mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
llava : support MiniCPM-V-2.5 (#7599)
* init * rename * add run android for termux in readme * add android readme * add instructions in readme * change name in readme * Update README.md * fixed line * add result in readme * random pos_embed * add positions index * change for ollama * change for ollama * better pos_embed in clip * support ollama * updata cmakelist * updata cmakelist * rename wrapper * clear code * replace and organize code * add link * sync master * fix warnings * fix warnings * fix bug in bicubic resize when need resize iamge smaller * receive review comments and modify * receive review comments and modify * put all code into llava dir * fix quality problem in pr code * change n_layer * add space in "-1" * imitate reshape bug of python code * fix bug in clip * fix issues for merging * fix llama-minicpmv-cli in cmake file * change pr readme * fix code review * remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir * fix cmakefile * add warn * fix KEY_HAS_MINICPMV_PROJ * remove load_image_size into clip_ctx * remove the extern "C", MINICPMV_API * fix uhd code for review comment * delete minicpmv-wrapper in pr * remove uhd_image_embed * Modify 2 notes * clip : style changes * del common.h in clip * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix makefile error * fix ubuntu-make error * try fix clip * try fix 1 --------- Co-authored-by: Hongji Zhu <fireyoucan@gmail.com> Co-authored-by: harvestingmoon <leewenyeong@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
4305b57c80
commit
3071c0a5f2
1
.gitignore
vendored
1
.gitignore
vendored
@ -79,7 +79,6 @@ models-mnt
|
|||||||
!models/ggml-vocab-*.gguf*
|
!models/ggml-vocab-*.gguf*
|
||||||
|
|
||||||
# Zig
|
# Zig
|
||||||
|
|
||||||
zig-out/
|
zig-out/
|
||||||
zig-cache/
|
zig-cache/
|
||||||
|
|
||||||
|
12
Makefile
12
Makefile
@ -19,6 +19,7 @@ BUILD_TARGETS = \
|
|||||||
llama-imatrix \
|
llama-imatrix \
|
||||||
llama-infill \
|
llama-infill \
|
||||||
llama-llava-cli \
|
llama-llava-cli \
|
||||||
|
llama-minicpmv-cli\
|
||||||
llama-lookahead \
|
llama-lookahead \
|
||||||
llama-lookup \
|
llama-lookup \
|
||||||
llama-lookup-create \
|
llama-lookup-create \
|
||||||
@ -1463,6 +1464,17 @@ llama-llava-cli: examples/llava/llava-cli.cpp \
|
|||||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
|
||||||
|
examples/llava/clip.h \
|
||||||
|
examples/llava/clip.cpp \
|
||||||
|
examples/llava/llava.h \
|
||||||
|
examples/llava/llava.cpp \
|
||||||
|
$(OBJ_ALL)
|
||||||
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||||
|
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||||
|
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
ifeq ($(UNAME_S),Darwin)
|
ifeq ($(UNAME_S),Darwin)
|
||||||
swift: examples/batched.swift
|
swift: examples/batched.swift
|
||||||
(cd examples/batched.swift; make build)
|
(cd examples/batched.swift; make build)
|
||||||
|
@ -36,3 +36,10 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-cli)
|
|||||||
install(TARGETS ${TARGET} RUNTIME)
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
|
||||||
|
set(TARGET llama-minicpmv-cli)
|
||||||
|
add_executable(${TARGET} minicpmv-cli.cpp)
|
||||||
|
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-minicpmv-cli)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
99
examples/llava/README-minicpmv2.5.md
Normal file
99
examples/llava/README-minicpmv2.5.md
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
## MiniCPM-Llama3-V 2.5
|
||||||
|
|
||||||
|
### Prepare models and code
|
||||||
|
|
||||||
|
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
|
||||||
|
|
||||||
|
Clone llama.cpp:
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/ggerganov/llama.cpp
|
||||||
|
cd llama.cpp
|
||||||
|
```
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
|
||||||
|
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||||
|
python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5
|
||||||
|
python ./convert-hf-to-gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||||
|
|
||||||
|
# quantize int4 version
|
||||||
|
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||||
|
```
|
||||||
|
|
||||||
|
Build for Linux or Mac
|
||||||
|
|
||||||
|
```bash
|
||||||
|
make
|
||||||
|
make llama-minicpmv-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
Inference on Linux or Mac
|
||||||
|
```
|
||||||
|
# run f16 version
|
||||||
|
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||||
|
|
||||||
|
# run quantized int4 version
|
||||||
|
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||||
|
|
||||||
|
# or run in interactive mode
|
||||||
|
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||||
|
```
|
||||||
|
|
||||||
|
### Android
|
||||||
|
|
||||||
|
#### Build on Android device using Termux
|
||||||
|
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||||
|
|
||||||
|
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||||
|
|
||||||
|
Install tools in Termux:
|
||||||
|
```
|
||||||
|
apt update && apt upgrade -y
|
||||||
|
apt install git make cmake
|
||||||
|
```
|
||||||
|
|
||||||
|
It's recommended to move your model inside the `~/` directory for best performance:
|
||||||
|
```
|
||||||
|
cd storage/downloads
|
||||||
|
mv model.gguf ~/
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Building the Project using Android NDK
|
||||||
|
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||||
|
|
||||||
|
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
mkdir build-android
|
||||||
|
cd build-android
|
||||||
|
export NDK=/your_ndk_path
|
||||||
|
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||||
|
make
|
||||||
|
```
|
||||||
|
|
||||||
|
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||||
|
|
||||||
|
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||||
|
|
||||||
|
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||||
|
```
|
||||||
|
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||||
|
$cd /data/data/com.termux/files/home/bin
|
||||||
|
$chmod +x ./*
|
||||||
|
```
|
||||||
|
|
||||||
|
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||||
|
|
||||||
|
```
|
||||||
|
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||||
|
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||||
|
```
|
||||||
|
|
||||||
|
Now, you can start chatting:
|
||||||
|
```
|
||||||
|
$cd /data/data/com.termux/files/home/bin
|
||||||
|
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||||
|
```
|
@ -80,6 +80,7 @@ static std::string format(const char * fmt, ...) {
|
|||||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||||
|
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||||
#define KEY_USE_GELU "clip.use_gelu"
|
#define KEY_USE_GELU "clip.use_gelu"
|
||||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||||
@ -127,12 +128,20 @@ static std::string format(const char * fmt, ...) {
|
|||||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||||
|
|
||||||
|
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
|
||||||
|
#define TN_MINICPMV_QUERY "resampler.query"
|
||||||
|
#define TN_MINICPMV_PROJ "resampler.proj.weight"
|
||||||
|
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
|
||||||
|
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||||
|
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||||
|
|
||||||
|
|
||||||
enum projector_type {
|
enum projector_type {
|
||||||
PROJECTOR_TYPE_MLP,
|
PROJECTOR_TYPE_MLP,
|
||||||
PROJECTOR_TYPE_MLP_NORM,
|
PROJECTOR_TYPE_MLP_NORM,
|
||||||
PROJECTOR_TYPE_LDP,
|
PROJECTOR_TYPE_LDP,
|
||||||
PROJECTOR_TYPE_LDPV2,
|
PROJECTOR_TYPE_LDPV2,
|
||||||
|
PROJECTOR_TYPE_RESAMPLER,
|
||||||
PROJECTOR_TYPE_UNKNOWN,
|
PROJECTOR_TYPE_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -140,6 +149,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||||
|
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -492,12 +502,33 @@ struct clip_vision_model {
|
|||||||
struct ggml_tensor * mm_model_mlp_2_b;
|
struct ggml_tensor * mm_model_mlp_2_b;
|
||||||
struct ggml_tensor * mm_model_peg_0_w;
|
struct ggml_tensor * mm_model_peg_0_w;
|
||||||
struct ggml_tensor * mm_model_peg_0_b;
|
struct ggml_tensor * mm_model_peg_0_b;
|
||||||
|
|
||||||
|
// MINICPMV projection
|
||||||
|
struct ggml_tensor * mm_model_pos_embed_k;
|
||||||
|
struct ggml_tensor * mm_model_query;
|
||||||
|
struct ggml_tensor * mm_model_proj;
|
||||||
|
struct ggml_tensor * mm_model_kv_proj;
|
||||||
|
struct ggml_tensor * mm_model_attn_q_w;
|
||||||
|
struct ggml_tensor * mm_model_attn_q_b;
|
||||||
|
struct ggml_tensor * mm_model_attn_k_w;
|
||||||
|
struct ggml_tensor * mm_model_attn_k_b;
|
||||||
|
struct ggml_tensor * mm_model_attn_v_w;
|
||||||
|
struct ggml_tensor * mm_model_attn_v_b;
|
||||||
|
struct ggml_tensor * mm_model_attn_o_w;
|
||||||
|
struct ggml_tensor * mm_model_attn_o_b;
|
||||||
|
struct ggml_tensor * mm_model_ln_q_w;
