Merge branch 'gguf' into gguf-write-single-pass

This commit is contained in:
Georgi Gerganov 2023-08-17 21:51:15 +03:00 committed by GitHub
commit 307e09cd85
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
28 changed files with 1151 additions and 740 deletions

1
.gitignore vendored
View File

@ -50,7 +50,6 @@ models-mnt
/embd-input-test /embd-input-test
/gguf /gguf
/gguf-llama-simple /gguf-llama-simple
/gptneox-main
/libllama.so /libllama.so
build-info.h build-info.h
arm_neon.h arm_neon.h

View File

@ -296,7 +296,6 @@ if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED) find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED) find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED) find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h) set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
@ -313,7 +312,6 @@ if (LLAMA_METAL)
${FOUNDATION_LIBRARY} ${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK} ${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK} ${METALKIT_FRAMEWORK}
${METALPERFORMANCE_FRAMEWORK}
) )
endif() endif()
@ -570,6 +568,16 @@ install(
WORLD_READ WORLD_READ
WORLD_EXECUTE WORLD_EXECUTE
DESTINATION ${CMAKE_INSTALL_BINDIR}) DESTINATION ${CMAKE_INSTALL_BINDIR})
if (LLAMA_METAL)
install(
FILES ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE
GROUP_READ
WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR})
endif()
# #
# programs, examples and tests # programs, examples and tests

View File

@ -1,8 +1,8 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf gptneox-main BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0 TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
default: $(BUILD_TARGETS) default: $(BUILD_TARGETS)
@ -283,7 +283,7 @@ endif # LLAMA_CLBLAST
ifdef LLAMA_METAL ifdef LLAMA_METAL
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
CXXFLAGS += -DGGML_USE_METAL CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJS += ggml-metal.o OBJS += ggml-metal.o
endif # LLAMA_METAL endif # LLAMA_METAL
@ -388,9 +388,6 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te
gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS) gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
gptneox-main: gptneox-main.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS) train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@ -418,6 +415,9 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp examples/grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-grammar-parser: tests/test-grammar-parser.cpp examples/grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)

