diff --git a/gptneox-main.cpp b/gptneox-main.cpp new file mode 100644 index 000000000..02fbc9fba --- /dev/null +++ b/gptneox-main.cpp @@ -0,0 +1,812 @@ +#include "ggml.h" + +#include "gptneox-common.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +// default hparams +struct gpt_neox_hparams { + size_t n_merges = 0; + size_t n_vocab = 0; + int32_t n_ctx = 0; + int32_t n_embd = 0; + int32_t n_head = 0; + int32_t n_layer = 0; + int32_t n_rot = 0; // rotary_pct * (n_embd / n_head) + bool par_res = true; + float norm_eps = 1e-5; +}; + +struct gpt_neox_layer { + // pre normalization + struct ggml_tensor * ln_1_g; + struct ggml_tensor * ln_1_b; + + // attention + struct ggml_tensor * c_attn_attn_w; + struct ggml_tensor * c_attn_attn_b; + + struct ggml_tensor * c_attn_proj_w; + struct ggml_tensor * c_attn_proj_b; + + // post normalization + struct ggml_tensor * ln_2_g; + struct ggml_tensor * ln_2_b; + + // ff + struct ggml_tensor * c_mlp_fc_w; + struct ggml_tensor * c_mlp_fc_b; + + struct ggml_tensor * c_mlp_proj_w; + struct ggml_tensor * c_mlp_proj_b; +}; + +struct gpt_neox_model { + gpt_neox_hparams hparams; + + // normalization + struct ggml_tensor * ln_f_g; + struct ggml_tensor * ln_f_b; + + struct ggml_tensor * wte; // position embedding + + struct ggml_tensor * lmh_g; // language model head + + std::vector layers; + + // key + value memory + struct ggml_tensor * memory_k; + struct ggml_tensor * memory_v; + + // + struct gguf_context * ggufctx; + struct ggml_context * ctx; + struct ggml_context * kvctx; + + std::map tensors; +}; + +struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){ + + struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); + if( cur == NULL ) { + fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str()); + } else { +// fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name); + } + + return cur; +} + +// load the model's weights from a file +bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab) { + printf("%s: loading model from '%s'..\n", __func__, fname.c_str()); + + model.ctx = NULL; + + struct gguf_init_params ggufparams = { + /*.no_alloc = */ false, + /*.ctx = */ &model.ctx, + }; + + auto & ggufctx = model.ggufctx; + + ggufctx = gguf_init_from_file(fname.c_str(), ggufparams); + + if (!ggufctx) { + fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); + return false; + } + + fprintf(stdout, "%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx)); + fprintf(stdout, "%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx)); + fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx)); + + // print all kv + if( false ) + { + const int n_kv = gguf_get_n_kv(ggufctx); + + fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv); + + for (int i = 0; i < n_kv; ++i) { + const char * key = gguf_get_key(ggufctx, i); + + fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key); + } + } + + // print some standard metadata + { + int keyidx; + + keyidx = gguf_find_key(ggufctx, "general.name"); + if (keyidx != -1) { fprintf(stdout, "%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + keyidx = gguf_find_key(ggufctx, "general.description"); + if (keyidx != -1) { fprintf(stdout, "%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + keyidx = gguf_find_key(ggufctx, "general.author"); + if (keyidx != -1) { fprintf(stdout, "%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + keyidx = gguf_find_key(ggufctx, "general.license"); + if (keyidx != -1) { fprintf(stdout, "%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + keyidx = gguf_find_key(ggufctx, "general.architecture"); + if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + } + + // check required metadata + { + int keyidx; + + keyidx = gguf_find_key(ggufctx, "general.architecture"); + if (keyidx != -1) { + if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gptneox") != 0) { + fprintf(stdout, "%s: model architecture not supported!\n", __func__); + return false; + } + } else { + fprintf(stdout, "%s: gguf model architecture not found!\n", __func__); + return false; + } + + } + + // load hparams + { + auto & hparams = model.hparams; + + bool ok = true; + int keyidx; + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.context_length"); + if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.embedding_length"); + if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.head_count"); + if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.layer_count"); + if (keyidx != -1) { hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count"); + if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } } + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.use_parallel_residual"); + if (keyidx != -1) { hparams.par_res = gguf_get_val_bool(ggufctx, keyidx); } else { ok = false; } } + + if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.layer_norm_epsilon"); + if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; } } + + if (!ok) { + fprintf(stderr, "%s: required hparam missing!