|
||||||
|
struct ggml_tensor * mm_model_ln_q_b;
|
||||||
|
struct ggml_tensor * mm_model_ln_kv_w;
|
||||||
|
struct ggml_tensor * mm_model_ln_kv_b;
|
||||||
|
struct ggml_tensor * mm_model_ln_post_w;
|
||||||
|
struct ggml_tensor * mm_model_ln_post_b;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct clip_ctx {
|
struct clip_ctx {
|
||||||
bool has_text_encoder = false;
|
bool has_text_encoder = false;
|
||||||
bool has_vision_encoder = false;
|
bool has_vision_encoder = false;
|
||||||
bool has_llava_projector = false;
|
bool has_llava_projector = false;
|
||||||
|
bool has_minicpmv_projector = false;
|
||||||
|
|
||||||
struct clip_vision_model vision_model;
|
struct clip_vision_model vision_model;
|
||||||
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
||||||
@ -522,9 +553,11 @@ struct clip_ctx {
|
|||||||
|
|
||||||
ggml_backend_t backend = NULL;
|
ggml_backend_t backend = NULL;
|
||||||
ggml_gallocr_t compute_alloc = NULL;
|
ggml_gallocr_t compute_alloc = NULL;
|
||||||
|
|
||||||
|
struct clip_image_size * load_image_size;
|
||||||
};
|
};
|
||||||
|
|
||||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
|
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
|
||||||
if (!ctx->has_vision_encoder) {
|
if (!ctx->has_vision_encoder) {
|
||||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||||
return nullptr;
|
return nullptr;
|
||||||
@ -534,19 +567,32 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
const int image_size = hparams.image_size;
|
const int image_size = hparams.image_size;
|
||||||
|
int image_size_width = image_size;
|
||||||
|
int image_size_height = image_size;
|
||||||
|
if (ctx->has_minicpmv_projector) {
|
||||||
|
if (load_image_size == nullptr) {
|
||||||
|
load_image_size = clip_image_size_init();
|
||||||
|
}
|
||||||
|
LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||||
|
image_size_width = load_image_size->width;
|
||||||
|
image_size_height = load_image_size->height;
|
||||||
|
if (is_inf) {
|
||||||
|
image_size_width = imgs->data->nx;
|
||||||
|
image_size_height = imgs->data->ny;
|
||||||
|
}
|
||||||
|
}
|
||||||
const int patch_size = hparams.patch_size;
|
const int patch_size = hparams.patch_size;
|
||||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||||
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
|
|
||||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||||
const int hidden_size = hparams.hidden_size;
|
const int hidden_size = hparams.hidden_size;
|
||||||
const int n_head = hparams.n_head;
|
const int n_head = hparams.n_head;
|
||||||
const int d_head = hidden_size / n_head;
|
const int d_head = hidden_size / n_head;
|
||||||
const int n_layer = hparams.n_layer;
|
int n_layer = hparams.n_layer;
|
||||||
const float eps = hparams.eps;
|
const float eps = hparams.eps;
|
||||||
|
|
||||||
const int batch_size = imgs->size;
|
const int batch_size = imgs->size;
|
||||||
|
|
||||||
if (ctx->has_llava_projector) {
|
if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
|
||||||
GGML_ASSERT(batch_size == 1);
|
GGML_ASSERT(batch_size == 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -559,7 +605,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
struct ggml_context * ctx0 = ggml_init(params);
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
|
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
|
||||||
ggml_set_name(inp_raw, "inp_raw");
|
ggml_set_name(inp_raw, "inp_raw");
|
||||||
ggml_set_input(inp_raw);
|
ggml_set_input(inp_raw);
|
||||||
|
|
||||||
@ -572,9 +618,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
||||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||||
}
|
}
|
||||||
|
|
||||||
// concat class_embeddings and patch_embeddings
|
|
||||||
struct ggml_tensor * embeddings = inp;
|
struct ggml_tensor * embeddings = inp;
|
||||||
|
struct ggml_tensor * pos_embed = nullptr;
|
||||||
|
|
||||||
|
if (ctx->has_llava_projector) {
|
||||||
|
// concat class_embeddings and patch_embeddings
|
||||||
if (ctx->has_class_embedding) {
|
if (ctx->has_class_embedding) {
|
||||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||||
ggml_set_name(embeddings, "embeddings");
|
ggml_set_name(embeddings, "embeddings");
|
||||||
@ -584,7 +632,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||||
ggml_set_name(positions, "positions");
|
ggml_set_name(positions, "positions");
|
||||||
@ -593,6 +641,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
embeddings =
|
embeddings =
|
||||||
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
||||||
|
|
||||||
|
if (ctx->has_minicpmv_projector) {
|
||||||
|
int pos_w = image_size_width/patch_size;
|
||||||
|
int pos_h = image_size_height/patch_size;
|
||||||
|
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
|
||||||
|
ggml_set_name(pos_embed, "pos_embed");
|
||||||
|
ggml_set_input(pos_embed);
|
||||||
|
}
|
||||||
|
|
||||||
// pre-layernorm
|
// pre-layernorm
|
||||||
if (ctx->has_pre_norm) {
|
if (ctx->has_pre_norm) {
|
||||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||||
@ -602,6 +658,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
}
|
}
|
||||||
|
|
||||||
// loop over layers
|
// loop over layers
|
||||||
|
if (ctx->has_minicpmv_projector) {
|
||||||
|
n_layer += 1;
|
||||||
|
}
|
||||||
for (int il = 0; il < n_layer - 1; il++) {
|
for (int il = 0; il < n_layer - 1; il++) {
|
||||||
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
||||||
|
|
||||||
@ -691,7 +750,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
}
|
}
|
||||||
|
|
||||||
// llava projector
|
// llava projector
|
||||||
{
|
if (ctx->has_llava_projector) {
|
||||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||||
|
|
||||||
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
|
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
|
||||||
@ -872,6 +931,65 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
GGML_ABORT("fatal error");
|
GGML_ABORT("fatal error");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// minicpmv projector
|
||||||
|
else if (ctx->has_minicpmv_projector)
|
||||||
|
{
|
||||||
|
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||||
|
struct ggml_tensor * q = model.mm_model_query;
|
||||||
|
{ // layernorm
|
||||||
|
q = ggml_norm(ctx0, q, eps);
|
||||||
|
q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
|
||||||
|
}
|
||||||
|
struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
|
||||||
|
{ // layernorm
|
||||||
|
v = ggml_norm(ctx0, v, eps);
|
||||||
|
v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
|
||||||
|
}
|
||||||
|
struct ggml_tensor * k;
|
||||||
|
{ // position
|
||||||
|
// q = ggml_add(ctx0, q, model.mm_model_pos_embed);
|
||||||
|
k = ggml_add(ctx0, v, pos_embed);
|
||||||
|
}
|
||||||
|
|
||||||
|
{ // attention
|
||||||
|
const int hidden_size = 4096;
|
||||||
|
const int d_head = 128;
|
||||||
|
const int n_head = hidden_size/d_head;
|
||||||
|
const int num_query = 96;
|
||||||
|
|
||||||
|
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
||||||
|
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||||
|
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
|
||||||
|
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
|
||||||
|
// permute
|
||||||
|
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
|
||||||
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
||||||
|
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
|
||||||
|
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
|
||||||
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
||||||
|
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
|
||||||
|
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
|
||||||
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
||||||
|
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
|
||||||
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||||
|
KQ = ggml_soft_max_inplace(ctx0, KQ);
|
||||||
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
||||||
|
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
|
||||||
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||||
|
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
|
||||||
|
|
||||||
|
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
|
||||||
|
}
|
||||||
|
{ // layernorm
|
||||||
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||||
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
|
||||||
|
}
|
||||||
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// build the graph
|
// build the graph
|
||||||
ggml_build_forward_expand(gf, embeddings);
|
ggml_build_forward_expand(gf, embeddings);
|
||||||
@ -1029,7 +1147,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
|
new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
|
idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
|
||||||
|
if (idx != -1) {
|
||||||
|
new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
|
||||||
|
}
