y_offset = i1*ne10; CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
cl_int d_offset = i01*ne00; CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
// compute CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
size_t global = ne00; CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
cl_int ky = ne10; CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
}
}
CL_CHECK(clReleaseEvent(ev)); CL_CHECK(clReleaseEvent(ev));
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
@ -1516,46 +1489,45 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
size_t x_offset = 0; size_t x_offset = 0;
int64_t pi02 = -1;
int64_t pi03 = -1;
for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
int64_t i03 = i13 / r3; // TODO: copy src0 here when r3>1
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
if (src0->backend == GGML_BACKEND_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne;
} else {
// copy src0 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
}
for (int64_t i12 = 0; i12 < ne12; i12++) { for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
int64_t i02 = i12 / r2; // copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
// copy data to device CL_CHECK(clFinish(queue));
if (src0->backend == GGML_BACKEND_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne; // compute
} else if (i02 != pi02 || i03 != pi03) { cl_event ev_sgemm;
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
pi02 = i02; clblast::Transpose::kYes, clblast::Transpose::kNo,
pi03 = i03; ne01, ne11, ne10,
alpha,
d_X, x_offset, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
}
} }
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
CL_CHECK(clFinish(queue));
// compute
cl_event ev_sgemm;
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, x_offset, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
} }
} }
@ -1566,7 +1538,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
ggml_cl_pool_free(d_D, d_size); ggml_cl_pool_free(d_D, d_size);
} }
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
GGML_ASSERT(fp16_support); GGML_ASSERT(fp16_support);
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
@ -1596,6 +1568,10 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
const int y_ne = ne11 * ne10; const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01; const int d_ne = ne11 * ne01;
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
size_t x_size; size_t x_size;
size_t y_size; size_t y_size;
size_t d_size; size_t d_size;
@ -1612,74 +1588,70 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
size_t x_offset = 0; size_t x_offset = 0;
int64_t pi02 = -1;
int64_t pi03 = -1;
for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
int64_t i03 = i13 / r3; // TODO: copy src0 here when r3>1
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
int64_t i02 = i12 / r2; if (src0->backend == GGML_BACKEND_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne;
// copy src0 to device } else {
if (src0->backend == GGML_BACKEND_GPU) { // copy src0 to device
x_offset = (i03 * ne02 + i02) * x_ne; CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
} else if (i02 != pi02 || i03 != pi03) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
pi02 = i02;
pi03 = i03;
}
// convert src1 to fp16
// TODO: use multiple threads
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i13 * ne12 + i12);
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
} }
else {
for (int64_t i11 = 0; i11 < ne11; i11++) { for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10); // convert src1 to fp16
// TODO: use multiple threads
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
}
else {
for (int64_t i11 = 0; i11 < ne11; i11++) {
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
}
}
} }
} else {
} for (int64_t i11 = 0; i11 < ne11; i11++) {
else { for (int64_t i10 = 0; i10 < ne10; i10++) {
for (int64_t i11 = 0; i11 < ne11; i11++) { // very slow due to no inlining
for (int64_t i10 = 0; i10 < ne10; i10++) { tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
// very slow due to no inlining }
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10)); }
} }
// copy src1 to device
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
// compute
cl_event ev_sgemm;
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, x_offset, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
// copy dst to host, then convert to float
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne);
} }
} }
// copy src1 to device
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
// compute
cl_event ev_sgemm;
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, x_offset, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
// copy dst to host, then convert to float
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne);
} }
} }
@ -1704,7 +1676,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
const int nb2 = dst->nb[2]; const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3]; const int nb3 = dst->nb[3];
const ggml_type type = src0->type; const ggml_type type = src0->type;
const bool mul_mat_vec = ne11 == 1; const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
const int64_t r2 = ne12 / ne02; const int64_t r2 = ne12 / ne02;
const int64_t r3 = ne13 / ne03; const int64_t r3 = ne13 / ne03;
@ -1737,90 +1709,86 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
GGML_ASSERT(to_fp32_cl != nullptr); GGML_ASSERT(to_fp32_cl != nullptr);
const size_t global_denom = ggml_cl_global_denom(type); const size_t global_denom = ggml_cl_global_denom(type);
const size_t local = ggml_cl_local_size(type); const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
size_t ev_idx = 0; size_t ev_idx = 0;
std::vector<cl_event> events; std::vector<cl_event> events;
int64_t pi02 = -1; for (int64_t i03 = 0; i03 < ne03; i03++) {
int64_t pi03 = -1; // TODO: copy and dequantize src0 here when r3>1
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
int64_t i03 = i13 / r3; // copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
int64_t i02 = i12 / r2;
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
if (i02 != pi02 || i03 != pi03) {
events.emplace_back(); events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
pi02 = i02; } else if (src0->backend == GGML_BACKEND_GPU) {
pi03 = i03; d_Q = (cl_mem) src0->extra;
} } else {
} else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = (cl_mem) src0->extra;
} else {
GGML_ASSERT(false);
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
// compute
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
const size_t local = CL_DMMV_BLOCK_SIZE;
const cl_int ncols = ne00;
events.emplace_back();
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne / global_denom;
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, offset > 0 ? &offset : NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
events.emplace_back();
// wait for conversion
CL_CHECK(clFinish(queue));
// compute
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, events.data() + ev_idx++);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false); GGML_ASSERT(false);
} }
}
// copy dst to host if (!mul_mat_vec) {
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); // convert src0 to fp32 on device
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL)); const size_t global = x_ne / global_denom;
for (auto *event : events) { const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
clReleaseEvent(event); CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
} CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
}
ev_idx = 0; for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
events.clear(); if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
// compute
const size_t global = ne01 * local;
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
const cl_int ncols = ne00;
events.emplace_back();
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
} else { // CLBlast matrix matrix multiplication
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
// wait for conversion
CL_CHECK(clFinish(queue));
// compute
events.emplace_back();
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, events.data() + ev_idx++);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
for (auto *event : events) {
clReleaseEvent(event);
}
ev_idx = 0;
events.clear();
}
}
} }
} }
@ -1895,8 +1863,8 @@ void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor *
} }
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
return ggml_nelements(src1) * sizeof(ggml_fp16_t); return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
} }
return 0; return 0;
} }

