mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 13:30:35 +00:00
ggml : add epsilon as a parameter for group_norm (#8818)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
This commit is contained in:
parent
cdd1889de6
commit
2d5dd7bb3f
@ -1140,16 +1140,17 @@ extern "C" {
|
||||
|
||||
// group normalize along ne0*ne1*n_groups
|
||||
// used in stable-diffusion
|
||||
// TODO: eps is hardcoded to 1e-6 for now
|
||||
GGML_API struct ggml_tensor * ggml_group_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups);
|
||||
int n_groups,
|
||||
float eps);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups);
|
||||
int n_groups,
|
||||
float eps);
|
||||
|
||||
// a - x
|
||||
// b - dy
|
||||
|
@ -464,9 +464,11 @@ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
const float eps = 1e-6f; // TODO: make this a parameter
|
||||
int n_groups = dst->op_params[0];
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
@ -142,8 +142,7 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
|
||||
}
|
||||
}
|
||||
|
||||
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||||
static const float eps = 1e-6f;
|
||||
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||||
if (group_size < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||||
@ -196,8 +195,12 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
int num_groups = dst->op_params[0];
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||||
|
||||
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
|
||||
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], eps, group_size, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
@ -2229,10 +2229,8 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
//float eps;
|
||||
//memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
const float eps = 1e-6f; // TODO: temporarily hardcoded
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||||
|
||||
const int32_t n_groups = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
|
@ -225,9 +225,8 @@ static void norm_f32_sycl(const float* x, float* dst, const int ncols,
|
||||
}
|
||||
|
||||
static void group_norm_f32_sycl(const float* x, float* dst,
|
||||
const int num_groups, const int group_size,
|
||||
const int num_groups, const float eps, const int group_size,
|
||||
const int ne_elements, queue_ptr stream, int device) {
|
||||
static const float eps = 1e-6f;
|
||||
if (group_size < 1024) {
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
stream->submit([&](sycl::handler& cgh) {
|
||||
@ -343,8 +342,12 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor*
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
int num_groups = dst->op_params[0];
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||||
|
||||
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
|
||||
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
|
||||
|
||||
(void)src1;
|
||||
(void)dst;
|
||||
|
@ -5374,6 +5374,7 @@ static struct ggml_tensor * ggml_group_norm_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups,
|
||||
float eps,
|
||||
bool inplace) {
|
||||
|
||||
bool is_node = false;
|
||||
@ -5384,7 +5385,8 @@ static struct ggml_tensor * ggml_group_norm_impl(
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
result->op_params[0] = n_groups;
|
||||
ggml_set_op_params_i32(result, 0, n_groups);
|
||||
ggml_set_op_params_f32(result, 1, eps);
|
||||
|
||||
result->op = GGML_OP_GROUP_NORM;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -5396,15 +5398,17 @@ static struct ggml_tensor * ggml_group_norm_impl(
|
||||
struct ggml_tensor * ggml_group_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups) {
|
||||
return ggml_group_norm_impl(ctx, a, n_groups, false);
|
||||
int n_groups,
|
||||
float eps) {
|
||||
return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_group_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups) {
|
||||
return ggml_group_norm_impl(ctx, a, n_groups, true);
|
||||
int n_groups,
|
||||
float eps) {
|
||||
return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
|
||||
}
|
||||
|
||||
// ggml_mul_mat
|
||||
@ -12095,10 +12099,11 @@ static void ggml_compute_forward_group_norm_f32(
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
const float eps = 1e-6f; // TODO: make this a parameter
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||||
|
||||
int n_channels = src0->ne[2];
|
||||
int n_groups = dst->op_params[0];
|
||||
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
|
||||
|
@ -1511,6 +1511,7 @@ struct test_group_norm : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const int32_t num_groups;
|
||||
const float eps;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR3(type, ne, num_groups);
|
||||
@ -1518,12 +1519,13 @@ struct test_group_norm : public test_case {
|
||||
|
||||
test_group_norm(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {64, 64, 320, 1},
|
||||
int32_t num_groups = 32)
|
||||
: type(type), ne(ne), num_groups(num_groups) {}
|
||||
int32_t num_groups = 32,
|
||||
float eps = 1e-6f)
|
||||
: type(type), ne(ne), num_groups(num_groups), eps(eps) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
|
||||
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user