|
||||||
|
|
||||||
|
// GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
|
||||||
|
|
||||||
GGML_ASSERT(new_clip->has_vision_encoder);
|
GGML_ASSERT(new_clip->has_vision_encoder);
|
||||||
GGML_ASSERT(!new_clip->has_text_encoder);
|
GGML_ASSERT(!new_clip->has_text_encoder);
|
||||||
|
|
||||||
@ -1040,6 +1164,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||||
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||||
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||||
|
LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||||
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||||
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||||
}
|
}
|
||||||
@ -1281,6 +1406,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
|
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
|
||||||
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
|
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
|
||||||
}
|
}
|
||||||
|
else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||||
|
// vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
|
||||||
|
vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
|
||||||
|
vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
|
||||||
|
vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
|
||||||
|
vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
|
||||||
|
vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
|
||||||
|
vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
|
||||||
|
vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
|
||||||
|
vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
|
||||||
|
vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
|
||||||
|
vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
|
||||||
|
vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
|
||||||
|
vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
|
||||||
|
vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
|
||||||
|
vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
|
||||||
|
vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
|
||||||
|
vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
|
||||||
|
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
|
||||||
|
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
|
||||||
|
}
|
||||||
else {
|
else {
|
||||||
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
||||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||||
@ -1319,7 +1465,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
|
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
|
||||||
clip_image_f32_batch batch;
|
clip_image_f32_batch batch;
|
||||||
batch.size = 1;
|
batch.size = 1;
|
||||||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
|
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
|
||||||
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
||||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
||||||
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||||
@ -1328,6 +1474,17 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||||||
return new_clip;
|
return new_clip;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
|
||||||
|
ctx_clip->load_image_size = load_image_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct clip_image_size * clip_image_size_init() {
|
||||||
|
struct clip_image_size * load_image_size = new struct clip_image_size();
|
||||||
|
load_image_size->width = 448;
|
||||||
|
load_image_size->height = 448;
|
||||||
|
return load_image_size;
|
||||||
|
}
|
||||||
|
|
||||||
struct clip_image_u8 * clip_image_u8_init() {
|
struct clip_image_u8 * clip_image_u8_init() {
|
||||||
return new clip_image_u8();
|
return new clip_image_u8();
|
||||||
}
|
}
|
||||||
@ -1598,9 +1755,184 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
|
|||||||
return patches;
|
return patches;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static int ensure_divide(int length, int patch_size) {
|
||||||
|
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
||||||
|
int width = original_size.first;
|
||||||
|
int height = original_size.second;
|
||||||
|
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
|
||||||
|
float r = static_cast<float>(width) / height;
|
||||||
|
height = static_cast<int>(scale_resolution / std::sqrt(r));
|
||||||
|
width = static_cast<int>(height * r);
|
||||||
|
}
|
||||||
|
int best_width = ensure_divide(width, patch_size);
|
||||||
|
int best_height = ensure_divide(height, patch_size);
|
||||||
|
return std::make_pair(best_width, best_height);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
||||||
|
int width, height;
|
||||||
|
std::tie(width, height) = original_size;
|
||||||
|
int grid_x, grid_y;
|
||||||
|
std::tie(grid_x, grid_y) = grid;
|
||||||
|
|
||||||
|
int refine_width = ensure_divide(width, grid_x);
|
||||||
|
int refine_height = ensure_divide(height, grid_y);
|
||||||
|
|
||||||
|
int grid_width = refine_width / grid_x;
|
||||||
|
int grid_height = refine_height / grid_y;
|
||||||
|
|
||||||
|
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
|
||||||
|
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
|
||||||
|
int best_grid_width, best_grid_height;
|
||||||
|
std::tie(best_grid_width, best_grid_height) = best_grid_size;
|
||||||
|
|
||||||
|
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
|
||||||
|
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
|
||||||
|
return refine_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline int clip(int x, int lower, int upper) {
|
||||||
|
return std::max(lower, std::min(x, upper));
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
|
||||||
|
std::vector<int> candidate_split_grids_nums;
|
||||||
|
for (int i : {multiple - 1, multiple, multiple + 1}) {
|
||||||
|
if (i == 1 || i > max_slice_nums) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
candidate_split_grids_nums.push_back(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::pair<int, int>> candidate_grids;
|
||||||
|
for (int split_grids_nums : candidate_split_grids_nums) {
|
||||||
|
int m = 1;
|
||||||
|
while (m <= split_grids_nums) {
|
||||||
|
if (split_grids_nums % m == 0) {
|
||||||
|
candidate_grids.emplace_back(m, split_grids_nums / m);
|
||||||
|
}
|
||||||
|
++m;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::pair<int, int> best_grid{1, 1};
|
||||||
|
float min_error = std::numeric_limits<float>::infinity();
|
||||||
|
for (const auto& grid : candidate_grids) {
|
||||||
|
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
|
||||||
|
if (error < min_error) {
|
||||||
|
best_grid = grid;
|
||||||
|
min_error = error;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return best_grid;
|
||||||
|
}
|
||||||
|
|
||||||
|
// inspired from LLaVA-UHD:
|
||||||
|
// -> https://arxiv.org/pdf/2403.11703
|
||||||
|
// -> https://github.com/thunlp/LLaVA-UHD
|
||||||
|
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
|
||||||
|
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
|
||||||
|
const std::pair<int, int> original_size={img->nx,img->ny};
|
||||||
|
const int original_width = img->nx;
|
||||||
|
const int original_height = img->ny;
|
||||||
|
const float log_ratio = log(1.0*original_width/original_height);
|
||||||
|
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
|
||||||
|
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||||
|
|
||||||
|
std::vector<std::vector<clip_image_u8 *>> images;
|
||||||
|
LOG_TEE("%s: multiple %d\n", __func__, multiple);
|
||||||
|
images.push_back(std::vector<clip_image_u8 *>());
|
||||||
|
|
||||||
|
if (multiple <= 1) {
|
||||||
|
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
|
||||||
|
clip_image_u8 * source_image = clip_image_u8_init();
|
||||||
|
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||||
|
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
||||||
|
images[images.size()-1].push_back(source_image);
|
||||||
|
}
|
||||||
|
else if (multiple > 1) {
|
||||||
|
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
|
||||||
|
clip_image_u8 * source_image = clip_image_u8_init();
|
||||||
|
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
|
||||||
|
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
||||||
|
LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
|
||||||
|
images[images.size()-1].push_back(source_image);
|
||||||
|
|
||||||
|
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
|
||||||
|
LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
|
||||||
|
|
||||||
|
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
|
||||||
|
clip_image_u8 * refine_image = clip_image_u8_init();
|
||||||
|
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
|
||||||
|
|
||||||
|
LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
|
||||||
|
|
||||||
|
// split_to_patches
|
||||||
|
int width = refine_image->nx;
|
||||||
|
int height = refine_image->ny;
|
||||||
|
int grid_x = int(width / best_grid.first);