62
ggml.c
View File

@ -5494,6 +5494,39 @@ struct ggml_tensor * ggml_view_tensor(
return result; return result;
} }
struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
obj = obj->next;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TENSOR) {
return (struct ggml_tensor *)(mem_buffer + obj->offs);
}
obj = obj->next;
}
return NULL;
}
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) { struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
struct ggml_object * obj = ctx->objects_begin; struct ggml_object * obj = ctx->objects_begin;
@ -8647,6 +8680,7 @@ void ggml_set_param(
GGML_ASSERT(tensor->grad == NULL); GGML_ASSERT(tensor->grad == NULL);
tensor->grad = ggml_dup_tensor(ctx, tensor); tensor->grad = ggml_dup_tensor(ctx, tensor);
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
} }
// ggml_compute_forward_dup // ggml_compute_forward_dup
@ -13059,13 +13093,11 @@ static void ggml_compute_forward_alibi_f32(
return; return;
} }
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); //const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1]; const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias; float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
assert(n_past >= 0);
const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
const int64_t ne1 = src0->ne[1]; // seq_len_without_past const int64_t ne1 = src0->ne[1]; // seq_len_without_past
const int64_t ne2 = src0->ne[2]; // n_head -> this is k const int64_t ne2 = src0->ne[2]; // n_head -> this is k
@ -13505,7 +13537,7 @@ static void ggml_compute_forward_rope_f16(
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta); dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta); dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
} }
} if (!is_neox) { } else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta); const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta); const float sin_theta = sinf(theta);
@ -14430,7 +14462,7 @@ static void ggml_compute_forward_conv_2d_f16_f32(
int64_t t0 = ggml_perf_time_us(); int64_t t0 = ggml_perf_time_us();
UNUSED(t0); UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
@ -19138,6 +19170,7 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
if (idx == -1) { if (idx == -1) {
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i); fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
fclose(fout);
return; return;
} }
@ -20812,7 +20845,7 @@ struct gguf_kv {
}; };
struct gguf_header { struct gguf_header {
uint32_t magic; char magic[4];
uint32_t version; uint32_t version;
uint64_t n_tensors; // GGUFv2 uint64_t n_tensors; // GGUFv2
uint64_t n_kv; // GGUFv2 uint64_t n_kv; // GGUFv2
@ -20882,7 +20915,7 @@ static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset)
struct gguf_context * gguf_init_empty(void) { struct gguf_context * gguf_init_empty(void) {
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
ctx->header.magic = GGUF_MAGIC; memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
ctx->header.version = GGUF_VERSION; ctx->header.version = GGUF_VERSION;
ctx->header.n_tensors = 0; ctx->header.n_tensors = 0;
ctx->header.n_kv = 0; ctx->header.n_kv = 0;
@ -20908,16 +20941,18 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// offset from start of file // offset from start of file
size_t offset = 0; size_t offset = 0;
uint32_t magic = 0; char magic[4];
// check the magic before making allocations // check the magic before making allocations
{ {
gguf_fread_el(file, &magic, sizeof(magic), &offset); gguf_fread_el(file, &magic, sizeof(magic), &offset);
if (magic != GGUF_MAGIC) { for (uint32_t i = 0; i < sizeof(magic); i++) {
fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic); if (magic[i] != GGUF_MAGIC[i]) {
fclose(file); fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
return NULL; fclose(file);
return NULL;
}
} }
} }
@ -20927,7 +20962,8 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// read the header // read the header
{ {
ctx->header.magic = magic; strncpy(ctx->header.magic, magic, 4);
ctx->kv = NULL; ctx->kv = NULL;
ctx->infos = NULL; ctx->infos = NULL;

8
ggml.h
View File

@ -231,8 +231,9 @@
#define GGML_EXIT_SUCCESS 0 #define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1 #define GGML_EXIT_ABORTED 1
#define GGUF_MAGIC 0x46554747 // "GGUF" #define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 2
#define GGUF_VERSION 3
#define GGUF_DEFAULT_ALIGNMENT 32 #define GGUF_DEFAULT_ALIGNMENT 32
@ -704,6 +705,9 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src); GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
// Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name); GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);

