mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 12:10:18 +00:00
Merge branch 'ggerganov:master' into prompt-lookup
This commit is contained in:
commit
340484161f
@ -15,6 +15,9 @@ indent_size = 4
|
||||
[Makefile]
|
||||
indent_style = tab
|
||||
|
||||
[scripts/*.mk]
|
||||
indent_style = tab
|
||||
|
||||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
||||
|
15
.github/workflows/build.yml
vendored
15
.github/workflows/build.yml
vendored
@ -143,6 +143,9 @@ jobs:
|
||||
cd build
|
||||
ctest --verbose
|
||||
|
||||
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||
# how to debug it.
|
||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
|
||||
macOS-latest-make:
|
||||
runs-on: macos-latest
|
||||
|
||||
@ -160,14 +163,18 @@ jobs:
|
||||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
make -j $(sysctl -n hw.logicalcpu)
|
||||
LLAMA_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
make tests -j $(sysctl -n hw.logicalcpu)
|
||||
make test -j $(sysctl -n hw.logicalcpu)
|
||||
LLAMA_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
|
||||
LLAMA_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
# TODO: build with LLAMA_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||
# how to debug it.
|
||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
|
||||
# would be great if we fix these
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
||||
@ -188,7 +195,7 @@ jobs:
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake -DLLAMA_METAL=OFF ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -102,3 +102,4 @@ poetry.toml
|
||||
/tests/test-tokenizer-1-llama
|
||||
/tests/test-tokenizer-1-bpe
|
||||
/tests/test-rope
|
||||
/tests/test-backend-ops
|
||||
|
147
CMakeLists.txt
147
CMakeLists.txt
@ -97,9 +97,9 @@ option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging"
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||
@ -397,57 +397,102 @@ if (LLAMA_HIPBLAS)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||
set(host_cxx_flags "")
|
||||
function(get_flags CCID CCVER)
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
|
||||
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi)
|
||||
if (CCID MATCHES "Clang")
|
||||
set(C_FLAGS -Wunreachable-code-break -Wunreachable-code-return)
|
||||
set(CXX_FLAGS -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi)
|
||||
|
||||
if (
|
||||
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
|
||||
(CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0)
|
||||
)
|
||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||
endif()
|
||||
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds)
|
||||
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation)
|
||||
endif()
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wextra-semi)
|
||||
endif()
|
||||
if (
|
||||
(CCID STREQUAL "Clang" AND CCVER VERSION_GREATER_EQUAL 3.8.0) OR
|
||||
(CCID STREQUAL "AppleClang" AND CCVER VERSION_GREATER_EQUAL 7.3.0)
|
||||
)
|
||||
set(C_FLAGS ${C_FLAGS} -Wdouble-promotion)
|
||||
endif()
|
||||
elseif (CCID STREQUAL "GNU")
|
||||
set(C_FLAGS -Wdouble-promotion)
|
||||
set(CXX_FLAGS -Wno-array-bounds)
|
||||
|
||||
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
|
||||
set(CXX_FLAGS ${CXX_FLAGS} -Wno-format-truncation)
|
||||
endif()
|
||||
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
|
||||
set(CXX_FLAGS ${CXX_FLAGS} -Wextra-semi)
|
||||
endif()
|
||||
else()
|
||||
# todo : msvc
|
||||
endif()
|
||||
|
||||
set(c_flags ${c_flags} ${warning_flags})
|
||||
set(cxx_flags ${cxx_flags} ${warning_flags})
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${host_cxx_flags}>")
|
||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
set(CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
set(C_FLAGS ${WARNING_FLAGS} ${C_FLAGS})
|
||||
set(CXX_FLAGS ${WARNING_FLAGS} ${CXX_FLAGS})
|
||||
|
||||
get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
|
||||
else()
|
||||
# todo : msvc
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
set(cuda_flags -Wno-pedantic)
|
||||
endif()
|
||||
set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags})
|
||||
if (LLAMA_CUBLAS)
|
||||
set(CUDA_FLAGS ${CXX_FLAGS} -use_fast_math)
|
||||
if (NOT MSVC)
|
||||
set(CUDA_FLAGS ${CUDA_FLAGS} -Wno-pedantic)
|
||||
endif()
|
||||
|
||||
list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument
|
||||
if (NOT cuda_host_flags STREQUAL "")
|
||||
set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags})
|
||||
endif()
|
||||
if (LLAMA_ALL_WARNINGS AND NOT MSVC)
|
||||