|
||||||
|
int grid_y = int(height / best_grid.second);
|
||||||
|
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
|
||||||
|
images.push_back(std::vector<clip_image_u8 *>());
|
||||||
|
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
|
||||||
|
clip_image_u8 * patch = clip_image_u8_init();
|
||||||
|
patch->nx = grid_x;
|
||||||
|
patch->ny = grid_y;
|
||||||
|
patch->buf.resize(3 * patch->nx * patch->ny);
|
||||||
|
for (int y = patches_i; y < patches_i + grid_y; ++y) {
|
||||||
|
for (int x = patches_j; x < patches_j + grid_x; ++x) {
|
||||||
|
const int i = 3 * (y * refine_image->nx + x);
|
||||||
|
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
|
||||||
|
patch->buf[j] = refine_image->buf[i];
|
||||||
|
patch->buf[j+1] = refine_image->buf[i+1];
|
||||||
|
patch->buf[j+2] = refine_image->buf[i+2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
images[images.size()-1].push_back(patch);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return images;
|
||||||
|
}
|
||||||
|
|
||||||
|
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
|
||||||
|
const int max_slice_nums=9;
|
||||||
|
const int scale_resolution=448;
|
||||||
|
const int original_width = ctx_clip->load_image_size->width;
|
||||||
|
const int original_height = ctx_clip->load_image_size->height;
|
||||||
|
const float log_ratio = log(1.0*original_width/original_height);
|
||||||
|
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
|
||||||
|
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
||||||
|
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
|
||||||
|
return best_grid.first;
|
||||||
|
}
|
||||||
|
|
||||||
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
||||||
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
||||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
||||||
|
if (clip_is_minicpmv(ctx)) {
|
||||||
|
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img);
|
||||||
|
res_imgs->size = 0;
|
||||||
|
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||||
|
res_imgs->size += imgs[i].size();
|
||||||
|
}
|
||||||
|
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||||
|
int idx = 0;
|
||||||
|
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||||
|
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||||
|
LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
|
||||||
|
clip_image_f32 * res = clip_image_f32_init();
|
||||||
|
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
|
||||||
|
res_imgs->data[idx++] = *res;
|
||||||
|
clip_image_f32_free(res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
bool pad_to_square = true;
|
bool pad_to_square = true;
|
||||||
if (!ctx->has_vision_encoder) {
|
if (!ctx->has_vision_encoder) {
|
||||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||||
@ -1816,11 +2148,99 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
|||||||
|
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||||
n_patches /= 4;
|
n_patches /= 4;
|
||||||
|
} else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||||
|
n_patches = 96;
|
||||||
}
|
}
|
||||||
|
|
||||||
return n_patches;
|
return n_patches;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
|
||||||
|
assert(embed_dim % 2 == 0);
|
||||||
|
int H = pos.size();
|
||||||
|
int W = pos[0].size();
|
||||||
|
|
||||||
|
std::vector<float> omega(embed_dim / 2);
|
||||||
|
for (int i = 0; i < embed_dim / 2; ++i) {
|
||||||
|
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
|
||||||
|
for (int h = 0; h < H; ++h) {
|
||||||
|
for (int w = 0; w < W; ++w) {
|
||||||
|
for (int d = 0; d < embed_dim / 2; ++d) {
|
||||||
|
float out_value = pos[h][w] * omega[d];
|
||||||
|
emb[h][w][d] = sin(out_value);
|
||||||
|
emb[h][w][d + embed_dim / 2] = cos(out_value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return emb;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
|
||||||
|
assert(embed_dim % 2 == 0);
|
||||||
|
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
|
||||||
|
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
|
||||||
|
|
||||||
|
int H = emb_h.size();
|
||||||
|
int W = emb_h[0].size();
|
||||||
|
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
|
||||||
|
|
||||||
|
for (int h = 0; h < H; ++h) {
|
||||||
|
for (int w = 0; w < W; ++w) {
|
||||||
|
for (int d = 0; d < embed_dim / 2; ++d) {
|
||||||
|
emb[h][w][d] = emb_h[h][w][d];
|
||||||
|
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return emb;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
|
||||||
|
int grid_h_size = image_size.first;
|
||||||
|
int grid_w_size = image_size.second;
|
||||||
|
|
||||||
|
std::vector<float> grid_h(grid_h_size);
|
||||||
|
std::vector<float> grid_w(grid_w_size);
|
||||||
|
|
||||||
|
for (int i = 0; i < grid_h_size; ++i) {
|
||||||
|
grid_h[i] = static_cast<float>(i);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < grid_w_size; ++i) {
|
||||||
|
grid_w[i] = static_cast<float>(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
|
||||||
|
for (int h = 0; h < grid_h_size; ++h) {
|
||||||
|
for (int w = 0; w < grid_w_size; ++w) {
|
||||||
|
grid[h][w] = grid_w[w];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
|
||||||
|
for (int h = 0; h < grid_h_size; ++h) {
|
||||||
|
for (int w = 0; w < grid_w_size; ++w) {
|
||||||
|
grid_2d[0][h][w] = grid_h[h];
|
||||||
|
grid_2d[1][h][w] = grid_w[w];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
|
||||||
|
|
||||||
|
int H = image_size.first;
|
||||||
|
int W = image_size.second;
|
||||||
|
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
|
||||||
|
for (int h = 0; h < H; ++h) {
|
||||||
|
for (int w = 0; w < W; ++w) {
|
||||||
|
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return pos_embed_2d;
|
||||||
|
}
|
||||||
|
|
||||||
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
||||||
if (!ctx->has_vision_encoder) {
|
if (!ctx->has_vision_encoder) {
|
||||||
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
LOG_TEE("This gguf file seems to have no vision encoder\n");
|
||||||
@ -1843,9 +2263,12 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||||||
if (ctx->has_llava_projector) {
|
if (ctx->has_llava_projector) {
|
||||||
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
|
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
|
||||||
}
|
}
|
||||||
|
if (ctx->has_minicpmv_projector) {
|
||||||
|
GGML_ASSERT(batch_size == 1);
|
||||||
|
}
|
||||||
|
|
||||||
// build the inference graph
|
// build the inference graph
|
||||||
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
|
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
|
||||||
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
|
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
|
||||||
|
|
||||||
// set inputs
|
// set inputs
|
||||||
@ -1853,8 +2276,14 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
const int image_size = hparams.image_size;
|
const int image_size = hparams.image_size;
|
||||||
|
int image_size_width = image_size;
|
||||||
|
int image_size_height = image_size;
|
||||||
|
if (ctx->has_minicpmv_projector) {
|
||||||
|
image_size_width = imgs->data[0].nx;
|
||||||
|
image_size_height = imgs->data[0].ny;
|
||||||
|
}
|
||||||
const int patch_size = hparams.patch_size;
|
const int patch_size = hparams.patch_size;
|
||||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
||||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||||
|
|
||||||
{
|
{
|
||||||
@ -1864,7 +2293,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||||||
for (size_t i = 0; i < imgs->size; i++) {
|
for (size_t i = 0; i < imgs->size; i++) {
|
||||||
const int nx = imgs->data[i].nx;
|
const int nx = imgs->data[i].nx;
|
||||||
const int ny = imgs->data[i].ny;
|
const int ny = imgs->data[i].ny;
|
||||||
|
if (!ctx->has_minicpmv_projector) {
|
||||||
GGML_ASSERT(nx == image_size && ny == image_size);
|
GGML_ASSERT(nx == image_size && ny == image_size);
|
||||||
|
}
|
||||||
|
|
||||||
const int n = nx * ny;
|
const int n = nx * ny;
|
||||||
|
|
||||||
@ -1881,7 +2312,44 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||||||
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
|
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
|
||||||
free(data);
|
free(data);
|
||||||
}
|
}
|
||||||
|
if (ctx->has_minicpmv_projector) {
|
||||||
|
{
|
||||||
|
// inspired from siglip:
|
||||||
|
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
|
||||||
|
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
|
||||||
|
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||||
|
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||||
|
for (int i = 0; i < num_positions; i++) {
|
||||||
|
positions_data[i] = std::floor(70.0*i/num_positions);
|
||||||
|
}
|
||||||
|
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||||
|
free(positions_data);
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