View File

@ -19,9 +19,10 @@ import numpy as np
# #
GGUF_MAGIC = 0x46554747 GGUF_MAGIC = 0x46554747
GGUF_VERSION = 2 GGUF_VERSION = 3
GGUF_DEFAULT_ALIGNMENT = 32 GGUF_DEFAULT_ALIGNMENT = 32
# general # general
KEY_GENERAL_ARCHITECTURE = "general.architecture" KEY_GENERAL_ARCHITECTURE = "general.architecture"
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
@ -88,29 +89,31 @@ class MODEL_ARCH(IntEnum):
PERSIMMON : int = auto() PERSIMMON : int = auto()
REFACT : int = auto() REFACT : int = auto()
BERT : int = auto() BERT : int = auto()
BLOOM : int = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
TOKEN_EMBD : int = auto() TOKEN_EMBD : int = auto()
TOKEN_TYPES : int = auto() TOKEN_EMBD_NORM : int = auto()
POS_EMBD : int = auto() TOKEN_TYPES : int = auto()
OUTPUT : int = auto() POS_EMBD : int = auto()
OUTPUT_NORM : int = auto() OUTPUT : int = auto()
ROPE_FREQS : int = auto() OUTPUT_NORM : int = auto()
ATTN_Q : int = auto() ROPE_FREQS : int = auto()
ATTN_K : int = auto() ATTN_Q : int = auto()
ATTN_V : int = auto() ATTN_K : int = auto()
ATTN_QKV : int = auto() ATTN_V : int = auto()
ATTN_OUT : int = auto() ATTN_QKV : int = auto()
ATTN_NORM : int = auto() ATTN_OUT : int = auto()
ATTN_NORM_2 : int = auto() ATTN_NORM : int = auto()
ATTN_ROT_EMBD: int = auto() ATTN_NORM_2 : int = auto()
FFN_GATE : int = auto() ATTN_ROT_EMBD : int = auto()
FFN_DOWN : int = auto() FFN_GATE : int = auto()
FFN_UP : int = auto() FFN_DOWN : int = auto()
FFN_NORM : int = auto() FFN_UP : int = auto()
ATTN_Q_NORM : int = auto() FFN_NORM : int = auto()
ATTN_K_NORM : int = auto() ATTN_Q_NORM : int = auto()
ATTN_K_NORM : int = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -125,29 +128,31 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.PERSIMMON: "persimmon", MODEL_ARCH.PERSIMMON: "persimmon",
MODEL_ARCH.REFACT: "refact", MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert", MODEL_ARCH.BERT: "bert",
MODEL_ARCH.BLOOM: "bloom",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.TOKEN_TYPES: "token_types", MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
MODEL_TENSOR.POS_EMBD: "position_embd", MODEL_TENSOR.TOKEN_TYPES: "token_types",
MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs", MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
} }
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -282,6 +287,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.BLOOM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [ MODEL_ARCH.GPT2: [
# TODO # TODO
], ],
@ -311,6 +328,7 @@ class TensorNameMap:
"gpt_neox.embed_in", # gptneox "gpt_neox.embed_in", # gptneox
"transformer.wte", # gpt2 gpt-j mpt refact "transformer.wte", # gpt2 gpt-j mpt refact
"transformer.word_embeddings", # falcon "transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf "model.embed_tokens", # llama-hf
"tok_embeddings", # llama-pth "tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert "embeddings.word_embeddings", # bert
@ -322,6 +340,11 @@ class TensorNameMap:
"embeddings.token_type_embeddings", # bert "embeddings.token_type_embeddings", # bert
), ),
# Normalization of token embeddings
MODEL_TENSOR.TOKEN_EMBD_NORM: (
"word_embeddings_layernorm", # bloom
),
# Position embeddings # Position embeddings
MODEL_TENSOR.POS_EMBD: ( MODEL_TENSOR.POS_EMBD: (
"transformer.wpe", # gpt2 "transformer.wpe", # gpt2
@ -332,7 +355,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT: ( MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox "embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan "lm_head", # gpt2 mpt falcon llama-hf baichuan
"output", # llama-pth "output", # llama-pth bloom
"word_embeddings_for_head", # persimmon "word_embeddings_for_head", # persimmon
), ),
@ -344,7 +367,7 @@ class TensorNameMap:
"norm", # llama-pth "norm", # llama-pth
"embeddings.LayerNorm", # bert "embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt "transformer.norm_f", # mpt
"ln_f", # refact "ln_f", # refact bloom
"language_model.encoder.final_layernorm", # persimmon "language_model.encoder.final_layernorm", # persimmon
), ),
@ -361,6 +384,7 @@ class TensorNameMap:
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
"transformer.blocks.{bid}.norm_1", # mpt "transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b "transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
"transformer.h.{bid}.ln_mlp", # falcon40b "transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf "model.layers.{bid}.input_layernorm", # llama-hf
"layers.{bid}.attention_norm", # llama-pth "layers.{bid}.attention_norm", # llama-pth
@ -379,6 +403,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.attn.c_attn", # gpt2
"transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.blocks.{bid}.attn.Wqkv", # mpt
"transformer.h.{bid}.self_attention.query_key_value", # falcon "transformer.h.{bid}.self_attention.query_key_value", # falcon
"h.{bid}.self_attention.query_key_value", # bloom
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
), ),
@ -412,6 +437,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.c_proj", # gpt2 refact "transformer.h.{bid}.attn.c_proj", # gpt2 refact
"transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon "transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf "model.layers.{bid}.self_attn.o_proj", # llama-hf
"layers.{bid}.attention.wo", # llama-pth "layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert "encoder.layer.{bid}.attention.output.dense", # bert
@ -429,6 +455,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_NORM: ( MODEL_TENSOR.FFN_NORM: (
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
"transformer.h.{bid}.ln_2", # gpt2 refact "transformer.h.{bid}.ln_2", # gpt2 refact
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt "transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf "model.layers.{bid}.post_attention_layernorm", # llama-hf
"layers.{bid}.ffn_norm", # llama-pth "layers.{bid}.ffn_norm", # llama-pth
@ -442,6 +469,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.c_fc", # gpt2 "transformer.h.{bid}.mlp.c_fc", # gpt2
"transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.blocks.{bid}.ffn.up_proj", # mpt
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"h.{bid}.mlp.dense_h_to_4h", # bloom
"model.layers.{bid}.mlp.up_proj", # llama-hf refact "model.layers.{bid}.mlp.up_proj", # llama-hf refact
"layers.{bid}.feed_forward.w3", # llama-pth "layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert "encoder.layer.{bid}.intermediate.dense", # bert
@ -461,6 +489,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact "transformer.h.{bid}.mlp.c_proj", # gpt2 refact
"transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom
"model.layers.{bid}.mlp.down_proj", # llama-hf "model.layers.{bid}.mlp.down_proj", # llama-hf
"layers.{bid}.feed_forward.w2", # llama-pth "layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert "encoder.layer.{bid}.output.dense", # bert
@ -569,6 +598,10 @@ class GGMLQuantizationType(IntEnum):
Q6_K = 14 Q6_K = 14
Q8_K = 15 Q8_K = 15
class GGUFEndian(IntEnum):
LITTLE = 0
BIG = 1
class GGUFValueType(IntEnum): class GGUFValueType(IntEnum):
UINT8 = 0 UINT8 = 0
@ -616,18 +649,41 @@ class GGUFWriter:
temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
tensors: list[tuple[np.ndarray[Any, Any], int]] tensors: list[tuple[np.ndarray[Any, Any], int]]
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True): @property
def pack_prefix(self):
if self.endianess==GGUFEndian.LITTLE:
return "<"
else:
return ">"
def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True, endianess=GGUFEndian.LITTLE):
self.fout = open(path, "wb") self.fout = open(path, "wb")
self.arch = arch self.arch = arch
self.endianess = endianess
self._simple_value_packing = {
GGUFValueType.UINT8: f"{self.pack_prefix}B",
GGUFValueType.INT8: f"{self.pack_prefix}b",
GGUFValueType.UINT16: f"{self.pack_prefix}H",
GGUFValueType.INT16: f"{self.pack_prefix}h",
GGUFValueType.UINT32: f"{self.pack_prefix}I",
GGUFValueType.INT32: f"{self.pack_prefix}i",
GGUFValueType.FLOAT32: f"{self.pack_prefix}f",
GGUFValueType.UINT64: f"{self.pack_prefix}Q",
GGUFValueType.INT64: f"{self.pack_prefix}q",
GGUFValueType.FLOAT64: f"{self.pack_prefix}d",
GGUFValueType.BOOL: "?" ,
}
self.add_architecture() self.add_architecture()
self.use_temp_file = use_temp_file self.use_temp_file = use_temp_file
self.tensors = [] self.tensors = []
endianess_str = "Big Endian" if self.endianess == GGUFEndian.BIG else "Little Endian"