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
|
||||
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
|
||||
set(NVCC_CMD ${NVCC_CMD} -ccbin ${CMAKE_CUDA_HOST_COMPILER})
|
||||
endif()
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${cuda_flags}>")
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler --version
|
||||
OUTPUT_VARIABLE CUDA_CCFULLVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if (NOT CUDA_CCFULLVER MATCHES clang)
|
||||
set(CUDA_CCID "GNU")
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
set(CUDA_CCID "AppleClang")
|
||||
else()
|
||||
set(CUDA_CCID "Clang")
|
||||
endif()
|
||||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(JOIN GF_CXX_FLAGS " " CUDA_CXX_FLAGS) # pass host compiler flags as a single argument
|
||||
if (NOT CUDA_CXX_FLAGS STREQUAL "")
|
||||
set(CUDA_FLAGS ${CUDA_FLAGS} -Xcompiler ${CUDA_CXX_FLAGS})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
@ -471,6 +516,7 @@ endif()
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
|
||||
ERROR_VARIABLE output
|
||||
OUTPUT_QUIET
|
||||
)
|
||||
if (output MATCHES "dyld-1015\.7")
|
||||
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
|
||||
@ -593,6 +639,11 @@ else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=0x602)
|
||||
endif()
|
||||
|
||||
#
|
||||
# POSIX conformance
|
||||
#
|
||||
@ -662,11 +713,11 @@ add_library(ggml OBJECT
|
||||
ggml-backend.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
)
|
||||
|
||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||
|
146
Makefile
146
Makefile
@ -8,7 +8,8 @@ BUILD_TARGETS = \
|
||||
TEST_TARGETS = \
|
||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
|
||||
tests/test-backend-ops
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
@ -25,20 +26,6 @@ ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
ifeq '' '$(findstring clang,$(shell $(CC) --version))'
|
||||
CC_IS_GCC=1
|
||||
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
else
|
||||
CC_IS_CLANG=1
|
||||
ifeq '' '$(findstring Apple,$(shell $(CC) --version))'
|
||||
CC_IS_LLVM_CLANG=1
|
||||
else
|
||||
CC_IS_APPLE_CLANG=1
|
||||
endif
|
||||
CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \
|
||||
| awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
@ -120,12 +107,12 @@ MK_CXXFLAGS = -std=c++11 -fPIC
|
||||
|
||||
# -Ofast tends to produce faster code, but may not be available for some compilers.
|
||||
ifdef LLAMA_FAST
|
||||
MK_CFLAGS += -Ofast
|
||||
MK_HOST_CXXFLAGS += -Ofast
|
||||
MK_CUDA_CXXFLAGS += -O3
|
||||
MK_CFLAGS += -Ofast
|
||||
HOST_CXXFLAGS += -Ofast
|
||||
MK_NVCCFLAGS += -O3
|
||||
else
|
||||
MK_CFLAGS += -O3
|
||||
MK_CXXFLAGS += -O3
|
||||
MK_CFLAGS += -O3
|
||||
MK_CXXFLAGS += -O3
|
||||
endif
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
@ -219,30 +206,6 @@ MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmis
|
||||
-Werror=implicit-function-declaration
|
||||
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
|
||||
|
||||
ifeq ($(CC_IS_CLANG), 1)
|
||||
# clang options
|
||||
MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return
|
||||
MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
|
||||
|
||||
ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
else
|
||||
# gcc options
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
MK_HOST_CXXFLAGS += -Wno-array-bounds
|
||||
|
||||
ifeq ($(shell expr $(CC_VER) \>= 070100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
ifeq ($(shell expr $(CC_VER) \>= 080100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wextra-semi
|
||||
endif
|
||||
endif
|
||||
|
||||
# this version of Apple ld64 is buggy
|
||||
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
|
||||
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
|
||||
@ -293,8 +256,8 @@ ifndef RISCV
|
||||
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
# Use all CPU extensions that are available:
|
||||
MK_CFLAGS += -march=native -mtune=native
|
||||
MK_HOST_CXXFLAGS += -march=native -mtune=native
|
||||
MK_CFLAGS += -march=native -mtune=native
|
||||
HOST_CXXFLAGS += -march=native -mtune=native
|
||||
|
||||
# Usage AVX-only
|
||||
#MK_CFLAGS += -mfma -mf16c -mavx
|
||||
@ -305,12 +268,15 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
#MK_CXXFLAGS += -mssse3
|
||||
endif
|
||||
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
MK_CPPFLAGS += -D_WIN32_WINNT=0x602
|
||||
endif
|
||||
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
@ -394,61 +360,64 @@ ifdef LLAMA_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
MK_NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
