mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-14 06:49:54 +00:00
gguf-py : fix some metadata name extraction edge cases (#8591)
* gguf-py : fix some metadata name extraction edge cases * convert_lora : use the lora dir for the model card path * gguf-py : more metadata edge cases fixes Multiple finetune versions are now joined together, and the removal of the basename annotation on trailing versions is more robust. * gguf-py : add more name metadata extraction tests * convert_lora : fix default filename The default filename was previously hardcoded. * convert_hf : Model.fname_out can no longer be None * gguf-py : do not use title case for naming convention Some models use acronyms in lowercase, which can't be title-cased like other words, so it's best to simply use the same case as in the original model name. Note that the size label still has an uppercased suffix to make it distinguishable from the context size of a finetune.
This commit is contained in:
parent
c69c63039c
commit
328884f421
@ -48,7 +48,7 @@ class Model:
|
|||||||
|
|
||||||
dir_model: Path
|
dir_model: Path
|
||||||
ftype: gguf.LlamaFileType
|
ftype: gguf.LlamaFileType
|
||||||
fname_out: Path | None
|
fname_out: Path
|
||||||
is_big_endian: bool
|
is_big_endian: bool
|
||||||
endianess: gguf.GGUFEndian
|
endianess: gguf.GGUFEndian
|
||||||
use_temp_file: bool
|
use_temp_file: bool
|
||||||
@ -62,11 +62,12 @@ class Model:
|
|||||||
gguf_writer: gguf.GGUFWriter
|
gguf_writer: gguf.GGUFWriter
|
||||||
model_name: str | None
|
model_name: str | None
|
||||||
metadata_override: Path | None
|
metadata_override: Path | None
|
||||||
|
dir_model_card: Path
|
||||||
|
|
||||||
# subclasses should define this!
|
# subclasses should define this!
|
||||||
model_arch: gguf.MODEL_ARCH
|
model_arch: gguf.MODEL_ARCH
|
||||||
|
|
||||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path | None, is_big_endian: bool = False,
|
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||||||
use_temp_file: bool = False, eager: bool = False,
|
use_temp_file: bool = False, eager: bool = False,
|
||||||
metadata_override: Path | None = None, model_name: str | None = None,
|
metadata_override: Path | None = None, model_name: str | None = None,
|
||||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
||||||
@ -90,6 +91,7 @@ class Model:
|
|||||||
self.tensor_names = None
|
self.tensor_names = None
|
||||||
self.metadata_override = metadata_override
|
self.metadata_override = metadata_override
|
||||||
self.model_name = model_name
|
self.model_name = model_name
|
||||||
|
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
|
||||||
|
|
||||||
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
|
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
|
||||||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||||||
@ -345,7 +347,7 @@ class Model:
|
|||||||
|
|
||||||
total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
|
total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
|
||||||
|
|
||||||
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model, self.model_name, total_params)
|
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
|
||||||
|
|
||||||
# Fallback to model directory name if metadata name is still missing
|
# Fallback to model directory name if metadata name is still missing
|
||||||
if self.metadata.name is None:
|
if self.metadata.name is None:
|
||||||
@ -359,27 +361,22 @@ class Model:
|
|||||||
output_type: str = self.ftype.name.partition("_")[2]
|
output_type: str = self.ftype.name.partition("_")[2]
|
||||||
|
|
||||||
# Filename Output
|
# Filename Output
|
||||||
# Note: `not is_dir()` is used because `.is_file()` will not detect
|
if self.fname_out.is_dir():
|
||||||
# file template strings as it doesn't actually exist as a file
|
|
||||||
if self.fname_out is not None and not self.fname_out.is_dir():
|
|
||||||
# Output path is a custom defined templated filename
|
|
||||||
|
|
||||||
# Process templated file name with the output ftype, useful with the "auto" ftype
|
|
||||||
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
|
|
||||||
else:
|
|
||||||
# Generate default filename based on model specification and available metadata
|
# Generate default filename based on model specification and available metadata
|
||||||
if not vocab_only:
|
if not vocab_only:
|
||||||
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
|
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
|
||||||
else:
|
else:
|
||||||
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
|
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
|
||||||
|
|
||||||
# Check if preferred output directory path was provided
|
# Use the default filename
|
||||||