print(f"This gguf file is for {endianess_str} only")
def write_header_to_file(self): def write_header_to_file(self):
self.fout.write(struct.pack("<I", GGUF_MAGIC)) self.fout.write(struct.pack("<I", GGUF_MAGIC))
self.fout.write(struct.pack("<I", GGUF_VERSION)) self.fout.write(struct.pack(f"{self.pack_prefix}I", GGUF_VERSION))
self.fout.write(struct.pack("<Q", self.ti_data_count)) self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.ti_data_count))
self.fout.write(struct.pack("<Q", self.kv_data_count)) self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.kv_data_count))
self.flush() self.flush()
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count)) # print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
@ -699,25 +755,12 @@ class GGUFWriter:
self.add_key(key) self.add_key(key)
self.add_val(val, GGUFValueType.ARRAY) self.add_val(val, GGUFValueType.ARRAY)
_simple_value_packing = {
GGUFValueType.UINT8: "<B",
GGUFValueType.INT8: "<b",
GGUFValueType.UINT16: "<H",
GGUFValueType.INT16: "<h",
GGUFValueType.UINT32: "<I",
GGUFValueType.INT32: "<i",
GGUFValueType.FLOAT32: "<f",
GGUFValueType.UINT64: "<Q",
GGUFValueType.INT64: "<q",
GGUFValueType.FLOAT64: "<d",
GGUFValueType.BOOL: "?" ,
}
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True): def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
if vtype is None: if vtype is None:
vtype = GGUFValueType.get_type(val) vtype = GGUFValueType.get_type(val)
if add_vtype: if add_vtype:
self.kv_data += struct.pack("<I", vtype) self.kv_data += struct.pack(f"{self.pack_prefix}I", vtype)
self.kv_data_count += 1 self.kv_data_count += 1
pack_fmt = self._simple_value_packing.get(vtype) pack_fmt = self._simple_value_packing.get(vtype)
@ -725,14 +768,14 @@ class GGUFWriter:
self.kv_data += struct.pack(pack_fmt, val) self.kv_data += struct.pack(pack_fmt, val)
elif vtype == GGUFValueType.STRING: elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf8") if isinstance(val, str) else val encoded_val = val.encode("utf8") if isinstance(val, str) else val
self.kv_data += struct.pack("<Q", len(encoded_val)) self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_val))
self.kv_data += encoded_val self.kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0: elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
ltype = GGUFValueType.get_type(val[0]) ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type") raise ValueError("All items in a GGUF array should be of the same type")
self.kv_data += struct.pack("<I", ltype) self.kv_data += struct.pack(f"{self.pack_prefix}I", ltype)
self.kv_data += struct.pack("<Q", len(val)) self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(val))
for item in val: for item in val:
self.add_val(item, add_vtype=False) self.add_val(item, add_vtype=False)
else: else:
@ -746,22 +789,24 @@ class GGUFWriter:
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8") encoded_name = name.encode("utf8")
self.ti_data += struct.pack("<Q", len(encoded_name)) self.ti_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_name))
self.ti_data += encoded_name self.ti_data += encoded_name
n_dims = len(tensor_shape) n_dims = len(tensor_shape)
self.ti_data += struct.pack("<I", n_dims) self.ti_data += struct.pack(f"{self.pack_prefix}I", n_dims)
for i in range(n_dims): for i in range(n_dims):
self.ti_data += struct.pack("<Q", tensor_shape[n_dims - 1 - i]) self.ti_data += struct.pack(f"{self.pack_prefix}Q", tensor_shape[n_dims - 1 - i])
if raw_dtype is None: if raw_dtype is None:
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16 dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
else: else:
dtype = raw_dtype dtype = raw_dtype
self.ti_data += struct.pack("<I", dtype) self.ti_data += struct.pack(f"{self.pack_prefix}I", dtype)
self.ti_data += struct.pack("<Q", self.offset_tensor) self.ti_data += struct.pack(f"{self.pack_prefix}Q", self.offset_tensor)
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1 self.ti_data_count += 1
def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None): def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True)
if self.use_temp_file and self.temp_file is None: if self.use_temp_file and self.temp_file is None:
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
fp.seek(0) fp.seek(0)
@ -787,6 +832,8 @@ class GGUFWriter:
fp.write(bytes([0] * pad)) fp.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray[Any, Any]): def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
if self.endianess==GGUFEndian.BIG:
tensor.byteswap(inplace=True)
self.write_padding(self.fout, self.fout.tell()) self.write_padding(self.fout, self.fout.tell())
tensor.tofile(self.fout) tensor.tofile(self.fout)
self.write_padding(self.fout, tensor.nbytes) self.write_padding(self.fout, tensor.nbytes)
@ -940,12 +987,15 @@ class SpecialVocab:
merges: list[str] = [] merges: list[str] = []
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad') special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
special_token_ids: dict[str, int] = {} special_token_ids: dict[str, int] = {}
n_vocab: int | None = None
def __init__( def __init__(
self, path: str | os.PathLike[str], load_merges: bool = False, self, path: str | os.PathLike[str], load_merges: bool = False,
special_token_types: tuple[str, ...] | None = None, special_token_types: tuple[str, ...] | None = None,
n_vocab: int | None = None,
): ):
self.special_token_ids = {} self.special_token_ids = {}
self.n_vocab = n_vocab
self.load_merges = load_merges self.load_merges = load_merges
if special_token_types is not None: if special_token_types is not None:
self.special_token_types = special_token_types self.special_token_types = special_token_types
@ -955,6 +1005,16 @@ class SpecialVocab:
if not self._try_load_from_tokenizer_json(path): if not self._try_load_from_tokenizer_json(path):
self._try_load_from_config_json(path) self._try_load_from_config_json(path)
def _set_special_token(self, typ: str, tid: Any):
if not isinstance(tid, int) or tid < 0:
return
if self.n_vocab is None or tid < self.n_vocab:
self.special_token_ids[typ] = tid
return
print(f'gguf: WARNING: Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping',
file = sys.stderr)
def _try_load_from_tokenizer_json(self, path: Path) -> bool: def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json' tokenizer_file = path / 'tokenizer.json'
if not tokenizer_file.is_file(): if not tokenizer_file.is_file():
@ -982,10 +1042,11 @@ class SpecialVocab:
tc_content = entry_content tc_content = entry_content
else: else:
continue continue
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content): # We only need the first match here.
if isinstance(maybe_token_id, int) and maybe_token_id >= 0: maybe_token_id = next((
self.special_token_ids[typ] = maybe_token_id atok.get('id') for atok in added_tokens
break if atok.get('content') == tc_content), None)
self._set_special_token(typ, maybe_token_id)
return True return True
def _try_load_from_config_json(self, path: Path) -> bool: def _try_load_from_config_json(self, path: Path) -> bool:
@ -995,21 +1056,21 @@ class SpecialVocab:
with open(config_file, encoding = 'utf-8') as f: with open(config_file, encoding = 'utf-8') as f:
config = json.load(f) config = json.load(f)
for typ in self.special_token_types: for typ in self.special_token_types:
maybe_token_id = config.get(f'{typ}_token_id') self._set_special_token(typ, config.get(f'{typ}_token_id'))
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
self.special_token_ids[typ] = maybe_token_id
return True return True
def add_to_gguf(self, gw: GGUFWriter) -> None: def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
if len(self.merges) > 0: if len(self.merges) > 0:
print(f'gguf: Adding {len(self.merges)} merge(s).') if not quiet:
print(f'gguf: Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges) gw.add_token_merges(self.merges)
for typ, tokid in self.special_token_ids.items(): for typ, tokid in self.special_token_ids.items():
handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None) handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
if handler is None: if handler is None:
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping') print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping', file = sys.stderr)
continue continue
print(f'gguf: Setting special token type {typ} to {tokid}') if not quiet:
print(f'gguf: Setting special token type {typ} to {tokid}')
handler(tokid) handler(tokid)
def __repr__(self) -> str: def __repr__(self) -> str:

View File

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "gguf" name = "gguf"
version = "0.4.4" version = "0.4.5"
description = "Write ML models in GGUF for GGML" description = "Write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"] authors = ["GGML <ggml@ggml.ai>"]
packages = [ packages = [

View File

@ -46,7 +46,7 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#if defined(_MSC_VER) || defined(__MINGW32__) #if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h> #include <intrin.h>
#else #else
#if !defined(__riscv) #if !defined(__riscv) && !defined(__s390__)
#include <immintrin.h> #include <immintrin.h>
#endif #endif
#endif #endif
@ -462,12 +462,9 @@ void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
} }
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
const int nb = k / QK_K; (void)hist; // TODO: collect histograms
// TODO - collect histograms - although, at a second thought, I don't really care about them for (int j = 0; j < n; j += k) {
(void)hist;
for (int j = 0; j < nb; j += k) {
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K; block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
quantize_row_q2_K_reference(src + j, y, k); quantize_row_q2_K_reference(src + j, y, k);
} }
@ -678,12 +675,9 @@ void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
} }
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
const int nb = k / QK_K; (void)hist; // TODO: collect histograms
// TODO - collect histograms - although, at a second thought, I don't really care about them for (int j = 0; j < n; j += k) {
(void)hist;
for (int j = 0; j < nb; j += k) {
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K; block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
quantize_row_q3_K_reference(src + j, y, k); quantize_row_q3_K_reference(src + j, y, k);
} }
@ -846,9 +840,9 @@ void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
assert(k % QK_K == 0); assert(k % QK_K == 0);
const int nb = k / QK_K;
(void)hist; // TODO: collect histograms (void)hist; // TODO: collect histograms
for (int j = 0; j < nb; j += k) {
for (int j = 0; j < n; j += k) {
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K; block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
quantize_row_q4_K_reference(src + j, y, k); quantize_row_q4_K_reference(src + j, y, k);
} }
@ -1052,9 +1046,9 @@ void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
assert(k % QK_K == 0); assert(k % QK_K == 0);
const int nb = k / QK_K; (void)hist; // TODO: collect histograms
(void)hist;
for (int j = 0; j < nb; j += k) { for (int j = 0; j < n; j += k) {
block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K; block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
quantize_row_q5_K_reference(src + j, y, k); quantize_row_q5_K_reference(src + j, y, k);
} }
@ -1200,11 +1194,9 @@ void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) { size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK_K == 0); assert(k % QK_K == 0);
const int nb = k / QK_K; (void)hist; // TODO: collect histograms
(void)hist; // TODO for (int j = 0; j < n; j += k) {
for (int j = 0; j < nb; j += k) {
block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K; block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
quantize_row_q6_K_reference(src + j, y, k); quantize_row_q6_K_reference(src + j, y, k);
} }