View File

@ -284,7 +284,7 @@ When built with Metal support, you can enable GPU inference with the `--gpu-laye
Any value larger than 0 will offload the computation to the GPU. For example: Any value larger than 0 will offload the computation to the GPU. For example:
```bash ```bash
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 -ngl 1 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
``` ```
### MPI Build ### MPI Build
@ -323,7 +323,7 @@ The above will distribute the computation across 2 processes on the first host a
Finally, you're ready to run a computation using `mpirun`: Finally, you're ready to run a computation using `mpirun`:
```bash ```bash
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.bin -n 128 mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
``` ```
### BLAS Build ### BLAS Build
@ -506,10 +506,10 @@ python3 convert.py models/7B/
python convert.py models/7B/ --vocabtype bpe python convert.py models/7B/ --vocabtype bpe
# quantize the model to 4-bits (using q4_0 method) # quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0 ./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# run the inference # run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
``` ```
When running the larger models, make sure you have enough disk space to store all the intermediate files. When running the larger models, make sure you have enough disk space to store all the intermediate files.
@ -565,7 +565,7 @@ Here is an example of a few-shot interaction, invoked with the command
./examples/chat-13B.sh ./examples/chat-13B.sh
# custom arguments using a 13B model # custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt ./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
``` ```
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program. Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
@ -628,6 +628,8 @@ OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It
### Using [GPT4All](https://github.com/nomic-ai/gpt4all) ### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
*Note: these instructions are likely obsoleted by the GGUF update*
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models` - Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models` - Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B` - Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
@ -703,7 +705,7 @@ If your issue is with model generation quality, then please at least scan the fo
#### How to run #### How to run
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research 1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
2. Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` 2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
3. Output: 3. Output:
``` ```
perplexity : calculating perplexity over 655 chunks perplexity : calculating perplexity over 655 chunks
@ -802,13 +804,13 @@ docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-
On completion, you are ready to play! On completion, you are ready to play!
```bash ```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
``` ```
or with a light image: or with a light image:
```bash ```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
``` ```
### Docker With CUDA ### Docker With CUDA
@ -839,8 +841,8 @@ The resulting images, are essentially the same as the non-CUDA images:
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag. After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
```bash ```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1 docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1 docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
``` ```
### Contributing ### Contributing

View File

@ -159,17 +159,17 @@ function gg_run_open_llama_3b_v2 {
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.bin" model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.bin" model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.bin" model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.bin" model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.bin" model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.bin" model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.bin" model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.bin" model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.bin" model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.bin" model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.bin" model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw" wiki_test_60="${path_wiki}/wiki.test-60.raw"
@ -285,17 +285,17 @@ function gg_run_open_llama_7b_v2 {
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.bin" model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.bin" model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.bin" model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.bin" model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.bin" model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.bin" model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.bin" model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.bin" model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.bin" model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.bin" model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.bin" model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw" wiki_test="${path_wiki}/wiki.test.raw"

View File

@ -155,12 +155,7 @@ class Params:
n_layer = config["num_hidden_layers"] n_layer = config["num_hidden_layers"]
n_ff = config["intermediate_size"] n_ff = config["intermediate_size"]
n_head = config["num_attention_heads"] n_head = config["num_attention_heads"]
n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
if "num_key_value_heads" in config:
n_head_kv = config["num_key_value_heads"]
else:
n_head_kv = None
f_norm_eps = config["rms_norm_eps"] f_norm_eps = config["rms_norm_eps"]
n_mult = Params.find_n_mult(n_ff, n_embd) n_mult = Params.find_n_mult(n_ff, n_embd)
@ -719,7 +714,7 @@ class OutputFile:
self.gguf.add_feed_forward_length (params.n_ff) self.gguf.add_feed_forward_length (params.n_ff)
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
self.gguf.add_head_count (params.n_head) self.gguf.add_head_count (params.n_head)
if params.n_head_kv is not None: self.gguf.add_head_count_kv(params.n_head_kv) self.gguf.add_head_count_kv (params.n_head_kv)
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps) self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
def add_meta_vocab(self, vocab: Vocab) -> None: def add_meta_vocab(self, vocab: Vocab) -> None:
@ -817,6 +812,23 @@ def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyM
def convert_model_names(model: LazyModel, params: Params) -> LazyModel: def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
tmap = gguf.get_tensor_name_map(ARCH, params.n_layer) tmap = gguf.get_tensor_name_map(ARCH, params.n_layer)
tmp = model
# HF models permut or pack some of the tensors, so we need to undo that
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
print(f"Permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head_kv)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
#tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head_kv)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
else:
break
out: LazyModel = {} out: LazyModel = {}
for name, lazy_tensor in model.items(): for name, lazy_tensor in model.items():
name_new = name name_new = name
@ -830,8 +842,9 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
else: else:
raise Exception(f"Unexpected tensor name: {name}") raise Exception(f"Unexpected tensor name: {name}")
if gguf.should_skip_tensor(ARCH, params.n_layer, name_new): if gguf.should_skip_tensor_TMP(ARCH, params.n_layer, name_new):
print(f"skipping tensor {name_new}") print(f"skipping tensor {name_new}")
continue
else: else:
print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type} | {lazy_tensor.shape}") print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type} | {lazy_tensor.shape}")
out[name_new] = lazy_tensor out[name_new] = lazy_tensor

View File

@ -3,7 +3,7 @@
## Verifying that the model is running on the GPU with cuBLAS ## Verifying that the model is running on the GPU with cuBLAS
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example: Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell ```shell
./main -m "path/to/model.bin" -ngl 200000 -p "Please sir, may I have some " ./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
``` ```
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines: When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
@ -25,9 +25,9 @@ GPU: A6000 (48GB VRAM)
CPU: 7 physical cores CPU: 7 physical cores
RAM: 32GB RAM: 32GB
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.ggmlv3.q4_0.bin` (30B parameters, 4bit quantization, GGML) Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
Run command: `./main -m "path/to/model.bin" -p "-p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]` Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Result: Result:

View File

@ -262,6 +262,21 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.cfg_negative_prompt = argv[i]; params.cfg_negative_prompt = argv[i];
} else if (arg == "--cfg-negative-prompt-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
if (params.cfg_negative_prompt.back() == '\n') {
params.cfg_negative_prompt.pop_back();
}
} else if (arg == "--cfg-scale") { } else if (arg == "--cfg-scale") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -553,8 +568,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
fprintf(stdout, " --grammar-file FNAME file to read grammar from\n"); fprintf(stdout, " --grammar-file FNAME file to read grammar from\n");
fprintf(stdout, " --cfg-negative-prompt PROMPT \n"); fprintf(stdout, " --cfg-negative-prompt PROMPT\n");
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n"); fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
fprintf(stdout, " --cfg-negative-prompt-file FNAME\n");
fprintf(stdout, " negative prompt file to use for guidance. (default: empty)\n");
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale); fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base); fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);