// inspired from resampler of Qwen-VL:
|
||||||
|
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
|
||||||
|
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
|
||||||
|
struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
|
||||||
|
if(ctx->load_image_size==nullptr){
|
||||||
|
ctx->load_image_size= clip_image_size_init();
|
||||||
|
}
|
||||||
|
int pos_w = ctx->load_image_size->width/patch_size;
|
||||||
|
int pos_h = ctx->load_image_size->height/patch_size;
|
||||||
|
int embed_dim = 4096;
|
||||||
|
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
||||||
|
|
||||||
|
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
|
||||||
|
for(int i=0;i<pos_w * pos_h;++i){
|
||||||
|
for(int j=0;j<embed_dim;++j){
|
||||||
|
pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
|
||||||
|
free(pos_embed_data);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
{
|
{
|
||||||
if (ctx->has_class_embedding) {
|
if (ctx->has_class_embedding) {
|
||||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||||
@ -1913,6 +2381,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||||
free(patches_data);
|
free(patches_data);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (ggml_backend_is_cpu(ctx->backend)) {
|
if (ggml_backend_is_cpu(ctx->backend)) {
|
||||||
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
|
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
|
||||||
@ -2081,7 +2550,14 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
return ctx->vision_model.mm_3_b->ne[0];
|
return ctx->vision_model.mm_3_b->ne[0];
|
||||||
}
|
}
|
||||||
|
if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
|
||||||
|
return 4096;
|
||||||
|
}
|
||||||
|
|
||||||
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
|
||||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool clip_is_minicpmv(const struct clip_ctx * ctx) {
|
||||||
|
return ctx->has_minicpmv_projector;
|
||||||
|
}
|
||||||
|
@ -18,14 +18,17 @@
|
|||||||
# define CLIP_API
|
# define CLIP_API
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
struct clip_ctx;
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
struct clip_ctx;
|
struct clip_ctx;
|
||||||
|
|
||||||
|
struct clip_image_size {
|
||||||
|
int width;
|
||||||
|
int height;
|
||||||
|
};
|
||||||
|
|
||||||
struct clip_image_u8_batch {
|
struct clip_image_u8_batch {
|
||||||
struct clip_image_u8 * data;
|
struct clip_image_u8 * data;
|
||||||
size_t size;
|
size_t size;
|
||||||
@ -55,6 +58,10 @@ CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
|||||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||||
|
|
||||||
|
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
|
||||||
|
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
|
||||||
|
|
||||||
|
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||||
|
|
||||||
@ -78,6 +85,8 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
|
|||||||
|
|
||||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||||
|
|
||||||
|
CLIP_API bool clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -202,6 +202,33 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||||
|
int width = image->nx;
|
||||||
|
int height = image->ny;
|
||||||
|
int num_patches = (height / patch_size) * (width / patch_size);
|
||||||
|
clip_image_f32 * patch = clip_image_f32_init();
|
||||||
|
patch->nx = patch_size * num_patches;
|
||||||
|
patch->ny = patch_size;
|
||||||
|
patch->buf.resize(3 * patch->nx * patch->ny);
|
||||||
|
|
||||||
|
int patch_index = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < height; i += patch_size) {
|
||||||
|
for (int j = 0; j < width; j += patch_size) {
|
||||||
|
for (int pi = 0; pi < patch_size; ++pi) {
|
||||||
|
for (int pj = 0; pj < patch_size; ++pj) {
|
||||||
|
int input_index = ((i + pi) * width + (j + pj)) * 3;
|
||||||
|
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
|
||||||
|
patch->buf[output_index] = image->buf[input_index];
|
||||||
|
patch->buf[output_index+1] = image->buf[input_index+1];
|
||||||
|
patch->buf[output_index+2] = image->buf[input_index+2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
patch_index++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return patch;
|
||||||
|
}
|
||||||
|
|
||||||
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||||||
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
||||||
@ -218,7 +245,44 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||||||
|
|
||||||
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||||||
|
|
||||||
if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
if (clip_is_minicpmv(ctx_clip)) {
|
||||||
|
std::vector<float *> image_embd_v;
|
||||||
|
image_embd_v.resize(img_res_v.size);
|
||||||
|
struct clip_image_size * load_image_size = clip_image_size_init();
|
||||||
|
for (size_t i = 0; i < img_res_v.size; i++) {
|
||||||
|
const int64_t t_img_enc_step_start_us = ggml_time_us();
|
||||||
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
||||||
|
int patch_size=14;
|
||||||
|
load_image_size->width = img_res_v.data[i].nx;
|
||||||
|
load_image_size->height = img_res_v.data[i].ny;
|
||||||
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||||
|
const bool encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||||
|
if (!encoded) {
|
||||||
|
LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
||||||
|
LOG_TEE("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
||||||
|
}
|
||||||
|
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||||
|
LOG_TEE("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||||
|
|
||||||
|
int n_img_pos_out = 0;
|
||||||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||||
|
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
||||||
|
n_img_pos_out += clip_n_patches(ctx_clip);
|
||||||
|
}
|
||||||
|
*n_img_pos = n_img_pos_out;
|
||||||
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||||
|
free(image_embd_v[i]);
|
||||||
|
}
|
||||||
|
image_embd_v.clear();
|
||||||
|
load_image_size->width = img->nx;
|
||||||
|
load_image_size->height = img->ny;
|
||||||
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||||
|
LOG_TEE("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||||
|
}
|
||||||
|
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||||
// flat / default llava-1.5 type embedding
|
// flat / default llava-1.5 type embedding
|
||||||
*n_img_pos = clip_n_patches(ctx_clip);
|
*n_img_pos = clip_n_patches(ctx_clip);
|
||||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||||
@ -228,7 +292,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
|||||||
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
} else {
|
}
|
||||||
|
else {
|
||||||
// spatial_unpad llava-1.6 type embedding
|
// spatial_unpad llava-1.6 type embedding
|
||||||
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
||||||
std::vector<float *> image_embd_v;
|
std::vector<float *> image_embd_v;
|
||||||
@ -297,7 +362,11 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
|||||||
}
|
}
|
||||||
|
|
||||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
int num_max_patches = 6;
|
||||||
|
if (clip_is_minicpmv(ctx_clip)) {
|
||||||
|
num_max_patches = 10;
|
||||||
|
}
|
||||||
|
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
|
||||||
if (!image_embd) {
|
if (!image_embd) {
|
||||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||||
return false;
|
return false;
|
||||||
|
@ -17,12 +17,11 @@
|
|||||||
# define LLAVA_API
|
# define LLAVA_API
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
struct clip_ctx;
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
struct clip_ctx;
|
||||||
struct llava_image_embed {
|
struct llava_image_embed {
|
||||||
float * embed;
|
float * embed;
|
||||||
int n_image_pos;
|
int n_image_pos;
|
||||||
@ -37,8 +36,8 @@ LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip,
|
|||||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
||||||
/** build an image embed from a path to an image filename */
|
/** build an image embed from a path to an image filename */
|
||||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
|
||||||
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
|
||||||
/** free an embedding made with llava_image_embed_make_* */
|
/** free an embedding made with llava_image_embed_make_* */
|
||||||
|
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||||
|
|
||||||
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
||||||
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
||||||
|
309
examples/llava/minicpmv-cli.cpp
Normal file
309
examples/llava/minicpmv-cli.cpp
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
#include "ggml.h"
|
||||||
|
#include "log.h"
|
||||||
|
#include "common.h"
|
||||||
|
#include "clip.h"
|
||||||
|
#include "llava.h"
|
||||||
|
#include "llama.h"
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
struct llava_context {
|
||||||
|
struct clip_ctx * ctx_clip = NULL;
|