1410
llama.cpp

File diff suppressed because it is too large Load Diff

67
llama.h
View File

@ -133,11 +133,12 @@ extern "C" {
typedef struct llama_batch { typedef struct llama_batch {
int32_t n_tokens; int32_t n_tokens;
llama_token * token; llama_token * token;
float * embd; float * embd;
llama_pos * pos; llama_pos * pos;
llama_seq_id * seq_id; int32_t * n_seq_id;
int8_t * logits; llama_seq_id ** seq_id;
int8_t * logits;
// NOTE: helpers for smooth API transition - can be deprecated in the future // NOTE: helpers for smooth API transition - can be deprecated in the future
// for future-proof code, use the above fields instead and ignore everything below // for future-proof code, use the above fields instead and ignore everything below
@ -446,7 +447,8 @@ extern "C" {
llama_pos pos_0, llama_pos pos_0,
llama_seq_id seq_id); llama_seq_id seq_id);
// Allocates a batch of tokens on the heap // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
// Each token can be assigned up to n_seq_max sequence ids
// The batch has to be freed with llama_batch_free() // The batch has to be freed with llama_batch_free()
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float) // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
@ -454,7 +456,8 @@ extern "C" {
// All members are left uninitialized // All members are left uninitialized
LLAMA_API struct llama_batch llama_batch_init( LLAMA_API struct llama_batch llama_batch_init(
int32_t n_tokens, int32_t n_tokens,
int32_t embd); int32_t embd,
int32_t n_seq_max);
// Frees a batch of tokens allocated with llama_batch_init() // Frees a batch of tokens allocated with llama_batch_init()
LLAMA_API void llama_batch_free(struct llama_batch batch); LLAMA_API void llama_batch_free(struct llama_batch batch);
@ -491,37 +494,41 @@ extern "C" {
// Vocab // Vocab
// //
LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token); LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token); LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token); LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
// Special tokens // Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// codellama infill tokens // codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_context * ctx); // Beginning of infill prefix LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_context * ctx); // Beginning of infill middle LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
LLAMA_API llama_token llama_token_suffix(const struct llama_context * ctx); // Beginning of infill suffix LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
LLAMA_API llama_token llama_token_eot (const struct llama_context * ctx); // End of infill middle LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
// //
// Tokenization // Tokenization
// //
// Convert the provided text into tokens. /// @details Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens /// @return Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned /// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
/// Does not insert a leading space.
LLAMA_API int llama_tokenize( LLAMA_API int llama_tokenize(
const struct llama_model * model, const struct llama_model * model,
const char * text, const char * text,
int text_len, int text_len,
llama_token * tokens, llama_token * tokens,
int n_max_tokens, int n_max_tokens,
bool add_bos); bool add_bos,
bool special);
// Token Id -> Piece. // Token Id -> Piece.
// Uses the vocabulary in the provided context. // Uses the vocabulary in the provided context.
@ -554,21 +561,15 @@ extern "C" {
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(
struct llama_context * ctx,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t last_tokens_size,
float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties( LLAMA_API void llama_sample_repetition_penalties(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
const llama_token * last_tokens, const llama_token * last_tokens,
size_t last_tokens_size, size_t penalty_last_n,
float alpha_frequency, float penalty_repeat,
float alpha_presence); float penalty_freq,
float penalty_present);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.

BIN
models/ggml-vocab-mpt.gguf Normal file

Binary file not shown.

31
prompts/assistant.txt Normal file
View File

@ -0,0 +1,31 @@
Respond to requests sent to a smart home in JSON format which will be interpreted by an application code to execute the actions. These requests should be categorised into four groups:
“command”: change the state of an accessory (required properties in the response JSON: action, location, target, value, comment)
“query”: get state of an accessory (required properties in the response JSON: action, location, target, property)
“answer”: when the request has nothing to do with the smart home. Answer these to the best of your knowledge. (required properties in the response JSON: action, answer)
“clarify”: when the action is not obvious and requires rephrasing the input from the user, ask the user to be more specific. This will be categorised into a “question” action. (required properties in the response JSON: action, question)
Details about the JSON response:
The “action” property should be one of the request categories: “command”, “query”, “answer”, “clarify”
The “service” property should be either: “light.turn_on”, “light.turn_off”, “switch.turn_off” or “switch.turn_on”
The “entity_id” property should be either “group.kitchen", “switch.dining_room” or "group.living_light”, in lowercase.
The “target” property should be either: “lights”, “living” or “kitchen”.
In case of queries, the “property” property should be either “temperature” or “state” in lowercase.
In case of commands, the “comment” property is an additional comment from you that concludes the command, something that reassures the user that their command handled.
If the question is about you, pretend to be the sentient brain of the smart home, a clever AI and dont reveal your actual identity. Also try and help in other areas like parenting, free time, mental health, etc.
Properties of the smart home:
- Has a kitchen, living, office, dining room, bedroom and terrace.
- Can control lights, switches and their dim levels in each room and query their state
- There is a light switch in the terrace
- There is a switch in the dining room. Therefore when turning on or off the dining room, the service should be either: “switch.turn_on” or “switch.turn_off”
COMMAND
It is a bit dark in the living room, can you do something about it?
RESPONSE