if self.fname_out is not None and self.fname_out.is_dir():
|
self.fname_out = self.fname_out / f"{fname_default}.gguf"
|
||||||
# output path is a directory
|
else:
|
||||||
self.fname_out = self.fname_out / f"{fname_default}.gguf"
|
# Output path is a custom defined templated filename
|
||||||
else:
|
# Note: `not is_dir()` is used because `.is_file()` will not detect
|
||||||
# output in the same directory as the model by default
|
# file template strings as it doesn't actually exist as a file
|
||||||
self.fname_out = self.dir_model / f"{fname_default}.gguf"
|
|
||||||
|
# Process templated file name with the output ftype, useful with the "auto" ftype
|
||||||
|
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
|
||||||
|
|
||||||
self.set_type()
|
self.set_type()
|
||||||
|
|
||||||
@ -3634,10 +3631,10 @@ def main() -> None:
|
|||||||
logger.error("Error: Cannot use temp file when splitting")
|
logger.error("Error: Cannot use temp file when splitting")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
fname_out = None
|
|
||||||
|
|
||||||
if args.outfile is not None:
|
if args.outfile is not None:
|
||||||
fname_out = args.outfile
|
fname_out = args.outfile
|
||||||
|
else:
|
||||||
|
fname_out = dir_model
|
||||||
|
|
||||||
logger.info(f"Loading model: {dir_model.name}")
|
logger.info(f"Loading model: {dir_model.name}")
|
||||||
|
|
||||||
@ -3668,7 +3665,6 @@ def main() -> None:
|
|||||||
else:
|
else:
|
||||||
logger.info("Exporting model...")
|
logger.info("Exporting model...")
|
||||||
model_instance.write()
|
model_instance.write()
|
||||||
assert model_instance.fname_out is not None
|
|
||||||
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
|
out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
|
||||||
logger.info(f"Model successfully exported to {out_path}")
|
logger.info(f"Model successfully exported to {out_path}")
|
||||||
|
|
||||||
|
@ -290,7 +290,7 @@ if __name__ == '__main__':
|
|||||||
fname_out = args.outfile
|
fname_out = args.outfile
|
||||||
else:
|
else:
|
||||||
# output in the same directory as the model by default
|
# output in the same directory as the model by default
|
||||||
fname_out = dir_lora / 'ggml-lora-{ftype}.gguf'
|
fname_out = dir_lora
|
||||||
|
|
||||||
if os.path.exists(input_model):
|
if os.path.exists(input_model):
|
||||||
# lazy import load_file only if lora is in safetensors format.
|
# lazy import load_file only if lora is in safetensors format.
|
||||||
@ -304,12 +304,6 @@ if __name__ == '__main__':
|
|||||||
# load base model
|
# load base model
|
||||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||||
hparams = Model.load_hparams(dir_base_model)
|
hparams = Model.load_hparams(dir_base_model)
|
||||||
|
|
||||||
with open(lora_config, "r") as f:
|
|
||||||
lparams: dict[str, Any] = json.load(f)
|
|
||||||
|
|
||||||
alpha: float = lparams["lora_alpha"]
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
try:
|
try:
|
||||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||||
@ -320,12 +314,21 @@ if __name__ == '__main__':
|
|||||||
class LoraModel(model_class):
|
class LoraModel(model_class):
|
||||||
model_arch = model_class.model_arch
|
model_arch = model_class.model_arch
|
||||||
|
|
||||||
|
lora_alpha: float
|
||||||
|
|
||||||
|
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
|
||||||
|
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
self.dir_model_card = dir_lora_model
|
||||||
|
self.lora_alpha = float(lora_alpha)
|
||||||
|
|
||||||
def set_type(self):
|
def set_type(self):
|
||||||
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||||
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, float(alpha))
|
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||||
super().set_gguf_parameters()
|
super().set_gguf_parameters()
|
||||||
|
|
||||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||||
@ -368,6 +371,11 @@ if __name__ == '__main__':
|
|||||||
yield (dest_name + ".lora_a", lora_a)
|
yield (dest_name + ".lora_a", lora_a)
|
||||||
yield (dest_name + ".lora_b", lora_b)
|
yield (dest_name + ".lora_b", lora_b)
|
||||||
|
|
||||||
|
with open(lora_config, "r") as f:
|
||||||
|
lparams: dict[str, Any] = json.load(f)
|
||||||
|
|
||||||
|
alpha: float = lparams["lora_alpha"]
|
||||||
|
|
||||||
model_instance = LoraModel(
|
model_instance = LoraModel(
|
||||||
dir_base_model,
|
dir_base_model,
|
||||||
ftype,
|
ftype,
|
||||||
@ -376,6 +384,8 @@ if __name__ == '__main__':
|
|||||||
use_temp_file=False,
|
use_temp_file=False,
|
||||||
eager=args.no_lazy,
|
eager=args.no_lazy,
|
||||||
dry_run=args.dry_run,
|
dry_run=args.dry_run,
|
||||||
|
dir_lora_model=dir_lora,
|
||||||
|
lora_alpha=alpha,
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info("Exporting model...")
