mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
Fix spm whitespaces (#2806)
* llama.cpp : fix spm whitespace escaping + clean up * main.cpp : spm - add whitespace in front of prompt * test-tokenizer-0.cpp : spm - add whitespace in front of prompt
This commit is contained in:
parent
bae5c5f679
commit
2ba83c8685
@ -189,12 +189,19 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
// Add BOS if SPM tokenizer
|
||||
const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
||||
if (llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM) {
|
||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
params.prompt.insert(0, 1, ' ');
|
||||
}
|
||||
|
||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
} else {
|
||||
embd_inp = session_tokens;
|
||||
}
|
||||
@ -210,9 +217,9 @@ int main(int argc, char ** argv) {
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
params.cfg_negative_prompt.insert(0, 1, ' ');
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
}
|
||||
@ -259,7 +266,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm);
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
|
48
llama.cpp
48
llama.cpp
@ -1635,7 +1635,7 @@ static void llm_load_hparams(
|
||||
}
|
||||
|
||||
// TODO: This should probably be in llama.h
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos, bool escape);
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos);
|
||||
|
||||
static void llm_load_vocab(
|
||||
llama_model_loader & ml,
|
||||
@ -1737,7 +1737,7 @@ static void llm_load_vocab(
|
||||
}
|
||||
|
||||
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
|
||||
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false, false)[0];
|
||||
vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
|
||||
|
||||
// special tokens
|
||||
GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
|
||||
@ -3027,14 +3027,8 @@ static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
|
||||
}
|
||||
|
||||
static std::string llama_escape_whitespace(const std::string& text) {
|
||||
std::string result = "\xe2\x96\x81";
|
||||
for (size_t offs = 0; offs < text.length(); ++offs) {
|
||||
if (text[offs] == ' ') {
|
||||
result += "\xe2\x96\x81";
|
||||
} else {
|
||||
result += text[offs];
|
||||
}
|
||||
}
|
||||
std::string result = text;
|
||||
replace_all(result, " ", "\xe2\x96\x81");
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -3219,7 +3213,7 @@ struct llm_bigram_bpe {
|
||||
};
|
||||
|
||||
struct llm_tokenizer_bpe {
|
||||
llm_tokenizer_bpe(const llama_vocab & vocab, bool g2ws): vocab(vocab) { flag_g2ws = g2ws; }
|
||||
llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
|
||||
|
||||
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
||||
int final_prev_index = -1;
|
||||
@ -3371,8 +3365,6 @@ private:
|
||||
return words;
|
||||
}
|
||||
|
||||
bool flag_g2ws = false;
|
||||
|
||||
const llama_vocab & vocab;
|
||||
|
||||
std::vector<llm_symbol> symbols;
|
||||
@ -3381,39 +3373,26 @@ private:
|
||||
llm_bigram_bpe::queue work_queue;
|
||||
};
|
||||
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos, bool escape) {
|
||||
static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos) {
|
||||
std::vector<llama_vocab::id> output;
|
||||
|
||||
if (raw_text.empty()) {
|
||||
return output;
|
||||
}
|
||||
|
||||
if (bos && vocab.special_bos_id != -1) {
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
switch (vocab.type) {
|
||||
case LLAMA_VOCAB_TYPE_SPM:
|
||||
{
|
||||
llm_tokenizer_spm tokenizer(vocab);
|
||||
|
||||
if (bos) {
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
std::string text;
|
||||
if (escape) {
|
||||
text = llama_escape_whitespace(raw_text);
|
||||
} else {
|
||||
text = raw_text;
|
||||
}
|
||||
|
||||
tokenizer.tokenize(text, output);
|
||||
tokenizer.tokenize(llama_escape_whitespace(raw_text), output);
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_BPE:
|
||||
{
|
||||
llm_tokenizer_bpe tokenizer(vocab, escape);
|
||||
|
||||
if (bos && vocab.special_bos_id != -1) {
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
|
||||
llm_tokenizer_bpe tokenizer(vocab);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
} break;
|
||||
};
|
||||
@ -6095,8 +6074,7 @@ int llama_tokenize_with_model(
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos) {
|
||||
auto escape = llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM;
|
||||
auto res = llama_tokenize_internal(model->vocab, text, add_bos, escape);
|
||||
auto res = llama_tokenize_internal(model->vocab, text, add_bos);
|
||||
|
||||
if (n_max_tokens < (int) res.size()) {
|
||||
LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
||||
|
@ -100,7 +100,8 @@ int main(int argc, char **argv) {
|
||||
bool success = true;
|
||||
|
||||
for (const auto & test_kv : k_tests()) {
|
||||
std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true);
|
||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
std::vector<llama_token> res = llama_tokenize(ctx, " " + test_kv.first, true);
|
||||
fprintf(stderr, "%s : '%s' tokenized to '%s'\n",
|
||||
__func__, test_kv.first.c_str(), unescape_whitespace(ctx, res).c_str());
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user