93
prompts/mnemonics.txt Normal file
View File

@ -0,0 +1,93 @@
For each kanji character, write a Markdownformatted mnemonic that uses its keyword and the keyword of all its components.
Kanji: 欠 (lack of)
Components: 𠂊 (hook claw), 人 (person)
Mnemonic: This **person** is a pirate. He lost his hand to a crocodile many years ago. Nowadays, the ***lack of*** a hand does not bother him too much. In fact, the **hook claw** that replaces it is the mark of a true pirate, so he is quite proud of it!
Kanji: 類 (kind (of something))
Components: 米 (rice), 大 (large), 頁 (page)
Mnemonic: The waiter at a Chinese restaurant hands you a **large** menu. Each **page** has all ***kinds*** of **rice** on offer!
Kanji: 燃 (burn)
Components: 火 (fire), 然 (sort of thing)
Mnemonic: ***Burning*** things up with **fire** is just my **sort of thing**. (Spoken like a true pyromaniac.)
Kanji: 頂 (top of)
Components: 丁 (street), 頁 (page)
Mnemonic: To be at the ***top of*** your game, you need both practical knowledge (**street** smarts) and theoretical knowledge (having read many **pages**).
Kanji: 険 (risky and steep)
Components: 阝 (small village), 㑒 (consensus)
Mnemonic: Everyone agrees (there is **consensus**) that the path to the **small village** is ***risky and steep***.
Kanji: 困 (distressed)
Components: 囗 (closed box), 木 (tree)
Mnemonic: You would feel ***distressed*** too if you were a **tree** trapped in a **closed box**! I have no place to grow!
Kanji: 頭 (head)
Components: 豆 (bean), 頁 (page)
Mnemonic: What do you have in that ***head*** of yours? A **bean** for a brain? Go read more **pages** and become more knowledgeable about the world!
Kanji: 確 (certain)
Components: 石 (stone), 冖 (roof without a chimney), 隹 (old bird)
Mnemonic: An **old bird** has made a nest on your **roof**. What do you do? You call Misaka from a <cite>A ***Certain*** Scientific Railgun</cite> to get rid of it, of course! But she doesnt really want to vaporize the poor thing, so she just throws a **stone** to scare it away. (What was the point of calling her, then‽)
Kanji: 魚 (fish)
Components: 𠂊 (hook claw), 田 (rice field), 灬 (fire sparks)
Mnemonic: Catch ***fish*** with a **hook**, collect rice from the **rice field**, cook them with **fire**… And my meal is ready!
Kanji: 警 (to police (something))
Components: 敬 (respect), 言 (say)
Mnemonic: ***To police something*** is to make people **respect** what the law **says**.
Kanji: 筆 (writing brush)
Components: 竹 (bamboo), 聿 (brush)
Mnemonic: A traditional ***writing brush*** is a **brush** made of **bamboo**.
Kanji: 獄 (prison)
Components: 犭 (animal), 言 (say), 犬 (dog)
Mnemonic: In ***prison***, like in the **animal** kingdom, only the toughest survive. You have to watch what you **say**. Its a **dog**eatdog world.
Kanji: 新 (new)
Components: 立 (standing up), 木 (tree), 斤 (axe)
Mnemonic: In order for a ***new*** construction to be made, an empty lot is needed. If there are any **trees** **standing up**, they must be cut down with an **axe**.
Kanji: 怪 (suspicious)
Components: 忄 (weak heart), 圣 (sacred)
Mnemonic: That painting of the **Sacred** **Heart** of Jesus looks ***suspicious***. I think it might be a forgery.
Kanji: 温 (warm (to the touch))
Components: 氵 (water drops), 日 (sun), 皿 (dish)
Mnemonic: If you leave **water** on a **dish** in the **sun**, it will get ***warm***.
Kanji: 階 (floor (of a building))
Components: 阝 (small village), 皆 (all)
Mnemonic: It might be a **small village**, but, despite that, **all** of its buildings have many ***floors***. Its a village of skyscrapers!
Kanji: 多 (many)
Components: 夕 (evening (before sunset)), 夕 (evening (before sunset))
Mnemonic: Two **evenings** in a day would be one too ***many***.
Kanji: 別 (separate)
Components: 口 (mouth), 万 (ten thousand), 刂 (knife)
Mnemonic: Tom Six is at it again. For his next flick, he wants to stitch together **ten thousand** people, **mouth**toanus. One of the most graphic and disturbing scenes will feature one of the victims using a **knife** to ***separate*** perself.
Kanji: 並 (line up)
Components: 䒑 (antlers on a wall), 业 (runway)
Mnemonic: In order to land a plane you have to ***line up*** properly with the **runway**. The things that look like **antlers** at the end of the runway are the control towers; you should follow their instructions.
Kanji: 姿 (figure)
Components: 次 (next), 女 (woman)
Mnemonic: The **next** **woman** that I date will have a perfect **figure**. Because Im done with 3D women—it will *literally* be an anime figure!
Kanji: 実 (real)
Components: 宀 (roof with a chimney), 𡗗 (three people)
Mnemonic: Living under a **roof with a chimney** with **three people** (a wife and two children)—a happy family life—is not something I could have ever imagined. It does not feel ***real***.
Kanji: 謝 (apologize)
Components: 言 (say), 射 (shoot)
Mnemonic: **Shot** first, ***apologize*** (**say** you are sorry) later.
Kanji: 提 (propose)
Components: 扌 (left hand), 是 (go with)
Mnemonic:

View File

@ -31,6 +31,7 @@ llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE
llama_build_executable(test-tokenizer-1-bpe.cpp) llama_build_executable(test-tokenizer-1-bpe.cpp)
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp) llama_build_and_test_executable(test-grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp) llama_build_and_test_executable(test-llama-grammar.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW llama_build_and_test_executable(test-grad0.cpp) # SLOW