||||||
|
struct llama_context * ctx_llama = NULL;
|
||||||
|
struct llama_model * model = NULL;
|
||||||
|
};
|
||||||
|
|
||||||
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||||
|
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||||
|
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||||
|
(void) level;
|
||||||
|
(void) user_data;
|
||||||
|
LOG_TEE("%s", text);
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct llama_model * llava_init(gpt_params * params) {
|
||||||
|
llama_backend_init();
|
||||||
|
llama_numa_init(params->numa);
|
||||||
|
|
||||||
|
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||||
|
|
||||||
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||||
|
if (model == NULL) {
|
||||||
|
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
return model;
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||||
|
auto prompt = params->prompt;
|
||||||
|
if (prompt.empty()) {
|
||||||
|
prompt = "describe the image in detail.";
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||||
|
if (params->n_ctx < 2048) {
|
||||||
|
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
||||||
|
LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||||
|
ctx_params.n_ctx = 2048;
|
||||||
|
} else {
|
||||||
|
ctx_params.n_ctx = params->n_ctx;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
|
if (ctx_llama == NULL) {
|
||||||
|
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
||||||
|
|
||||||
|
ctx_llava->ctx_llama = ctx_llama;
|
||||||
|
ctx_llava->model = model;
|
||||||
|
return ctx_llava;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void llava_free(struct llava_context * ctx_llava) {
|
||||||
|
if (ctx_llava->ctx_clip) {
|
||||||
|
clip_free(ctx_llava->ctx_clip);
|
||||||
|
ctx_llava->ctx_clip = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_free(ctx_llava->ctx_llama);
|
||||||
|
llama_free_model(ctx_llava->model);
|
||||||
|
llama_backend_free();
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||||
|
const char * clip_path = params->mmproj.c_str();
|
||||||
|
|
||||||
|
auto prompt = params->prompt;
|
||||||
|
if (prompt.empty()) {
|
||||||
|
prompt = "describe the image in detail.";
|
||||||
|
}
|
||||||
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||||
|
return ctx_clip;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||||
|
int N = (int) tokens.size();
|
||||||
|
for (int i = 0; i < N; i += n_batch) {
|
||||||
|
int n_eval = (int) tokens.size() - i;
|
||||||
|
if (n_eval > n_batch) {
|
||||||
|
n_eval = n_batch;
|
||||||
|
}
|
||||||
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
*n_past += n_eval;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||||
|
std::vector<llama_token> tokens;
|
||||||
|
tokens.push_back(id);
|
||||||
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||||
|
std::string str2 = str;
|
||||||
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||||
|
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
|
||||||
|
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
|
||||||
|
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
|
||||||
|
|
||||||
|
auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
||||||
|
slice_embed->embed = image_embed;
|
||||||
|
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
|
||||||
|
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
|
||||||
|
llava_image_embed_free(slice_embed);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
|
||||||
|
std::string system_prompt;
|
||||||
|
int idx = 0;
|
||||||
|
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
||||||
|
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
||||||
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||||
|
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
if (num_image_embeds > 1) {
|
||||||
|
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
||||||
|
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
if (j == num_image_embeds_col - 1) {
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||||
|
}
|
||||||
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
static const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||||
|
struct llama_context * ctx_llama,
|
||||||
|
int * n_past) {
|
||||||
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||||
|
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||||
|
static std::string ret;
|
||||||
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||||
|
ret = "</s>";
|
||||||
|
} else {
|
||||||
|
ret = llama_token_to_piece(ctx_llama, id);
|
||||||
|
}
|
||||||
|
eval_id(ctx_llama, id, n_past);
|
||||||
|
return ret.c_str();
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||||
|
auto ctx_clip = clip_init_context(params);
|
||||||
|
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
|
||||||
|
if (!embeds) {
|
||||||
|
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
// process the prompt
|
||||||
|
if (params->prompt.empty() && params->interactive == false) {
|
||||||
|
LOG_TEE("prompt should be given or interactive mode should be on");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto model = llava_init(params);
|
||||||
|
if (model == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
const int64_t t_llava_init_start_us = ggml_time_us();
|
||||||
|
auto ctx_llava = llava_init_context(params, model);
|
||||||
|
ctx_llava->ctx_clip = ctx_clip;
|
||||||
|
const int64_t t_llava_init_end_us = ggml_time_us();
|
||||||
|
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
||||||
|
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
||||||
|
|
||||||
|
const int64_t t_process_image_start_us = ggml_time_us();
|
||||||
|
process_image(ctx_llava, embeds, params, n_past);
|
||||||
|
const int64_t t_process_image_end_us = ggml_time_us();
|
||||||
|
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
||||||
|
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
||||||
|
|
||||||
|
llava_image_embed_free(embeds);
|
||||||
|
return ctx_llava;
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||||
|
std::string user_prompt = prompt;
|
||||||
|
if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
||||||
|
|
||||||
|
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||||
|
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
|
||||||
|
// generate the response
|
||||||
|
|
||||||
|
LOG_TEE("\n");
|
||||||
|
|
||||||
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||||
|
return ctx_sampling;
|
||||||
|
}
|
||||||
|
|
||||||
|
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
|
||||||
|
|
||||||
|
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||||
|
return tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
ggml_time_init();
|
||||||
|
|
||||||
|
gpt_params params;
|
||||||
|
|
||||||
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
|
show_additional_info(argc, argv);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
log_set_target(log_filename_generator("llava", "log"));
|
||||||
|
LOG_TEE("Log start\n");
|
||||||
|
log_dump_cmdline(argc, argv);
|
||||||
|
llama_log_set(llama_log_callback_logTee, nullptr);
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
if (params.mmproj.empty() || (params.image.empty())) {
|
||||||
|
gpt_params_print_usage(argc, argv, params);
|
||||||
|
show_additional_info(argc, argv);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (auto & image : params.image) {
|
||||||
|
int n_past = 0;
|
||||||
|
auto ctx_llava = minicpmv_init(¶ms, image, n_past);
|
||||||
|
|
||||||
|
if (!params.prompt.empty()) {
|
||||||
|
LOG_TEE("<user>%s\n", params.prompt.c_str());
|
||||||
|
LOG_TEE("<assistant>");
|
||||||
|
auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
|
||||||
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||||
|
std::string response = "";
|
||||||
|
bool have_tmp = false;
|
||||||
|
for (int i = 0; i < max_tgt_len; i++) {
|
||||||
|
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
||||||
|
response += tmp;
|
||||||
|
if (strcmp(tmp, "</s>") == 0){
|
||||||
|
if(!have_tmp)continue;
|
||||||
|
else break;
|
||||||
|
}
|
||||||
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||||
|
have_tmp = true;
|
||||||
|
printf("%s", tmp);
|
||||||
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||||
|
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
llama_sampling_free(ctx_sampling);
|
||||||
|
}else {
|
||||||
|
while (true) {
|
||||||
|
LOG_TEE("<user>");
|
||||||
|
std::string prompt;
|
||||||
|
std::getline(std::cin, prompt);
|
||||||
|
LOG_TEE("<assistant>");
|
||||||
|
auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
||||||
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||||
|
std::string response = "";
|
||||||
|
for (int i = 0; i < max_tgt_len; i++) {
|
||||||
|
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
||||||
|
response += tmp;
|
||||||
|
if (strcmp(tmp, "</s>") == 0) break;
|
||||||