endif
|
||||
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
NVCC = nvcc
|
||||
endif #LLAMA_CUDA_NVCC
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
else ifdef CUDA_POWER_ARCH
|
||||
NVCCFLAGS +=
|
||||
else
|
||||
NVCCFLAGS += -arch=native
|
||||
MK_NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
else ifndef CUDA_POWER_ARCH
|
||||
MK_NVCCFLAGS += -arch=native
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
ifdef LLAMA_CUDA_FORCE_MMQ
|
||||
NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
endif # LLAMA_CUDA_FORCE_MMQ
|
||||
ifdef LLAMA_CUDA_DMMV_X
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
||||
endif # LLAMA_CUDA_DMMV_X
|
||||
ifdef LLAMA_CUDA_MMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
else ifdef LLAMA_CUDA_DMMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
|
||||
endif # LLAMA_CUDA_MMV_Y
|
||||
ifdef LLAMA_CUDA_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_F16
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # LLAMA_CUDA_F16
|
||||
ifdef LLAMA_CUDA_DMMV_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_F16
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # LLAMA_CUDA_DMMV_F16
|
||||
ifdef LLAMA_CUDA_KQUANTS_ITER
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
else
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||
endif
|
||||
ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(LLAMA_CUDA_PEER_MAX_BATCH_SIZE)
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(LLAMA_CUDA_PEER_MAX_BATCH_SIZE)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
|
||||
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
#ifdef LLAMA_CUDA_CUBLAS
|
||||
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||
# MK_NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||
#endif # LLAMA_CUDA_CUBLAS
|
||||
ifdef LLAMA_CUDA_CCBIN
|
||||
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) -c $< -o $@
|
||||
$(NVCC) $(BASE_CXXFLAGS) $(NVCCFLAGS) -Wno-pedantic -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
@ -510,16 +479,22 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_MPI
|
||||
|
||||
# combine build flags with cmdline overrides
|
||||
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
|
||||
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override CUDA_CXXFLAGS := $(MK_CUDA_CXXFLAGS) $(CUDA_CXXFLAGS)
|
||||
override HOST_CXXFLAGS := $(MK_HOST_CXXFLAGS) $(HOST_CXXFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
GF_CC := $(CC)
|
||||
include scripts/get-flags.mk
|
||||
|
||||
# save CXXFLAGS before we add host-only options
|
||||
NVCCFLAGS := $(NVCCFLAGS) $(CXXFLAGS) $(CUDA_CXXFLAGS) -Wno-pedantic -Xcompiler "$(HOST_CXXFLAGS)"
|
||||
override CXXFLAGS += $(HOST_CXXFLAGS)
|
||||
# combine build flags with cmdline overrides
|
||||
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS)
|
||||
BASE_CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS)
|
||||
override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
|
||||
# identify CUDA host compiler
|
||||
ifdef LLAMA_CUBLAS
|
||||
GF_CC := $(NVCC) $(NVCCFLAGS) 2>/dev/null .c -Xcompiler
|
||||
include scripts/get-flags.mk
|
||||
CUDA_CXXFLAGS := $(GF_CXXFLAGS)
|
||||
endif
|
||||
|
||||
#
|
||||
# Print build information
|
||||
@ -732,16 +707,16 @@ tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
|
||||
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
|
||||
@ -749,3 +724,6 @@ tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
|
||||
|
||||
tests/test-c.o: tests/test-c.c llama.h
|
||||
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
|
||||
|
||||
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
@ -2,33 +2,14 @@
|
||||
|
||||
import PackageDescription
|
||||
|
||||
#if arch(arm) || arch(arm64)
|
||||
let platforms: [SupportedPlatform]? = [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
]
|
||||
let exclude: [String] = []
|
||||
let resources: [Resource] = [
|
||||
.process("ggml-metal.metal")
|
||||
]
|
||||
let additionalSources: [String] = ["ggml-metal.m"]
|
||||
let additionalSettings: [CSetting] = [
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_USE_METAL")
|
||||
]
|
||||
#else
|
||||
let platforms: [SupportedPlatform]? = nil
|
||||
let exclude: [String] = ["ggml-metal.metal"]
|
||||
let resources: [Resource] = []
|
||||
let additionalSources: [String] = []
|
||||
let additionalSettings: [CSetting] = []
|
||||
#endif
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: platforms,
|
||||
platforms: [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