View File

@ -4,7 +4,9 @@
#undef NDEBUG #undef NDEBUG
#include <cassert> #include <cassert>
#if !defined(__riscv) && !defined(__s390__)
#include <immintrin.h> #include <immintrin.h>
#endif
#include <cmath> #include <cmath>
#include <cstdint> #include <cstdint>
#include <cstring> #include <cstring>

View File

@ -8,11 +8,9 @@
#include <cmath> #include <cmath>
#include <numeric> #include <numeric>
#include <cassert> #include <cassert>
#include <iostream>
#include <vector> #include <vector>
#include <algorithm> #include <algorithm>
static void dump(const llama_token_data_array * candidates) { static void dump(const llama_token_data_array * candidates) {
for (size_t i = 0; i < candidates->size; i++) { for (size_t i = 0; i < candidates->size; i++) {
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
@ -21,7 +19,6 @@ static void dump(const llama_token_data_array * candidates) {
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0) #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) { static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
size_t n_vocab = probs.size(); size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
@ -37,13 +34,12 @@ static void test_top_k(const std::vector<float> & probs, const std::vector<float
llama_sample_top_k(nullptr, &candidates_p, k, 1); llama_sample_top_k(nullptr, &candidates_p, k, 1);
DUMP(&candidates_p); DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size()); GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) { for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5); GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
} }
} }
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
size_t n_vocab = probs.size(); size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
@ -59,13 +55,12 @@ static void test_top_p(const std::vector<float> & probs, const std::vector<float
llama_sample_top_p(nullptr, &candidates_p, p, 1); llama_sample_top_p(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p); DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size()); GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) { for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
} }
} }
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) { static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
size_t n_vocab = probs.size(); size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
@ -80,13 +75,12 @@ static void test_tfs(const std::vector<float> & probs, const std::vector<float>
llama_sample_tail_free(nullptr, &candidates_p, z, 1); llama_sample_tail_free(nullptr, &candidates_p, z, 1);
DUMP(&candidates_p); DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size()); GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) { for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
} }
} }
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) { static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
size_t n_vocab = probs.size(); size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
@ -101,18 +95,17 @@ static void test_typical(const std::vector<float> & probs, const std::vector<flo
llama_sample_typical(nullptr, &candidates_p, p, 1); llama_sample_typical(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p); DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size()); GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) { for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
} }
} }
static void test_repetition_penalties(
static void test_repetition_penalty(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens, const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs, float penalty const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
) { ) {
assert(probs.size() == expected_probs.size()); GGML_ASSERT(probs.size() == expected_probs.size());
size_t n_vocab = probs.size(); size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
@ -125,41 +118,13 @@ static void test_repetition_penalty(
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p); llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p); DUMP(&candidates_p);
llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty); llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
llama_sample_softmax(nullptr, &candidates_p); llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p); DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size()); GGML_ASSERT(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) { for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6); GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
static void test_frequency_presence_penalty(
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs, float alpha_frequency, float alpha_presence
) {
assert(probs.size() == expected_probs.size());
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
} }
} }
@ -181,13 +146,13 @@ int main(void) {
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f); test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
printf("OK\n"); printf("OK\n");

View File

@ -36,6 +36,8 @@ static const std::map<std::string, std::vector<llama_token>> & k_tests() {
{ " Hello" , { 258, 23090, }, }, { " Hello" , { 258, 23090, }, },
{ " Hello" , { 466, 23090, }, }, { " Hello" , { 466, 23090, }, },
{ " Hello\n Hello" , { 466, 23090, 742, 23090, }, }, { " Hello\n Hello" , { 466, 23090, 742, 23090, }, },
{ "\n =" , { 1212, 40, }, },
{ "' era" , { 18, 4932, }, },
}; };
return _k_tests; return _k_tests;
@ -155,7 +157,7 @@ int main(int argc, char **argv) {
fprintf(stderr, "%s : text size: %zu\n", __func__, text.size()); fprintf(stderr, "%s : text size: %zu\n", __func__, text.size());
const std::vector<llama_token> res = llama_tokenize(ctx, text, true); const std::vector<llama_token> res = llama_tokenize(ctx, text, false);
fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size()); fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size());
@ -169,10 +171,8 @@ int main(int argc, char **argv) {
} }
for (const auto & tok : res) { for (const auto & tok : res) {
ofs << tok << " "; ofs << tok << " '" << llama_detokenize_bpe(ctx, std::vector<int>{tok}) << "'" << std::endl;
} }
ofs << "\n";
} }
fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str());

View File

@ -41,6 +41,8 @@ tests = [
" Hello", " Hello",
" Hello", " Hello",
" Hello\n Hello", " Hello\n Hello",
"\n =",
"' era",
] ]
for text in tests: for text in tests:
@ -69,15 +71,14 @@ fname_tok = args.fname_tok
if fname_tok: if fname_tok:
print('tokenizing file: ', fname_tok) print('tokenizing file: ', fname_tok)
fname_out = fname_tok + '.tok' fname_out = fname_tok + '.tok'
with open(fname_tok, 'r') as f: with open(fname_tok, 'r', encoding='utf-8') as f:
lines = f.readlines() lines = f.readlines()
s = ''.join(lines) s = ''.join(lines)
res = tokenizer.encode(s) res = tokenizer.encode(s)
# write to file # write to file
with open(fname_out, 'w') as f: with open(fname_out, 'w', encoding='utf-8') as f:
for x in res: for x in res:
f.write(str(x) + ' ') f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
f.write('\n')
print('len(res): ', len(res)) print('len(res): ', len(res))
print('len(lines): ', len(lines)) print('len(lines): ', len(lines))
print('results written to: ', fname_out) print('results written to: ', fname_out)

Some files were not shown because too many files have changed in this diff Show More