View File

@ -52,7 +52,7 @@ struct gpt_params {
std::string cfg_negative_prompt; // string to help guidance std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance float cfg_scale = 1.f; // How strong is guidance
std::string model = "models/7B/ggml-model.bin"; // model path std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_alias = "unknown"; // model alias std::string model_alias = "unknown"; // model alias
std::string prompt = ""; std::string prompt = "";
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state

View File

@ -2,7 +2,7 @@
// //
// - First, export a LLaMA graph: // - First, export a LLaMA graph:
// //
// $ ./bin/main -m ../models/7B/ggml-model-q4_0.bin --export // $ ./bin/main -m ../models/7B/ggml-model-q4_0.gguf --export
// //
// - Run this tool to evaluate the exported graph: // - Run this tool to evaluate the exported graph:
// //

View File

@ -25,7 +25,7 @@
#endif #endif
struct quantize_stats_params { struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin"; std::string model = "models/7B/ggml-model-f16.gguf";
bool verbose = false; bool verbose = false;
bool per_layer_stats = false; bool per_layer_stats = false;
bool print_histogram = false; bool print_histogram = false;

View File

@ -5,7 +5,7 @@ This example demonstrates a simple HTTP API server and a simple web front end to
Command line options: Command line options:
- `--threads N`, `-t N`: Set the number of threads to use during computation. - `--threads N`, `-t N`: Set the number of threads to use during computation.
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). - `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. - `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096. - `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
@ -48,14 +48,12 @@ To get started right away, run the following command, making sure to use the cor
### Unix-based systems (Linux, macOS, etc.): ### Unix-based systems (Linux, macOS, etc.):
```bash ```bash
./server -m models/7B/ggml-model.bin -c 2048 ./server -m models/7B/ggml-model.gguf -c 2048
``` ```
### Windows: ### Windows:
```powershell ```powershell
server.exe -m models\7B\ggml-model.bin -c 2048
```
The above command will start a server that by default listens on `127.0.0.1:8080`. The above command will start a server that by default listens on `127.0.0.1:8080`.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url. You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.

View File

@ -15,6 +15,7 @@
#include "index.html.hpp" #include "index.html.hpp"
#include "index.js.hpp" #include "index.js.hpp"
#include "completion.js.hpp" #include "completion.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#ifndef SERVER_VERBOSE #ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1 #define SERVER_VERBOSE 1
@ -1199,6 +1200,12 @@ int main(int argc, char **argv)
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript"); res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
return false; }); return false; });
// this is only called if no index.html is found in the public --path
svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
{
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
return false; });
svr.Post("/completion", [&llama](const Request &req, Response &res) svr.Post("/completion", [&llama](const Request &req, Response &res)
{ {
auto lock = llama.lock(); auto lock = llama.lock();

View File

@ -14,8 +14,6 @@
with pkgs.darwin.apple_sdk_11_0.frameworks; [ with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate Accelerate
MetalKit MetalKit
MetalPerformanceShaders
MetalPerformanceShadersGraph
] ]
else if isAarch32 && isDarwin then else if isAarch32 && isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [ with pkgs.darwin.apple_sdk.frameworks; [

