llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model. (#8984)

* llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model.

- The CLIP model now prioritizes the Vulkan backend over the CPU when vulkan available.
- A GGML_OP_ACC shader has been added.
- The encoding performance of the CLIP model improved from 4.2s on the CPU to 0.9s on the GPU.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* fix-up coding style.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* Fix-up the missing initial parameter to resolve the compilation warning.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* [fix] Add missing parameters.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* [fix] Use nb1 and nb2 for dst.

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>

* Fix check results ggml_acc call

---------

Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
Co-authored-by: 0cc4m <picard12@live.de>
This commit is contained in:
Changyeon Kim 2024-08-21 04:00:00 +09:00 committed by GitHub
parent 50addec9a5
commit 2f3c1466ff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 75 additions and 0 deletions

View File

@ -20,6 +20,10 @@
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
@ -1142,6 +1146,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
#endif
#ifdef GGML_USE_VULKAN
new_clip->backend = ggml_backend_vk_init(0);
LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();

View File

@ -180,6 +180,7 @@ struct vk_device_struct {
vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_acc_f32;
vk_pipeline pipeline_add_f32, pipeline_add_f16_f32_f16;
vk_pipeline pipeline_mul_f32;
vk_pipeline pipeline_div_f32;
@ -1687,6 +1688,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
@ -3971,6 +3974,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_get_rows_f32[src0->type];
}
return nullptr;
case GGML_OP_ACC:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_acc_f32;
}
return nullptr;
case GGML_OP_ADD:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_add_f32;
@ -4463,6 +4471,28 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
}, dryrun);
}
static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
const uint32_t d_offset = ((extra->offset + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ACC, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
d_offset,
0.0f, 0.0f, offset,
}, dryrun);
}
static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
@ -5621,6 +5651,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_REPEAT:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_CONCAT:
@ -5668,6 +5699,10 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_REPEAT:
ggml_vk_repeat(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_ACC:
ggml_vk_acc(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_GET_ROWS:
ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node, dryrun);
@ -5808,6 +5843,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
switch (tensor->op) {
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_GET_ROWS:
case GGML_OP_MUL:
case GGML_OP_DIV:
@ -6539,6 +6575,7 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_CONCAT:
@ -6995,6 +7032,8 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
tensor_clone = ggml_repeat(ggml_ctx, src0_clone, src1_clone);
} else if (tensor->op == GGML_OP_ADD) {
tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone);
} else if (tensor->op == GGML_OP_ACC) {
tensor_clone = ggml_acc(ggml_ctx, src0_clone, src1_clone, tensor->op_params[0], tensor->op_params[1], tensor->op_params[2], tensor->op_params[3]);
} else if (tensor->op == GGML_OP_NORM) {
tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
} else if (tensor->op == GGML_OP_GROUP_NORM) {

View File

@ -0,0 +1,24 @@
#version 450
#include "types.comp"
#include "generic_binary_head.comp"
void main() {
const uint idx = gl_GlobalInvocationID.x;
if (idx >= p.ne) {
return;
}
const uint offset = p.param3;
const uint src1_i = idx - offset;
const uint oz = src1_i / p.nb02;
const uint oy = (src1_i - (oz * p.nb02)) / p.nb01;
const uint ox = src1_i % p.nb01;
if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) {
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) + FLOAT_TYPE(data_b[ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
} else {
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]));
}
}

View File

@ -368,6 +368,10 @@ void process_shaders(std::vector<std::future<void>>& tasks) {
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});
}));
tasks.push_back(std::async(std::launch::async, [] {
string_to_spv("acc_f32", "acc.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
}));
tasks.push_back(std::async(std::launch::async, [] {
string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {});
}));