|
logger.info("Exporting model...")
|
||||||
|
@ -54,6 +54,7 @@ class Metadata:
|
|||||||
|
|
||||||
model_card = Metadata.load_model_card(model_path)
|
model_card = Metadata.load_model_card(model_path)
|
||||||
hf_params = Metadata.load_hf_parameters(model_path)
|
hf_params = Metadata.load_hf_parameters(model_path)
|
||||||
|
# TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
|
||||||
|
|
||||||
# heuristics
|
# heuristics
|
||||||
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
|
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
|
||||||
@ -177,6 +178,12 @@ class Metadata:
|
|||||||
org_component = None
|
org_component = None
|
||||||
|
|
||||||
name_parts: list[str] = model_full_name_component.split('-')
|
name_parts: list[str] = model_full_name_component.split('-')
|
||||||
|
|
||||||
|
# Remove empty parts
|
||||||
|
for i in reversed(range(len(name_parts))):
|
||||||
|
if len(name_parts[i]) == 0:
|
||||||
|
del name_parts[i]
|
||||||
|
|
||||||
name_types: list[
|
name_types: list[
|
||||||
set[Literal["basename", "size_label", "finetune", "version", "type"]]
|
set[Literal["basename", "size_label", "finetune", "version", "type"]]
|
||||||
] = [set() for _ in name_parts]
|
] = [set() for _ in name_parts]
|
||||||
@ -223,9 +230,19 @@ class Metadata:
|
|||||||
name_parts[i] = part
|
name_parts[i] = part
|
||||||
# Some easy to recognize finetune names
|
# Some easy to recognize finetune names
|
||||||
elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
|
elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
|
||||||
name_types[i].add("finetune")
|
if total_params < 0 and part.lower() == "lora":
|
||||||
if part.lower() == "lora":
|
# ignore redundant "lora" in the finetune part when the output is a lora adapter
|
||||||
name_parts[i] = "LoRA"
|
name_types[i].add("type")
|
||||||
|
else:
|
||||||
|
name_types[i].add("finetune")
|
||||||
|
|
||||||
|
# Ignore word-based size labels when there is at least a number-based one present
|
||||||
|
# TODO: should word-based size labels always be removed instead?
|
||||||
|
if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n):
|
||||||
|
for n, t in zip(name_parts, name_types):
|
||||||
|
if "size_label" in t:
|
||||||
|
if all(c.isalpha() for c in n):
|
||||||
|
t.remove("size_label")
|
||||||
|
|
||||||
at_start = True
|
at_start = True
|
||||||
# Find the basename through the annotated name
|
# Find the basename through the annotated name
|
||||||
@ -240,18 +257,18 @@ class Metadata:
|
|||||||
|
|
||||||
# Remove the basename annotation from trailing version
|
# Remove the basename annotation from trailing version
|
||||||
for part, t in zip(reversed(name_parts), reversed(name_types)):
|
for part, t in zip(reversed(name_parts), reversed(name_types)):
|
||||||
if "basename" in t:
|
if "basename" in t and len(t) > 1:
|
||||||
if len(t) > 1:
|
t.remove("basename")
|
||||||
t.remove("basename")
|
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
|
|
||||||
basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
|
basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
|
||||||
size_label = "-".join(s for s, t in zip(name_parts, name_types) if "size_label" in t) or None
|
# Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys)