View File

@ -67,6 +67,8 @@ struct ggml_allocr {
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE]; struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size; size_t max_size;
bool measure; bool measure;
int parse_seq[GGML_MAX_NODES];
bool has_parse_seq;
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024]; struct ggml_tensor * allocated_tensors[1024];
@ -111,10 +113,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
size_t max_avail = 0; size_t max_avail = 0;
// find the best fitting free block // find the best fitting free block besides the last block
int best_fit_block = -1; int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX; size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks; i++) { for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i]; struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size); max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) { if (block->size >= size && block->size <= best_fit_size) {
@ -126,10 +128,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
AT_PRINTF("block %d\n", best_fit_block); AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) { if (best_fit_block == -1) {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", // the last block is our last resort
__func__, size, max_avail); struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
GGML_ASSERT(!"not enough space in the buffer"); if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
max_avail = MAX(max_avail, block->size);
} else {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return; return;
}
} }
struct free_block * block = &alloc->free_blocks[best_fit_block]; struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr; void * addr = block->addr;
@ -229,6 +238,17 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t
alloc->n_free_blocks++; alloc->n_free_blocks++;
} }
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n) {
int pos = 0;
for (int i = 0; i < n; i++) {
if (list[i] != -1) {
alloc->parse_seq[pos] = list[i];
pos++;
}
}
alloc->has_parse_seq = true;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) { void ggml_allocr_reset(struct ggml_allocr * alloc) {
alloc->n_free_blocks = 1; alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
@ -248,6 +268,8 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
/*.hash_table = */ {{0}}, /*.hash_table = */ {{0}},
/*.max_size = */ 0, /*.max_size = */ 0,
/*.measure = */ false, /*.measure = */ false,
/*.parse_seq = */ {0},
/*.has_parse_seq = */ false,
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0}, /*.allocated_tensors = */ = {0},
#endif #endif
@ -275,6 +297,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
/*.hash_table = */ {{0}}, /*.hash_table = */ {{0}},
/*.max_size = */ 0, /*.max_size = */ 0,
/*.measure = */ true, /*.measure = */ true,
/*.parse_seq = */ {0},
/*.has_parse_seq = */ false,
#ifdef GGML_ALLOCATOR_DEBUG #ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0}, /*.allocated_tensors = */ = {0},
#endif #endif
@ -473,7 +497,13 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
allocate_node(alloc, input); allocate_node(alloc, input);
} }
} }
for (int i = 0; i < gf->n_nodes; i++) { for (int ind = 0; ind < gf->n_nodes; ind++) {
int i;
if (alloc->has_parse_seq) {
i = alloc->parse_seq[ind];
} else {
i = ind;
}
struct ggml_tensor * node = gf->nodes[i]; struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs) // allocate parents (leafs)

View File

@ -10,6 +10,10 @@ extern "C" {
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment); GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment); GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n);
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc); GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc); GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc); GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);

View File

@ -66,10 +66,13 @@ void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
// try to find operations that can be run concurrently in the graph // try to find operations that can be run concurrently in the graph
// you should run it again if the topology of your graph changes // you should run it again if the topology of your graph changes
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
// if the graph has been optimized for concurrently dispatch // if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx); int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// output the concur_list for ggml_alloc
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal // same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel // creates gf->n_threads command buffers in parallel