],
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
@ -36,25 +17,30 @@ let package = Package(
|
||||
.target(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
exclude: exclude,
|
||||
exclude: [],
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"ggml-quants.c",
|
||||
] + additionalSources,
|
||||
resources: resources,
|
||||
"ggml-metal.m",
|
||||
],
|
||||
resources: [
|
||||
.process("ggml-metal.metal")
|
||||
],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
.define("GGML_USE_ACCELERATE"),
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_USE_METAL"),
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
// .define("ACCELERATE_NEW_LAPACK"),
|
||||
// .define("ACCELERATE_LAPACK_ILP64")
|
||||
] + additionalSettings,
|
||||
],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
|
13
README.md
13
README.md
@ -10,6 +10,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- Added Mixtral support: https://github.com/ggerganov/llama.cpp/pull/4406
|
||||
- **llama.h API change for handling KV cache offloading and data type: https://github.com/ggerganov/llama.cpp/pull/4309**
|
||||
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
|
||||
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
|
||||
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
@ -95,7 +97,18 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
|
||||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
- [x] [Llava 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
|
||||
- [x] [Bakllava](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
|
||||
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
|
||||
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
|
||||
|
||||
|
||||
**Bindings:**
|
||||
|
@ -278,8 +278,18 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
} else if (arg == "--memory-f32") {
|
||||
params.memory_f16 = false;
|
||||
} else if (arg == "--samplers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = parse_samplers_input(argv[i]);
|
||||
} else if (arg == "--sampling-seq") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = argv[i];
|
||||
} else if (arg == "--top-p") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -498,6 +508,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.infill = true;
|
||||
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
|
||||
params.dump_kv_cache = true;
|
||||
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
|
||||
params.no_kv_offload = true;
|
||||
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
params.cache_type_k = argv[++i];
|
||||
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||
params.cache_type_v = argv[++i];
|
||||
} else if (arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
} else if (arg == "--simple-io") {
|
||||
@ -640,6 +656,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
return false;
|
||||
|
||||
} else if (arg == "--version") {
|
||||
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
exit(0);
|
||||
} else if (arg == "--random-prompt") {
|
||||
params.random_prompt = true;
|
||||
} else if (arg == "--in-prefix-bos") {
|
||||
@ -678,6 +698,47 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(sparams.grammar)
|
||||
);
|
||||
} else if (arg == "--override-kv") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
char * sep = strchr(argv[i], '=');
|
||||
if (sep == nullptr || sep - argv[i] >= 128) {
|
||||
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, argv[i], sep - argv[i]);
|
||||
kvo.key[sep - argv[i]] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.kv_overrides.push_back(kvo);
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
// Parse args for logging parameters
|
||||
} else if ( log_param_single_parse( argv[i] ) ) {
|
||||
@ -721,6 +782,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.kv_overrides.empty()) {
|
||||
params.kv_overrides.emplace_back(llama_model_kv_override());
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -732,6 +798,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" -i, --interactive run in interactive mode\n");
|
||||
printf(" --interactive-first run in interactive mode and wait for input right away\n");
|
||||
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
@ -761,6 +828,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
|
||||
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
|
||||
@ -798,8 +867,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
||||
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
@ -840,6 +907,12 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --verbose-prompt print prompt before generation\n");