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||||
|
printf("%s", tmp);// mistral llava-1.6
|
||||||
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
llama_sampling_free(ctx_sampling);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
llama_print_timings(ctx_llava->ctx_llama);
|
||||||
|
|
||||||
|
ctx_llava->model = NULL;
|
||||||
|
llava_free(ctx_llava);
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
382
examples/llava/minicpmv-convert-image-encoder-to-gguf.py
Normal file
382
examples/llava/minicpmv-convert-image-encoder-to-gguf.py
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import re
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from gguf import *
|
||||||
|
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
|
||||||
|
|
||||||
|
TEXT = "clip.text"
|
||||||
|
VISION = "clip.vision"
|
||||||
|
|
||||||
|
|
||||||
|
def add_key_str(raw_key: str, arch: str) -> str:
|
||||||
|
return raw_key.format(arch=arch)
|
||||||
|
|
||||||
|
|
||||||
|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
|
||||||
|
if name in (
|
||||||
|
"logit_scale",
|
||||||
|
"text_model.embeddings.position_ids",
|
||||||
|
"vision_model.embeddings.position_ids",
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
|
||||||
|
if has_minicpmv and name in ["visual_projection.weight"]:
|
||||||
|
return True
|
||||||
|
|
||||||
|
if name.startswith("v") and not has_vision:
|
||||||
|
return True
|
||||||
|
|
||||||
|
if name.startswith("t") and not has_text:
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def get_tensor_name(name: str) -> str:
|
||||||
|
if "projection" in name:
|
||||||
|
return name
|
||||||
|
if "mm_projector" in name:
|
||||||
|
name = name.replace("model.mm_projector", "mm")
|
||||||
|
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||||||
|
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||||||
|
return name
|
||||||
|
|
||||||
|
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||||
|
|
||||||
|
|
||||||
|
def bytes_to_unicode():
|
||||||
|
"""
|
||||||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||||
|
The reversible bpe codes work on unicode strings.
|
||||||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||||
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||||
|
"""
|
||||||
|
bs = (
|
||||||
|
list(range(ord("!"), ord("~") + 1))
|
||||||
|
+ list(range(ord("¡"), ord("¬") + 1))
|
||||||
|
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||||
|
)
|
||||||
|
cs = bs[:]
|
||||||
|
n = 0
|
||||||
|
for b in range(2**8):
|
||||||
|
if b not in bs:
|
||||||
|
bs.append(b)
|
||||||
|
cs.append(2**8 + n)
|
||||||
|
n += 1
|
||||||
|
cs = [chr(n) for n in cs]
|
||||||
|
return dict(zip(bs, cs))
|
||||||
|
|
||||||
|
|
||||||
|
ap = argparse.ArgumentParser()
|
||||||
|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||||
|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||||
|
ap.add_argument("--text-only", action="store_true", required=False,
|
||||||
|
help="Save a text-only model. It can't be used to encode images")
|
||||||
|
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||||
|
help="Save a vision-only model. It can't be used to encode texts")
|
||||||
|
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||||
|
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||||||
|
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||||
|
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||||
|
ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
|
||||||
|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||||||
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||||
|
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||||
|
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||||
|
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
||||||
|
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||||||
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||||
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||||
|
|
||||||
|
# with proper
|
||||||
|
args = ap.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if args.text_only and args.vision_only:
|
||||||
|
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
if args.use_f32:
|
||||||
|
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||||||
|
|
||||||
|
# output in the same directory as the model if output_dir is None
|
||||||
|
dir_model = args.model_dir
|
||||||
|
|
||||||
|
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||||
|
vocab = None
|
||||||
|
tokens = None
|
||||||
|
else:
|
||||||
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||||||
|
vocab = json.load(f)
|
||||||
|
tokens = [key for key in vocab]
|
||||||
|
|
||||||
|
# possible data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
#
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
ftype = 1
|
||||||
|
if args.use_f32:
|
||||||
|
ftype = 0
|
||||||
|
|
||||||
|
# if args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||||
|
# model = CLIPVisionModel.from_pretrained(dir_model)
|
||||||
|
# processor = None
|
||||||
|
# else:
|
||||||
|
# model = CLIPModel.from_pretrained(dir_model)
|
||||||
|
# processor = CLIPProcessor.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
default_vision_config = {
|
||||||
|
"hidden_size": 1152,
|
||||||
|
"image_size": 980,
|
||||||
|
"intermediate_size": 4304,
|
||||||
|
"model_type": "idefics2",
|
||||||
|
"num_attention_heads": 16,
|
||||||
|
"num_hidden_layers": 27,
|
||||||
|
"patch_size": 14,
|
||||||
|
}
|
||||||
|
vision_config = Idefics2VisionConfig(**default_vision_config)
|
||||||
|
model = Idefics2VisionTransformer(vision_config)
|
||||||
|
|
||||||
|
processor = None
|
||||||
|
# if model.attn_pool is not None:
|
||||||
|
# model.attn_pool = torch.nn.Identity()
|
||||||
|
|
||||||
|
# model.blocks = model.blocks[:-1]
|
||||||
|
model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
|
||||||
|
|
||||||
|
fname_middle = None
|
||||||
|
has_text_encoder = True
|
||||||
|
has_vision_encoder = True
|
||||||
|
has_minicpmv_projector = False
|
||||||
|
if args.text_only:
|
||||||
|
fname_middle = "text-"
|
||||||
|
has_vision_encoder = False
|
||||||
|
elif args.minicpmv_projector is not None:
|
||||||
|
fname_middle = "mmproj-"
|
||||||
|
has_text_encoder = False
|
||||||
|
has_minicpmv_projector = True
|
||||||
|
elif args.vision_only:
|
||||||
|
fname_middle = "vision-"
|
||||||
|
has_text_encoder = False
|
||||||
|
else:
|
||||||
|
fname_middle = ""
|
||||||
|
|
||||||
|
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||||
|
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||||
|
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||||
|
|
||||||
|
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||||
|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||||
|
fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
|
||||||
|
fout.add_file_type(ftype)
|
||||||
|
if args.text_only:
|
||||||
|
fout.add_description("text-only CLIP model")
|
||||||
|
elif args.vision_only and not has_minicpmv_projector:
|
||||||
|
fout.add_description("vision-only CLIP model")
|
||||||
|
elif has_minicpmv_projector:
|
||||||
|
fout.add_description("image encoder for MiniCPM-V")
|
||||||
|
# add projector type
|
||||||
|
fout.add_string("clip.projector_type", "resampler")
|
||||||
|
else:
|
||||||
|
fout.add_description("two-tower CLIP model")
|
||||||
|
|
||||||
|
if has_vision_encoder:
|
||||||
|
# vision_model hparams
|
||||||
|
fout.add_uint32("clip.vision.image_size", 448)
|
||||||
|
fout.add_uint32("clip.vision.patch_size", 14)
|
||||||
|
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
|
||||||
|
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
|
||||||
|
fout.add_uint32("clip.vision.projection_dim", 0)
|
||||||
|
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
|
||||||
|
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||||
|
block_count = 26
|
||||||
|
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
|
||||||
|
|
||||||
|
if processor is not None:
|
||||||
|
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
||||||
|
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
|
||||||
|
else:
|
||||||
|
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
|
||||||
|
image_std = args.image_std if args.image_std is not None else default_image_std
|
||||||
|
fout.add_array("clip.vision.image_mean", image_mean)
|
||||||
|
fout.add_array("clip.vision.image_std", image_std)
|
||||||
|
|
||||||
|
use_gelu = True
|
||||||
|
fout.add_bool("clip.use_gelu", use_gelu)
|
||||||
|
|
||||||
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
||||||
|
"""
|
||||||
|
embed_dim: output dimension for each position
|
||||||
|
pos: a list of positions to be encoded: size (M,)
|
||||||
|
out: (M, D)
|
||||||
|
"""
|
||||||
|
assert embed_dim % 2 == 0
|
||||||
|
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
||||||
|
omega /= embed_dim / 2.