View File

@ -5,7 +5,6 @@
#import <Foundation/Foundation.h> #import <Foundation/Foundation.h>
#import <Metal/Metal.h> #import <Metal/Metal.h>
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
#undef MIN #undef MIN
#undef MAX #undef MAX
@ -79,6 +78,14 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_DECL_KERNEL(rope); GGML_METAL_DECL_KERNEL(rope);
GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f16);
@ -110,13 +117,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->n_buffers = 0; ctx->n_buffers = 0;
ctx->concur_list_len = 0; ctx->concur_list_len = 0;
// determine if we can use MPS
if (MPSSupportsMTLDevice(ctx->device)) {
fprintf(stderr, "%s: using MPS\n", __func__);
} else {
fprintf(stderr, "%s: not using MPS\n", __func__);
GGML_ASSERT(false && "MPS not supported");
}
#if 0 #if 0
// compile from source string and show compile log // compile from source string and show compile log
@ -163,10 +163,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
// load kernels // load kernels
{ {
NSError * error = nil;
#define GGML_METAL_ADD_KERNEL(name) \ #define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); \
if (error) { \
fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
}
GGML_METAL_ADD_KERNEL(add); GGML_METAL_ADD_KERNEL(add);
GGML_METAL_ADD_KERNEL(add_row); GGML_METAL_ADD_KERNEL(add_row);
@ -196,6 +201,14 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_ADD_KERNEL(rope); GGML_METAL_ADD_KERNEL(rope);
GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f16);
@ -243,11 +256,12 @@ void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = n_cb; ctx->n_cb = n_cb;
} }
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) { int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
if (ctx->concur_list_len) { return ctx->concur_list_len;
return true; }
}
return false; int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
return ctx->concur_list;
} }
// finds the Metal buffer that contains the tensor data on the GPU device // finds the Metal buffer that contains the tensor data on the GPU device
@ -390,7 +404,7 @@ void ggml_metal_get_tensor(
void ggml_metal_graph_find_concurrency( void ggml_metal_graph_find_concurrency(
struct ggml_metal_context * ctx, struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) { struct ggml_cgraph * gf, bool check_mem) {
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
int nodes_unused[GGML_MAX_CONCUR]; int nodes_unused[GGML_MAX_CONCUR];
@ -437,7 +451,7 @@ void ggml_metal_graph_find_concurrency(
} }
} }
} }
if (exe_flag) { if (exe_flag && check_mem) {
// check if nodes[i]'s data will be overwritten by a node before nodes[i]. // check if nodes[i]'s data will be overwritten by a node before nodes[i].
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3] // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
int64_t data_start = (int64_t) gf->nodes[i]->data; int64_t data_start = (int64_t) gf->nodes[i]->data;
@ -521,7 +535,7 @@ void ggml_metal_graph_compute(
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx]; id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
id<MTLComputeCommandEncoder> encoder = nil; id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
const int node_start = (cb_idx + 0) * n_nodes_per_cb; const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb; const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
@ -530,10 +544,6 @@ void ggml_metal_graph_compute(
const int i = has_concur ? ctx->concur_list[ind] : ind; const int i = has_concur ? ctx->concur_list[ind] : ind;
if (i == -1) { if (i == -1) {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
continue;
}
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
continue; continue;
} }
@ -607,10 +617,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_ADD: case GGML_OP_ADD:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
if (ggml_nelements(src1) == ne10) { if (ggml_nelements(src1) == ne10) {
// src1 is a row // src1 is a row
[encoder setComputePipelineState:ctx->pipeline_add_row]; [encoder setComputePipelineState:ctx->pipeline_add_row];
@ -628,10 +634,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_MUL: case GGML_OP_MUL:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
if (ggml_nelements(src1) == ne10) { if (ggml_nelements(src1) == ne10) {
// src1 is a row // src1 is a row
[encoder setComputePipelineState:ctx->pipeline_mul_row]; [encoder setComputePipelineState:ctx->pipeline_mul_row];
@ -649,10 +651,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_SCALE: case GGML_OP_SCALE:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float scale = *(const float *) src1->data; const float scale = *(const float *) src1->data;
[encoder setComputePipelineState:ctx->pipeline_scale]; [encoder setComputePipelineState:ctx->pipeline_scale];
@ -668,10 +666,6 @@ void ggml_metal_graph_compute(
switch (ggml_get_unary_op(gf->nodes[i])) { switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_silu]; [encoder setComputePipelineState:ctx->pipeline_silu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -682,10 +676,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_RELU:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_relu]; [encoder setComputePipelineState:ctx->pipeline_relu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -696,10 +686,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_gelu]; [encoder setComputePipelineState:ctx->pipeline_gelu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -716,10 +702,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int nth = 32; const int nth = 32;
[encoder setComputePipelineState:ctx->pipeline_soft_max]; [encoder setComputePipelineState:ctx->pipeline_soft_max];
@ -734,10 +716,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int n_past = ((int32_t *)(dst->op_params))[0]; const int n_past = ((int32_t *)(dst->op_params))[0];
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
@ -755,53 +733,43 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne00 == ne10); GGML_ASSERT(ne00 == ne10);
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
uint gqa = ne12/ne02;
GGML_ASSERT(ne03 == ne13); GGML_ASSERT(ne03 == ne13);
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if (ggml_is_contiguous(src0) && if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) && ggml_is_contiguous(src1) &&
(src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) { src1t == GGML_TYPE_F32 &&
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
if (encoder != nil) { ne00%32 == 0 &&
[encoder endEncoding]; ne11 > 1) {
encoder = nil; switch (src0->type) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} }
else {
MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
// for F32 x F32 we use MPS
MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
initWithDevice:ctx->device transposeLeft:false transposeRight:true
resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
// we need to do ne12 multiplications
// TODO: is there a way to do this in parallel - currently very slow ..
// TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
for (int64_t i02 = 0; i02 < ne12; ++i02) {
size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now
size_t offs_src1_cur = offs_src1 + i02*nb12;
size_t offs_dst_cur = offs_dst + i02*nb2;
MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
[mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
}
} else {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
int nth0 = 32; int nth0 = 32;
int nth1 = 1; int nth1 = 1;
@ -900,23 +868,24 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) { src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q3_K) { else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64 #ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else #else
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif #endif
} }
else if (src0t == GGML_TYPE_Q5_K) { else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q6_K) { else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else { } else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -925,10 +894,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
@ -954,10 +919,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
float eps; float eps;
memcpy(&eps, dst->op_params, sizeof(float)); memcpy(&eps, dst->op_params, sizeof(float));
@ -977,10 +938,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_NORM: case GGML_OP_NORM:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float eps = 1e-5f; const float eps = 1e-5f;
const int nth = 256; const int nth = 256;
@ -999,10 +956,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_ALIBI: case GGML_OP_ALIBI:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
GGML_ASSERT((src0t == GGML_TYPE_F32)); GGML_ASSERT((src0t == GGML_TYPE_F32));
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
@ -1042,10 +995,6 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_ROPE: case GGML_OP_ROPE:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int n_past = ((int32_t *) dst->op_params)[0]; const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1]; const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2]; const int mode = ((int32_t *) dst->op_params)[2];
@ -1086,10 +1035,6 @@ void ggml_metal_graph_compute(
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_CONT: case GGML_OP_CONT:
{ {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int nth = 32; const int nth = 32;
switch (src0t) { switch (src0t) {