|
||||
printf(" -dkvc, --dump-kv-cache\n");
|
||||
printf(" verbose print of the KV cache\n");
|
||||
printf(" -nkvo, --no-kv-offload\n");
|
||||
printf(" disable KV offload\n");
|
||||
printf(" -ctk TYPE, --cache-type-k TYPE\n");
|
||||
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
|
||||
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
||||
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
|
||||
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
|
||||
@ -850,6 +923,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
|
||||
printf(" -ld LOGDIR, --logdir LOGDIR\n");
|
||||
printf(" path under which to save YAML logs (no logging if unset)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf("\n");
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_print_usage();
|
||||
@ -886,6 +962,48 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
|
||||
//
|
||||
// String parsing
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input) {
|
||||
std::string output = "";
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, char> samplers_symbols {
|
||||
{"top_k", 'k'},
|
||||
{"top-k", 'k'},
|
||||
{"top_p", 'p'},
|
||||
{"top-p", 'p'},
|
||||
{"nucleus", 'p'},
|
||||
{"typical_p", 'y'},
|
||||
{"typical-p", 'y'},
|
||||
{"typical", 'y'},
|
||||
{"min_p", 'm'},
|
||||
{"min-p", 'm'},
|
||||
{"tfs_z", 'f'},
|
||||
{"tfs-z", 'f'},
|
||||
{"tfs", 'f'},
|
||||
{"temp", 't'},
|
||||
{"temperature",'t'}
|
||||
};
|
||||
// expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
|
||||
size_t separator = input.find(';');
|
||||
while (separator != input.npos) {
|
||||
std::string name = input.substr(0,separator);
|
||||
input = input.substr(separator+1);
|
||||
separator = input.find(';');
|
||||
|
||||
if (samplers_symbols.find(name) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[name];
|
||||
}
|
||||
}
|
||||
if (samplers_symbols.find(input) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[input];
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
@ -900,10 +1018,39 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (s == "q4_0") {
|
||||
return GGML_TYPE_Q4_0;
|
||||
}
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
|
||||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
@ -913,7 +1060,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
cparams.mul_mat_q = params.mul_mat_q;
|
||||
cparams.seed = params.seed;
|
||||
cparams.f16_kv = params.memory_f16;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embedding = params.embedding;
|
||||
cparams.rope_scaling_type = params.rope_scaling_type;
|
||||
@ -924,6 +1070,10 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
|
||||
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
|
||||
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
|
||||
|
||||
return cparams;
|
||||
}
|
||||
@ -1336,7 +1486,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
}
|
||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
||||
|
@ -86,6 +86,8 @@ struct gpt_params {
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
// TODO: avoid tuple, use struct
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
@ -98,7 +100,6 @@ struct gpt_params {
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
@ -123,10 +124,14 @@ struct gpt_params {
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool infill = false; // use infill mode
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::string image = ""; // path to an image file
|
||||
std::string image = ""; // path to an image file
|
||||
};
|
||||
|
||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
||||
@ -141,6 +146,12 @@ std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
//
|
||||
// String parsing
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
@ -61,13 +61,13 @@
|
||||
// #define LOG_TARGET stderr
|
||||
// #include "log.h"
|
||||
//
|
||||
// The log target can also be redirected to a diffrent function
|
||||
// The log target can also be redirected to a different function
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_diffrent()
|
||||
// #define LOG_TARGET log_handler_different()
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_diffrent()
|
||||
// FILE* log_handler_different()
|
||||
// {
|
||||
// return stderr;
|
||||
// }
|
||||
@ -421,7 +421,7 @@ inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriS
|
||||
|
||||
// Disables logs entirely at runtime.
|
||||
// Makes LOG() and LOG_TEE() produce no output,
|
||||
// untill enabled back.
|
||||
// until enabled back.