|
||||||
|
omega = 1. / 10000 ** omega # (D/2,)
|
||||||
|
|
||||||
|
pos = pos.reshape(-1) # (M,)
|
||||||
|
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
||||||
|
|
||||||
|
emb_sin = np.sin(out) # (M, D/2)
|
||||||
|
emb_cos = np.cos(out) # (M, D/2)
|
||||||
|
|
||||||
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||||
|
return emb
|
||||||
|
|
||||||
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
||||||
|
assert embed_dim % 2 == 0
|
||||||
|
|
||||||
|
# use half of dimensions to encode grid_h
|
||||||
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||||
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||||
|
|
||||||
|
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||||
|
return emb
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
||||||
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
||||||
|
"""
|
||||||
|
grid_size: int of the grid height and width
|
||||||
|
return:
|
||||||
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||||
|
"""
|
||||||
|
if isinstance(grid_size, int):
|
||||||
|
grid_h_size, grid_w_size = grid_size, grid_size
|
||||||
|
else:
|
||||||
|
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
|
||||||
|
|
||||||
|
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
||||||
|
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
||||||
|
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||||
|
grid = np.stack(grid, axis=0)
|
||||||
|
|
||||||
|
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
|
||||||
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||||
|
if cls_token:
|
||||||
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
||||||
|
return pos_embed
|
||||||
|
|
||||||
|
def _replace_name_resampler(s, v):
|
||||||
|
if re.match("resampler.pos_embed", s):
|
||||||
|
return {
|
||||||
|
s: v,
|
||||||
|
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||||||
|
}
|
||||||
|
if re.match("resampler.proj", s):
|
||||||
|
return {
|
||||||
|
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
|
||||||
|
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
|
||||||
|
}
|
||||||
|
if re.match("resampler.attn.in_proj_.*", s):
|
||||||
|
return {
|
||||||
|
re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
|
||||||
|
re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
|
||||||
|
re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
|
||||||
|
}
|
||||||
|
return {s: v}
|
||||||
|
|
||||||
|
if has_minicpmv_projector:
|
||||||
|
projector = torch.load(args.minicpmv_projector)
|
||||||
|
new_state_dict = {}
|
||||||
|
for k, v in projector.items():
|
||||||
|
kvs = _replace_name_resampler(k, v)
|
||||||
|
for nk, nv in kvs.items():
|
||||||
|
new_state_dict[nk] = nv
|
||||||
|
projector = new_state_dict
|
||||||
|
ftype_cur = 0
|
||||||
|
for name, data in projector.items():
|
||||||
|
name = get_tensor_name(name)
|
||||||
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
if ftype == 1:
|
||||||
|
if name[-7:] == ".weight" and n_dims == 2:
|
||||||
|
print(" Converting to float16")
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
else:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
else:
|
||||||
|
if data.dtype != np.float32:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
|
||||||
|
fout.add_tensor(name, data)
|
||||||
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||||
|
|
||||||
|
print("Projector tensors added\n")
|
||||||
|
|
||||||
|
def _replace_name(s, v):
|
||||||
|
s = "vision_model." + s
|
||||||
|
if re.match("vision_model.embeddings.position_embedding", s):
|
||||||
|
v = v.unsqueeze(0)
|
||||||
|
return {s: v}
|
||||||
|
|
||||||
|
return {s: v}
|
||||||
|
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
new_state_dict = {}
|
||||||
|
for k, v in state_dict.items():
|
||||||
|
kvs = _replace_name(k, v)
|
||||||
|
for nk, nv in kvs.items():
|
||||||
|
new_state_dict[nk] = nv
|
||||||
|
state_dict = new_state_dict
|
||||||
|
for name, data in state_dict.items():
|
||||||
|
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
|
||||||
|
# we don't need this
|
||||||
|
print(f"skipping parameter: {name}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
name = get_tensor_name(name)
|
||||||
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
|
||||||
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||||
|
ftype_cur = 0
|
||||||
|
if n_dims == 4:
|
||||||
|
print(f"tensor {name} is always saved in f16")
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
elif ftype == 1:
|
||||||
|
if name[-7:] == ".weight" and n_dims == 2:
|
||||||
|
print(" Converting to float16")
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
else:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
else:
|
||||||
|
if data.dtype != np.float32:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
|
||||||
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||||
|
fout.add_tensor(name, data)
|
||||||
|
|
||||||
|
|
||||||
|
fout.write_header_to_file()
|
||||||
|
fout.write_kv_data_to_file()
|
||||||
|
fout.write_tensors_to_file()
|
||||||
|
fout.close()
|
||||||
|
|
||||||
|
print("Done. Output file: " + fname_out)
|
47
examples/llava/minicpmv-surgery.py
Normal file
47
examples/llava/minicpmv-surgery.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
|
ap = argparse.ArgumentParser()
|
||||||
|
ap.add_argument("-m", "--model", help="Path to MiniCPM-V-2.5 model")
|
||||||
|
args = ap.parse_args()
|
||||||
|
|
||||||
|
# find the model part that includes the the multimodal projector weights
|
||||||
|
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
|
||||||
|
checkpoint = model.state_dict()
|
||||||
|
|
||||||
|
# get a list of mm tensor names
|
||||||
|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")]
|
||||||
|
|
||||||
|
# store these tensors in a new dictionary and torch.save them
|
||||||
|
projector = {name: checkpoint[name].float() for name in mm_tensors}
|
||||||
|
torch.save(projector, f"{args.model}/minicpmv.projector")
|
||||||
|
|
||||||
|
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")]
|
||||||
|
if len(clip_tensors) > 0:
|
||||||
|
clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors}
|
||||||
|
torch.save(clip, f"{args.model}/minicpmv.clip")
|
||||||
|
|
||||||
|
# added tokens should be removed to be able to convert Mistral models
|
||||||
|
if os.path.exists(f"{args.model}/added_tokens.json"):
|
||||||
|
with open(f"{args.model}/added_tokens.json", "w") as f:
|
||||||
|
f.write("{}\n")
|
||||||
|
|
||||||
|
config = model.llm.config
|
||||||
|
config._name_or_path = "openbmb/MiniCPM-Llama3-V-2.5"
|
||||||
|
config.auto_map = {
|
||||||
|
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
||||||
|
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
||||||
|
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
||||||
|
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
||||||
|
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
||||||
|
}
|
||||||
|
model.llm.save_pretrained(f"{args.model}/model")
|
||||||
|
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
||||||
|
tok.save_pretrained(f"{args.model}/model")
|
||||||
|
# os.system(f"cp {args.model}/modeling_minicpm.py {args.model}/MiniCPM_l3/modeling_minicpm.py")
|
||||||
|
|
||||||
|
print("Done!")
|
||||||
|
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
|
||||||
|
print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")
|
@ -2,3 +2,4 @@
|
|||||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
pillow~=10.2.0
|
pillow~=10.2.0
|
||||||
torch~=2.2.1
|
torch~=2.2.1
|
||||||
|
torchvision==0.17.1
|
||||||
|
Loading…
Reference in New Issue
Block a user