|
||||||
|
size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None
|
||||||
finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
|
finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
|
||||||
# TODO: should the basename version always be excluded?
|
# TODO: should the basename version always be excluded?
|
||||||
# TODO: should multiple versions be joined together?
|
# NOTE: multiple finetune versions are joined together
|
||||||
version = ([v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t] or [None])[-1]
|
version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None
|
||||||
|
|
||||||
if size_label is None and finetune is None and version is None:
|
if size_label is None and finetune is None and version is None:
|
||||||
# Too ambiguous, output nothing
|
# Too ambiguous, output nothing
|
||||||
|
@ -50,15 +50,15 @@ def naming_convention(model_name: str | None, base_name: str | None, finetune_st
|
|||||||
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
|
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
|
||||||
|
|
||||||
if base_name is not None:
|
if base_name is not None:
|
||||||
name = base_name.strip().title().replace(' ', '-').replace('/', '-')
|
name = base_name.strip().replace(' ', '-').replace('/', '-')
|
||||||
elif model_name is not None:
|
elif model_name is not None:
|
||||||
name = model_name.strip().title().replace(' ', '-').replace('/', '-')
|
name = model_name.strip().replace(' ', '-').replace('/', '-')
|
||||||
else:
|
else:
|
||||||
name = "ggml-model"
|
name = "ggml-model"
|
||||||
|
|
||||||
parameters = f"-{size_label}" if size_label is not None else ""
|
parameters = f"-{size_label}" if size_label is not None else ""
|
||||||
|
|
||||||
finetune = f"-{finetune_string.strip().title().replace(' ', '-')}" if finetune_string is not None else ""
|
finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else ""
|
||||||
|
|
||||||
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
|
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
|
||||||
|
|
||||||
|
@ -54,7 +54,7 @@ class TestMetadataMethod(unittest.TestCase):
|
|||||||
self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Meta-Llama-3-8B"),
|
self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Meta-Llama-3-8B"),
|
||||||
('Meta-Llama-3-8B', "NousResearch", 'Meta-Llama-3', None, None, '8B'))
|
('Meta-Llama-3-8B', "NousResearch", 'Meta-Llama-3', None, None, '8B'))
|
||||||
|
|
||||||
# Can't detect all non standard form in a heuristically safe way... best to err in caution and output nothing...
|
# Non standard naming
|
||||||
self.assertEqual(gguf.Metadata.get_model_id_components("Qwen1.5-MoE-A2.7B-Chat"),
|
self.assertEqual(gguf.Metadata.get_model_id_components("Qwen1.5-MoE-A2.7B-Chat"),
|
||||||
('Qwen1.5-MoE-A2.7B-Chat', None, 'Qwen1.5-MoE', 'Chat', None, 'A2.7B'))
|
('Qwen1.5-MoE-A2.7B-Chat', None, 'Qwen1.5-MoE', 'Chat', None, 'A2.7B'))
|
||||||
|
|
||||||
@ -71,7 +71,7 @@ class TestMetadataMethod(unittest.TestCase):
|
|||||||
self.assertEqual(gguf.Metadata.get_model_id_components("delphi-suite/stories-llama2-50k", 50 * 10**3),
|
self.assertEqual(gguf.Metadata.get_model_id_components("delphi-suite/stories-llama2-50k", 50 * 10**3),
|
||||||
('stories-llama2-50k', 'delphi-suite', 'stories-llama2', None, None, '50K'))
|
('stories-llama2-50k', 'delphi-suite', 'stories-llama2', None, None, '50K'))
|
||||||
|
|
||||||
# None standard and not easy to disambiguate
|
# Non standard and not easy to disambiguate
|
||||||
self.assertEqual(gguf.Metadata.get_model_id_components("DeepSeek-Coder-V2-Lite-Instruct"),
|
self.assertEqual(gguf.Metadata.get_model_id_components("DeepSeek-Coder-V2-Lite-Instruct"),
|
||||||
('DeepSeek-Coder-V2-Lite-Instruct', None, 'DeepSeek-Coder-V2-Lite', 'Instruct', None, None))
|
('DeepSeek-Coder-V2-Lite-Instruct', None, 'DeepSeek-Coder-V2-Lite', 'Instruct', None, None))
|
||||||
|
|
||||||
@ -123,6 +123,51 @@ class TestMetadataMethod(unittest.TestCase):
|
|||||||
self.assertEqual(gguf.Metadata.get_model_id_components("bigscience/bloom-7b1-petals"),
|
self.assertEqual(gguf.Metadata.get_model_id_components("bigscience/bloom-7b1-petals"),
|
||||||
('bloom-7b1-petals', 'bigscience', 'bloom', 'petals', None, '7.1B'))
|
('bloom-7b1-petals', 'bigscience', 'bloom', 'petals', None, '7.1B'))