|
||||
#define log_disable() log_disable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
|
@ -99,6 +99,56 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
||||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (auto s : params.samplers_sequence) {
|
||||
switch (s) {
|
||||
case 'k': result += "-> top_k "; break;
|
||||
case 'f': result += "-> tfs_z "; break;
|
||||
case 'y': result += "-> typical_p "; break;
|
||||
case 'p': result += "-> top_p "; break;
|
||||
case 'm': result += "-> min_p "; break;
|
||||
case 't': result += "-> temp "; break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
result += "-> mirostat ";
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// no reasons to expose this function in header
|
||||
static void sampler_queue(
|
||||
struct llama_context * ctx_main,
|
||||
const llama_sampling_params & params,
|
||||
llama_token_data_array & cur_p,
|
||||
size_t & min_keep) {
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const std::string & samplers_sequence = params.samplers_sequence;
|
||||
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case 't': llama_sample_temp (ctx_main, &cur_p, temp); break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
@ -109,11 +159,6 @@ llama_token llama_sampling_sample(
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
@ -188,12 +233,7 @@ llama_token llama_sampling_sample(
|
||||
// temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
|
||||
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
|
||||
llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep);
|
||||
llama_sample_temp (ctx_main, &cur_p, temp);
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
|
||||
|
@ -10,22 +10,23 @@
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
@ -80,6 +81,9 @@ std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama
|
||||
// Print sampling parameters into a string
|
||||
std::string llama_sampling_print(const llama_sampling_params & params);
|
||||
|
||||
// Print sampling order into a string
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
|
@ -71,7 +71,7 @@ void free_random_uniform_distribution(struct random_uniform_distribution * rnd)
|
||||
|
||||
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
|
||||
float scale = 1.0f; // xavier
|
||||
switch (tensor->n_dims) {
|
||||
switch (ggml_n_dims(tensor)) {
|
||||
case 1:
|
||||
scale /= sqrtf((float) tensor->ne[0]);
|
||||
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
|
||||
@ -119,7 +119,7 @@ struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct
|
||||
}
|
||||
|
||||
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
|
||||
switch (tensor->n_dims) {
|
||||
switch (ggml_n_dims(tensor)) {
|
||||
case 1:
|
||||
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
|
||||
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
|
||||
@ -183,25 +183,27 @@ float fclamp(const float v, const float min, const float max) {
|
||||
}
|
||||
|
||||
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
|
||||
GGML_ASSERT(tensor->n_dims == 1);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == 1);
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
}
|
||||
|
||||
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
|
||||
GGML_ASSERT(tensor->n_dims == 2);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
}
|
||||
|
||||
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
|
||||
GGML_ASSERT(tensor->n_dims == 3);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
}
|
||||
|
||||
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
||||
GGML_ASSERT(tensor->n_dims == 4);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
||||
@ -225,8 +227,8 @@ int64_t get_example_targets_batch(
|
||||
bool sample_random_offsets
|
||||
) {
|
||||
GGML_ASSERT(samples_count > 0);
|
||||
GGML_ASSERT(tokens_input->n_dims == 2);
|
||||
GGML_ASSERT(target_probs->n_dims == 3);
|
||||
GGML_ASSERT(ggml_is_matrix(tokens_input));
|
||||
GGML_ASSERT(ggml_is_3d(target_probs));
|
||||
int64_t n_vocab = target_probs->ne[0];
|
||||
int64_t n_tokens = tokens_input->ne[0];
|
||||
int64_t n_batch = tokens_input->ne[1];
|
||||
|
@ -77,8 +77,18 @@ class Model:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
if (n_ff := self.hparams.get("intermediate_size")) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
if (n_head := self.hparams.get("num_attention_head")) is not None:
|
||||
if (n_head := self.hparams.get("num_attention_heads")) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
|
||||
if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
|
||||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||||
|
||||
def write_tensors(self):
|
||||
@ -170,6 +180,8 @@ class Model:
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
if model_architecture == "MixtralForCausalLM":
|
||||
return MixtralModel
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
@ -207,6 +219,8 @@ class Model:
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