File diff suppressed because it is too large Load Diff

2
ggml.c
View File

@ -19290,7 +19290,7 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
} }
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n); gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
free(data); free(data);
} if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) { } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
GGML_ASSERT(false && "nested arrays not supported"); GGML_ASSERT(false && "nested arrays not supported");
} else { } else {
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n); gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);

View File

@ -147,7 +147,11 @@ MODEL_TENSOR_SKIP = {
} }
def should_skip_tensor(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool: # TODO: the following helper functions should be removed
# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
# REMOVE
def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
for skip in MODEL_TENSOR_SKIP.get(arch, []): for skip in MODEL_TENSOR_SKIP.get(arch, []):
for i in range(n_blocks): for i in range(n_blocks):
if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i): if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):

View File

@ -11,7 +11,7 @@
#include "ggml.h" #include "ggml.h"
#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL) #if !defined(GGML_USE_CUBLAS)
# include "ggml-alloc.h" # include "ggml-alloc.h"
# define LLAMA_USE_ALLOCATOR # define LLAMA_USE_ALLOCATOR
#else #else
@ -1042,6 +1042,9 @@ struct llama_model_loader {
}; };
ctx_gguf = gguf_init_from_file(fname.c_str(), params); ctx_gguf = gguf_init_from_file(fname.c_str(), params);
if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
}
n_kv = gguf_get_n_kv(ctx_gguf); n_kv = gguf_get_n_kv(ctx_gguf);
n_tensors = gguf_get_n_tensors(ctx_gguf); n_tensors = gguf_get_n_tensors(ctx_gguf);
@ -1057,7 +1060,7 @@ struct llama_model_loader {
// print meta data // print meta data
// TODO: make optional // TODO: make optional
{ {
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value paris and %d tensors from %s (version %s)\n", LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(file_version)); __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(file_version));
for (int i = 0; i < n_tensors; i++) { for (int i = 0; i < n_tensors; i++) {
@ -1083,6 +1086,15 @@ struct llama_model_loader {
this->use_mmap = use_mmap; this->use_mmap = use_mmap;
} }
~llama_model_loader() {
if (ctx_gguf) {
gguf_free(ctx_gguf);
}
if (ctx_meta) {
ggml_free(ctx_meta);
}
}
const char * get_tensor_name(int i) const { const char * get_tensor_name(int i) const {
return gguf_get_tensor_name(ctx_gguf, i); return gguf_get_tensor_name(ctx_gguf, i);
} }
@ -1895,11 +1907,11 @@ static struct ggml_cgraph * llama_build_graph(
ggml_set_name(Q, "Q"); ggml_set_name(Q, "Q");
struct ggml_tensor * K = struct ggml_tensor * K =
ggml_permute(ctx0, ggml_view_3d(ctx0, kv_self.k,
ggml_reshape_3d(ctx0, n_embd_head, n_past + N, n_head_kv,
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd_gqa, il*n_ctx*ggml_element_size(kv_self.k)*n_embd_gqa), ggml_element_size(kv_self.k)*n_embd_gqa,
n_embd_head, n_head_kv, n_past + N), ggml_element_size(kv_self.k)*n_embd_head,
0, 2, 1, 3); ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
offload_func_kq(K); offload_func_kq(K);
ggml_set_name(K, "K"); ggml_set_name(K, "K");
@ -1928,9 +1940,9 @@ static struct ggml_cgraph * llama_build_graph(
struct ggml_tensor * V = struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v, ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd_head, n_head_kv, n_past + N, n_embd_head, n_head_kv,
n_ctx*ggml_element_size(kv_self.v), ggml_element_size(kv_self.v)*n_ctx,
n_ctx*ggml_element_size(kv_self.v)*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
n_ctx*ggml_element_size(kv_self.v)*n_embd_gqa*il); ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
offload_func_v(V); offload_func_v(V);
ggml_set_name(V, "V"); ggml_set_name(V, "V");
@ -2131,11 +2143,7 @@ static bool llama_eval_internal(
#endif #endif
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
if (lctx.ctx_metal && N == 1) { if (lctx.ctx_metal) {
// TODO: disabled until #2413 is resolved
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
//}
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads); ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, gf); ggml_metal_graph_compute(lctx.ctx_metal, gf);
ggml_metal_get_tensor (lctx.ctx_metal, res); ggml_metal_get_tensor (lctx.ctx_metal, res);
@ -2143,22 +2151,6 @@ static bool llama_eval_internal(
ggml_metal_get_tensor(lctx.ctx_metal, embeddings); ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
} }
} else { } else {
// IMPORTANT:
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
// ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
// coprocessor.
//
// When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
// But for now, we have focused only on Matrix x Vector Metal multiplication.
//
// TODO: avoid these syncs via shared memory (ref #1696)
//
if (lctx.ctx_metal) {
// We need to sync the GPU KV cache with the CPU KV cache
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
}
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads); ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
} }
#else #else
@ -3440,6 +3432,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const std::string name = ggml_get_name(meta); const std::string name = ggml_get_name(meta);
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos) { if (name.find("attn_v.weight") != std::string::npos) {
++n_attention_wv; ++n_attention_wv;
} }
@ -3518,6 +3511,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else { } else {
new_type = quantized_type; new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS #ifdef GGML_USE_K_QUANTS
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name == TN_OUTPUT) { if (name == TN_OUTPUT) {
int nx = tensor->ne[0]; int nx = tensor->ne[0];
int ny = tensor->ne[1]; int ny = tensor->ne[1];
@ -3532,7 +3526,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
++i_attention_wv; ++i_attention_wv;
} else if (name.find("feed_forward.w2.weight") != std::string::npos) { } else if (name.find("ffn_down.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
@ -3587,7 +3581,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_data = work.data(); new_data = work.data();
std::vector<int64_t> hist_cur(1 << 4, 0); std::vector<int64_t> hist_cur(1 << 4, 0);
const int chunk_size = 32 * 512; static const int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) { if (nthread_use < 2) {
@ -3595,7 +3589,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else { } else {
size_t counter = 0; size_t counter = 0;
new_size = 0; new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements] () { auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
std::vector<int64_t> local_hist; std::vector<int64_t> local_hist;
size_t local_size = 0; size_t local_size = 0;
while (true) { while (true) {
@ -4141,7 +4135,18 @@ struct llama_context * llama_new_context_with_model(
int n_past = hparams.n_ctx - n_tokens; int n_past = hparams.n_ctx - n_tokens;
llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past); ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
#endif
// measure memory requirements for the graph // measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
@ -4159,6 +4164,11 @@ struct llama_context * llama_new_context_with_model(
ctx->buf_alloc.resize(alloc_size); ctx->buf_alloc.resize(alloc_size);
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment); ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
#ifdef GGML_USE_METAL
if (ctx->ctx_metal) {
ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
}
#endif
} }
#else #else
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead()); ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
@ -4173,13 +4183,6 @@ struct llama_context * llama_new_context_with_model(
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) { if (params.n_gpu_layers > 0) {
// this allocates all Metal resources and memory buffers // this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init(1);
if (!ctx->ctx_metal) {
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
llama_free(ctx);
return NULL;
}
void * data_ptr = NULL; void * data_ptr = NULL;
size_t data_size = 0; size_t data_size = 0;
@ -4208,8 +4211,7 @@ struct llama_context * llama_new_context_with_model(
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].data, ctx->buf_scratch[0].size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].data, ctx->buf_scratch[1].size, 0));
#undef LLAMA_METAL_CHECK_BUF #undef LLAMA_METAL_CHECK_BUF
} }
#endif #endif

1
models/.editorconfig Normal file
View File

@ -0,0 +1 @@
root = true

View File

@ -0,0 +1,3 @@
#!/bin/bash
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip

View File

@ -31,5 +31,6 @@ llama_build_executable(test-tokenizer-1.cpp)
llama_test_executable(test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf) llama_test_executable(test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) #llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp) llama_build_and_test_executable(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/common.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW llama_build_and_test_executable(test-grad0.cpp) # SLOW
# llama_build_and_test_executable(test-opt.cpp) # SLOW # llama_build_and_test_executable(test-opt.cpp) # SLOW