|
||||||
|
|
||||||
|
# Ignore full-text size labels when there are number-based ones, and deduplicate size labels
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("MaziyarPanahi/GreenNode-mini-7B-multilingual-v1olet-Mistral-7B-Instruct-v0.1"),
|
||||||
|
('GreenNode-mini-7B-multilingual-v1olet-Mistral-7B-Instruct-v0.1', 'MaziyarPanahi', 'GreenNode-mini', 'multilingual-v1olet-Mistral-Instruct', 'v0.1', '7B'))
|
||||||
|
|
||||||
|
# Instruct in a name without a size label
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("mistralai/Mistral-Nemo-Instruct-2407"),
|
||||||
|
('Mistral-Nemo-Instruct-2407', 'mistralai', 'Mistral-Nemo', 'Instruct', '2407', None))
|
||||||
|
|
||||||
|
# Non-obvious splitting relying on 'chat' keyword
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("deepseek-ai/DeepSeek-V2-Chat-0628"),
|
||||||
|
('DeepSeek-V2-Chat-0628', 'deepseek-ai', 'DeepSeek-V2', 'Chat', '0628', None))
|
||||||
|
|
||||||
|
# Multiple versions
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("OpenGVLab/Mini-InternVL-Chat-2B-V1-5"),
|
||||||
|
('Mini-InternVL-Chat-2B-V1-5', 'OpenGVLab', 'Mini-InternVL', 'Chat', 'V1-5', '2B'))
|
||||||
|
|
||||||
|
# TODO: DPO in the name
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("jondurbin/bagel-dpo-2.8b-v0.2"),
|
||||||
|
('bagel-dpo-2.8b-v0.2', 'jondurbin', 'bagel-dpo', None, 'v0.2', '2.8B'))
|
||||||
|
|
||||||
|
# DPO in name, but can't be used for the finetune to keep 'LLaMA-3' in the basename
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("voxmenthe/SFR-Iterative-DPO-LLaMA-3-8B-R-unquantized"),
|
||||||
|
('SFR-Iterative-DPO-LLaMA-3-8B-R-unquantized', 'voxmenthe', 'SFR-Iterative-DPO-LLaMA-3', 'R-unquantized', None, '8B'))
|
||||||
|
|
||||||
|
# Too ambiguous
|
||||||
|
# TODO: should "base" be a 'finetune' or 'size_label'?
|
||||||
|
# (in this case it should be a size label, but other models use it to signal that they are not finetuned)
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("microsoft/Florence-2-base"),
|
||||||
|
('Florence-2-base', 'microsoft', None, None, None, None))
|
||||||
|
|
||||||
|
## Invalid cases ##
|
||||||
|
|
||||||
|
# Start with a dash and has dashes in rows
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("mistralai/-Mistral--Nemo-Base-2407-"),
|
||||||
|
('-Mistral--Nemo-Base-2407-', 'mistralai', 'Mistral-Nemo-Base', None, '2407', None))
|
||||||
|
|
||||||
|
## LoRA ##
|
||||||
|
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Llama-3-Instruct-abliteration-LoRA-8B"),
|
||||||
|
('Llama-3-Instruct-abliteration-LoRA-8B', None, 'Llama-3', 'Instruct-abliteration-LoRA', None, '8B'))
|
||||||
|
|
||||||
|
# Negative size --> output is a LoRA adaper --> prune "LoRA" out of the name to avoid redundancy with the suffix
|
||||||
|
self.assertEqual(gguf.Metadata.get_model_id_components("Llama-3-Instruct-abliteration-LoRA-8B", -1234),
|
||||||
|
('Llama-3-Instruct-abliteration-LoRA-8B', None, 'Llama-3', 'Instruct-abliteration', None, '8B'))
|
||||||
|
|
||||||
def test_apply_metadata_heuristic_from_model_card(self):
|
def test_apply_metadata_heuristic_from_model_card(self):
|
||||||
model_card = {
|
model_card = {
|
||||||
'tags': ['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'],
|
'tags': ['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'],
|
||||||
@ -134,7 +179,7 @@ class TestMetadataMethod(unittest.TestCase):
|
|||||||
}
|
}
|
||||||
got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card, None, None)
|
got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card, None, None)
|
||||||
expect = gguf.Metadata()
|
expect = gguf.Metadata()
|
||||||
expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': 'v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}]
|
expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': '14-v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}]
|
||||||
expect.tags=['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl']
|
expect.tags=['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl']
|
||||||
expect.languages=['en']
|
expect.languages=['en']
|
||||||
expect.datasets=['teknium/OpenHermes-2.5']
|
expect.datasets=['teknium/OpenHermes-2.5']
|
||||||
|
Loading…
Reference in New Issue
Block a user