\n", __func__); + return false; + } + + printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); + printf("%s: n_embd = %d\n", __func__, hparams.n_embd); + printf("%s: n_head = %d\n", __func__, hparams.n_head); + printf("%s: n_layer = %d\n", __func__, hparams.n_layer); + printf("%s: n_rot = %d\n", __func__, hparams.n_rot); + printf("%s: par_res = %d\n", __func__, hparams.par_res); + printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps); + + } + + // load vocab + { + + // TODO: implement a better bpe tokenizer, utilizing merges and handles unicode + + auto & hparams = model.hparams; + + int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); + + if (keyidx != -1) { + if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) { + fprintf(stdout, "%s: tokenizer model not supported!\n", __func__); + return false; + } + } else { + fprintf(stdout, "%s: tokenizer model not found!\n", __func__); + return false; + } + + + int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); + + if (tokens_keyidx == -1) { + fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__); + return false; + } + + int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges"); + + if (merges_keyidx == -1) { + fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__); + return false; + } + + hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx); + hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx); + + fprintf(stdout, "%s: gpt2 tokenizer vocab = %zu\n", __func__, hparams.n_vocab); + fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges); + + for (size_t i = 0; i < hparams.n_vocab; i++) { + std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); + + + // TEMP until a better bpe tokenizer is implemented + word = replace(word, "Ġ", " "); + word = replace(word, "Ċ", "\n"); + + + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + } + + + } + + + auto & ctx = model.ctx; + size_t ctx_size = ggml_get_mem_size(ctx); + + printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); + + // print tensor info + if( false ) + { + const int n_tensors = gguf_get_n_tensors(ggufctx); + + fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors); + + for (int i = 0; i < n_tensors; ++i) { + const char * name = gguf_get_tensor_name (ggufctx, i); + const size_t offset = gguf_get_tensor_offset(ggufctx, i); + + fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); + } + } + + + // prepare memory for the weights + { + const int n_layer = model.hparams.n_layer; + + model.layers.resize(n_layer); + + model.wte = ggml_get_tensor(ctx, "gpt_neox.embed_in.weight"); + model.ln_f_g = ggml_get_tensor(ctx, "gpt_neox.final_layer_norm.weight"); + model.ln_f_b = ggml_get_tensor(ctx, "gpt_neox.final_layer_norm.bias"); + model.lmh_g = ggml_get_tensor(ctx, "embed_out.weight"); + + // map by name + model.tensors["gpt_neox.embed_in.weight"] = model.wte; + model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g; + model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b; + model.tensors["embed_out.weight"] = model.lmh_g; + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + + layer.ln_1_g = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight" ); + layer.ln_1_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias" ); + + layer.c_attn_attn_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight" ); + layer.c_attn_attn_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias" ); + + layer.c_attn_proj_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight" ); + layer.c_attn_proj_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias" ); + + layer.ln_2_g = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight" ); + layer.ln_2_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"); + + layer.c_mlp_fc_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight" ); + layer.c_mlp_fc_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias" ); + + layer.c_mlp_proj_w = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight" ); + layer.c_mlp_proj_b = get_tensor_ex(ctx, "gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias" ); + + // map by name + model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g; + model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"] = layer.ln_1_b; + + model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w; + model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"] = layer.c_attn_attn_b; + + model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w; + model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"] = layer.c_attn_proj_b; + + model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g; + model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"] = layer.ln_2_b; + + model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w; + model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b; + + model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w; + model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b; + } + } + + // key + value memory + { + const auto & kvctx = model.kvctx; + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + + const int64_t n_mem = n_layer*n_ctx; + const int64_t n_elements = n_embd*n_mem; + + // create the ggml context + { + struct ggml_init_params params = { + /*.mem_size =*/ size_t(n_elements*4+ggml_tensor_overhead()*2), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ false, + }; + + model.kvctx = ggml_init(params); + if (!model.kvctx) { + fprintf(stderr, "%s: kv ggml_init() failed\n", __func__); + return false; + } + + } + + + model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); + model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements); + + const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); + + printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem); + } + + return true; +} + + +// feed-forward network +ggml_tensor * gpt_neox_ff( + const gpt_neox_layer &layer, + ggml_context * ctx0, + ggml_tensor * inp) { + ggml_tensor * cur = ggml_norm(ctx0, inp); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, layer.ln_2_g, cur), + cur), + ggml_repeat(ctx0, layer.ln_2_b, cur)); + + cur = ggml_mul_mat(ctx0, + layer.c_mlp_fc_w, + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, layer.c_mlp_fc_b, cur), + cur); + + // GELU activation + cur = ggml_gelu(ctx0, cur); + + // projection + // cur = proj_w*cur + proj_b + cur = ggml_mul_mat(ctx0, + layer.c_mlp_proj_w, + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, layer.c_mlp_proj_b, cur), + cur); + return cur; +} + +// evaluate the transformer +// +// - model: the model +// - n_threads: number of threads to use +// - n_past: the context size so far +// - embd_inp: the embeddings of the tokens in the context +// - embd_w: the predicted logits for the next token +// +bool gpt_neox_eval( + const gpt_neox_model & model, + const int n_threads, + const int n_past, + const std::vector & embd_inp, + std::vector & embd_w, + size_t & mem_per_token) { + const int N = embd_inp.size(); + + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_head = hparams.n_head; + const int n_vocab = hparams.n_vocab; + const int n_rot = hparams.n_rot; + + static size_t buf_size = 256u*1024*1024; + static void * buf = malloc(buf_size); + + // use 2 scratch buffers + // TODO: very hacky solution - reimplement in a more elegant way + static size_t scr0_size = 256u*1024*1024; + static void * scr0 = malloc(scr0_size); + + static size_t scr1_size = 256u*1024*1024; + static void * scr1 = malloc(scr1_size); + + if (mem_per_token > 0 && mem_per_token*N > buf_size) { + const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead + //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); + + // reallocate + buf_size = buf_size_new; + buf = realloc(buf, buf_size); + if (buf == nullptr) { + fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); + return false; + } + } + + struct ggml_init_params params = { + /*.mem_size =*/ buf_size, + /*.mem_buffer =*/ buf, + /*.no_alloc =*/ false, + }; + + struct ggml_context * ctx0 = ggml_init(params); + struct ggml_cgraph gf = {}; + + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); + + + // wte + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * cur; + + ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); + + // self-attention + { + { + cur = ggml_norm(ctx0, inpL); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), + cur), + ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); + } + + // compute QKV + { + + cur = ggml_mul_mat(ctx0, + model.layers[il].c_attn_attn_w, + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), + cur); + } + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head)); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head)); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head)); + + // using mode = 2 for GPT-NeoX mode + Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0); + Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0); + + // store key and value to memory + { + Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N)); + + struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd, + ( n_ctx)*ggml_element_size(model.memory_v), + (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); + } + + // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) + struct ggml_tensor * Q = + ggml_permute(ctx0, + Qcur, + 0, 2, 1, 3); + + // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) + struct ggml_tensor * K = + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), + n_embd/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + struct ggml_tensor * KQ_scaled = + ggml_scale_inplace(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) + ); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + + // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() + struct ggml_tensor * V = + ggml_view_3d(ctx0, model.memory_v, + n_past + N, n_embd/n_head, n_head, + n_ctx*ggml_element_size(model.memory_v), + n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head, + il*n_ctx*ggml_element_size(model.memory_v)*n_embd); + + // KQV = transpose(V) * KQ_soft_max + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + + // cur = KQV_merged.contiguous().view(n_embd, N) + cur = ggml_cpy(ctx0, + KQV_merged, + ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + + // projection + { + cur = ggml_mul_mat(ctx0, + model.layers[il].c_attn_proj_w, + cur); + + cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur); + } + } + + ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); + + if (hparams.par_res == 0) { + struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL); + + cur = gpt_neox_ff(model.layers[il], ctx0, inpFF); + + // input for next layer + inpL = ggml_add(ctx0, cur, inpFF); + } else { + struct ggml_tensor * inpFF = cur; + + // this is independent of the self-attention result, so it could be done in parallel to the self-attention + // note here we pass inpL instead of cur + cur = gpt_neox_ff(model.layers[il], ctx0, inpL); + + // layer input + FF + cur = ggml_add(ctx0, cur, inpFF); + + // input for next layer + inpL = ggml_add(ctx0, cur, inpL); + } + } + + ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); + + // norm + { + inpL = ggml_norm(ctx0, inpL); + + // inpL = ln_f_g*inpL + ln_f_b + inpL = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.ln_f_g, inpL), + inpL), + ggml_repeat(ctx0, model.ln_f_b, inpL)); + } + + ggml_set_scratch(ctx0, { 0, 0, nullptr, }); + + // lm_head + { + inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); + + //inpL = ggml_add(ctx0, + // ggml_repeat(ctx0, model.lmh_b, inpL), + // inpL); + } + + // logits -> probs + //inpL = ggml_soft_max_inplace(ctx0, inpL); + + // run the computation + ggml_build_forward_expand(&gf, inpL); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + + //if (n_past%100 == 0) { + // ggml_graph_print (&gf); + // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); + //} + + //embd_w.resize(n_vocab*N); + //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); + + // return result for just the last token + embd_w.resize(n_vocab); + memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); + + if (mem_per_token == 0) { + mem_per_token = ggml_used_mem(ctx0)/N; + } + //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); + + ggml_free(ctx0); + + return true; +} + +int main(int argc, char ** argv) { + ggml_time_init(); + + const int64_t t_main_start_us = ggml_time_us(); + + gpt_params params; + + if (gpt_params_parse(argc, argv, params) == false) { + return 1; + } + + if (params.seed < 0) { + params.seed = time(NULL); + } + + printf("%s: seed = %d\n", __func__, params.seed); + + std::mt19937 rng(params.seed); + if (params.prompt.empty()) { + params.prompt = gpt_random_prompt(rng); + } + + int64_t t_load_us = 0; + + gpt_vocab vocab; + gpt_neox_model model; + + // load the model + { + const int64_t t_start_us = ggml_time_us(); + + if (!gpt_neox_model_load(params.model, model, vocab)) { + fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); + return 1; + } + + t_load_us = ggml_time_us() - t_start_us; + + } + + int n_past = 0; + + int64_t t_sample_us = 0; + int64_t t_predict_us = 0; + + std::vector logits; + + // tokenize the prompt + std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); + + params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); + + printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); + for (int i = 0; i < embd_inp.size(); i++) { + printf("%s: token[%d] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str()); + } + printf("\n"); + + std::vector embd; + + // determine the required inference memory per token: + size_t mem_per_token = 0; + gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); + + for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { + // predict + if (embd.size() > 0) { + const int64_t t_start_us = ggml_time_us(); + + if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { + printf("Failed to predict\n"); + return 1; + } + + t_predict_us += ggml_time_us() - t_start_us; + } + + n_past += embd.size(); + embd.clear(); + + if (i >= embd_inp.size()) { + // sample next token + const int top_k = params.top_k; + const float top_p = params.top_p; + const float temp = params.temp; + + const int n_vocab = model.hparams.n_vocab; + + gpt_vocab::id id = 0; + + { + const int64_t t_start_sample_us = ggml_time_us(); + + id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); + + t_sample_us += ggml_time_us() - t_start_sample_us; + } + + // add it to the context + embd.push_back(id); + } else { + // if here, it means we are still processing the input prompt + for (int k = i; k < embd_inp.size(); k++) { + embd.push_back(embd_inp[k]); + if (embd.size() > params.n_batch) { + break; + } + } + i += embd.size() - 1; + } + + // display text + for (auto id : embd) { + printf("%s", vocab.id_to_token[id].c_str()); + } + fflush(stdout); + + // end of text token + if (embd.back() == 0) { + break; + } + } + + // report timing + { + const int64_t t_main_end_us = ggml_time_us(); + + printf("\n\n"); + printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); + printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); + printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); + printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); + printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); + } + + ggml_free(model.ctx); + + return 0; +}