View File

@ -0,0 +1,403 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include "llama.cpp"
#include "examples/common.cpp"
#include "examples/grammar-parser.cpp"
#include <cassert>
int main()
{
grammar_parser::parse_state parsed_grammar;
std::vector<std::pair<std::string, uint32_t>> expected = {
{"expr", 2},
{"expr_6", 6},
{"expr_7", 7},
{"ident", 8},
{"ident_10", 10},
{"num", 9},
{"num_11", 11},
{"root", 0},
{"root_1", 1},
{"root_5", 5},
{"term", 4},
{"ws", 3},
{"ws_12", 12},
};
std::vector<std::vector<llama_grammar_element>> expected_rules = {
{{LLAMA_GRETYPE_RULE_REF, 5}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_CHAR, 10},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 4}, {LLAMA_GRETYPE_RULE_REF, 7}, {LLAMA_GRETYPE_END, 0}},
{{LLAMA_GRETYPE_RULE_REF, 12}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_RULE_REF, 8},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_RULE_REF, 9},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 40},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 41},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 1}, {LLAMA_GRETYPE_RULE_REF, 5}, {LLAMA_GRETYPE_ALT, 0}, {LLAMA_GRETYPE_RULE_REF, 1}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_CHAR, 45},
{LLAMA_GRETYPE_CHAR_ALT, 43},
{LLAMA_GRETYPE_CHAR_ALT, 42},
{LLAMA_GRETYPE_CHAR_ALT, 47},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 6}, {LLAMA_GRETYPE_RULE_REF, 7}, {LLAMA_GRETYPE_ALT, 0}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_CHAR, 97},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
{LLAMA_GRETYPE_RULE_REF, 10},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 11}, {LLAMA_GRETYPE_RULE_REF, 3}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_CHAR, 97},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
{LLAMA_GRETYPE_CHAR_ALT, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_CHAR_ALT, 95},
{LLAMA_GRETYPE_RULE_REF, 10},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
},
{
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_RULE_REF, 11},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_END, 0},
},
{
{LLAMA_GRETYPE_CHAR, 32},
{LLAMA_GRETYPE_CHAR_ALT, 9},
{LLAMA_GRETYPE_CHAR_ALT, 10},
{LLAMA_GRETYPE_RULE_REF, 12},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
},
};
for (auto pair : expected)
{
parsed_grammar.symbol_ids[pair.first] = pair.second;
}
for (auto rule : expected_rules)
{
parsed_grammar.rules.push_back({});
for (auto element : rule)
{
parsed_grammar.rules.back().push_back(element);
}
}
llama_grammar *grammar = NULL;
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
std::vector<std::vector<llama_grammar_element>> expected_stacks = {
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 97},
},
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 40},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 97},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 40},
}};
auto index = 0;
for (auto stack : grammar->stacks)
{
// compare stack to expected_stack
for (uint32_t i = 0; i < stack.size(); i++)
{
auto element = stack[i];
auto expected_element = expected_stacks[index][i];
// pretty print error message before asserting
if (expected_element.type != element->type || expected_element.value != element->value)
{
fprintf(stderr, "index: %d\n", index);
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
fprintf(stderr, "actual_element: %d, %d\n", element->type, element->value);
fprintf(stderr, "expected_element != actual_element\n");
}
assert(expected_element.type == element->type && expected_element.value == element->value);
}
index++;
}
std::vector<std::vector<const llama_grammar_element *>> next_stacks;
std::vector<llama_grammar_candidate> next_candidates;
next_candidates.resize(24);
for (size_t i = 0; i < 24; ++i)
{
uint32_t *cp = new uint32_t[2]; // dynamically allocate memory for code_point
cp[0] = 37 + i;
cp[1] = 0;
next_candidates[i] = {i, cp};
}
std::vector<std::vector<std::pair<uint32_t, uint16_t>>> expected_reject = {
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
};
std::vector<llama_grammar_candidate> rejects = llama_grammar_reject_candidates_for_stack(grammar->rules, grammar->stacks[0], next_candidates);
std::vector<std::vector<llama_grammar_candidate>> all_rejects;
for (std::size_t count = 0; count < grammar->stacks.size(); ++count)
{
rejects = llama_grammar_reject_candidates_for_stack(grammar->rules, grammar->stacks[count], next_candidates);
all_rejects.push_back(rejects);
}
index = 0;
for (auto rej : all_rejects)
{
for (uint32_t i = 0; i < rej.size(); i++)
{
auto element = rej[i];
auto expected_element = expected_reject[index][i];
assert(element.index == expected_element.first && *element.code_points == expected_element.second);
}
index++;
}
for (auto &candidate : next_candidates)
{
delete[] candidate.code_points;
candidate.code_points = nullptr;
}
delete grammar;
return 0;
}