if arch == "MixtralForCausalLM":
|
||||
return gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
@ -837,6 +851,11 @@ class StableLMModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
|
||||
class MixtralModel(Model):
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
class QwenModel(Model):
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b):
|
||||
|
401
convert.py
401
convert.py
@ -10,6 +10,7 @@ import itertools
|
||||
import json
|
||||
import math
|
||||
import mmap
|
||||
import os
|
||||
import pickle
|
||||
import re
|
||||
import signal
|
||||
@ -18,15 +19,15 @@ import sys
|
||||
import time
|
||||
import zipfile
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from collections import OrderedDict
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
|
||||
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, TypeVar, cast
|
||||
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
import os
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
@ -42,6 +43,7 @@ NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
ARCH = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
DEFAULT_CONCURRENCY = 8
|
||||
|
||||
#
|
||||
# data types
|
||||
#
|
||||
@ -62,10 +64,10 @@ class UnquantizedDataType(DataType):
|
||||
pass
|
||||
|
||||
|
||||
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
||||
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
||||
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
||||
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
||||
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
||||
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
||||
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
||||
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@ -151,14 +153,16 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
||||
|
||||
@dataclass
|
||||
class Params:
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_layer: int
|
||||
n_ctx: int
|
||||
n_ff: int
|
||||
n_head: int
|
||||
n_head_kv: int
|
||||
f_norm_eps: float
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_layer: int
|
||||
n_ctx: int
|
||||
n_ff: int
|
||||
n_head: int
|
||||
n_head_kv: int
|
||||
n_experts: int | None = None
|
||||
n_experts_used: int | None = None
|
||||
f_norm_eps: float | None = None
|
||||
|
||||
rope_scaling_type: gguf.RopeScalingType | None = None
|
||||
f_rope_freq_base: float | None = None
|
||||
@ -233,6 +237,13 @@ class Params:
|
||||
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
|
||||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
|
||||
if "num_local_experts" in config:
|
||||
n_experts = config["num_local_experts"]
|
||||
n_experts_used = config["num_experts_per_tok"]
|
||||
|
||||
return Params(
|
||||
n_vocab = config["vocab_size"],
|
||||
n_embd = config["hidden_size"],
|
||||
@ -241,6 +252,8 @@ class Params:
|
||||
n_ff = config["intermediate_size"],
|
||||
n_head = (n_head := config["num_attention_heads"]),
|
||||
n_head_kv = config.get("num_key_value_heads", n_head),
|
||||
n_experts = n_experts,
|
||||
n_experts_used = n_experts_used,
|
||||
f_norm_eps = config["rms_norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
rope_scaling_type = rope_scaling_type,
|
||||
@ -255,8 +268,15 @@ class Params:
|
||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
f_rope_freq_base = None
|
||||
|
||||
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
||||
if config.get("rope_theta") == 1000000:
|
||||
if config.get("moe"):
|
||||
# Mixtral
|
||||
n_ctx = 32768
|
||||
elif config.get("rope_theta") == 1000000:
|
||||
# CodeLlama
|
||||
n_ctx = 16384
|
||||
elif config["norm_eps"] == 1e-05:
|
||||
@ -266,16 +286,27 @@ class Params:
|
||||
# LLaMA v1
|
||||
n_ctx = 2048
|
||||
|
||||
if "layers.0.feed_forward.w1.weight" in model:
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
|
||||
if config.get("moe"):
|
||||
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
|
||||
n_experts = config["moe"]["num_experts"]
|
||||
n_experts_used = config["moe"]["num_experts_per_tok"]
|
||||
f_rope_freq_base = 1e6
|
||||
|
||||
return Params(
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0],
|
||||
n_embd = config["dim"],
|
||||
n_layer = config["n_layers"],
|
||||
n_ctx = n_ctx,
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
|
||||
n_ff = n_ff,
|
||||
n_head = (n_head := config["n_heads"]),
|
||||
n_head_kv = config.get("n_kv_heads", n_head),
|
||||
n_experts = n_experts,
|
||||
n_experts_used = n_experts_used,
|
||||
f_norm_eps = config["norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@ -297,127 +328,138 @@ class Params:
|
||||
return params
|
||||
|
||||
|
||||
#
|
||||
# vocab
|
||||
#
|
||||
class VocabLoader:
|
||||
def __init__(self, params: Params, fname_tokenizer: Path) -> None:
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"To use VocabLoader, please install the `transformers` package. "
|
||||
"You can install it with `pip install transformers`."
|
||||
) from e
|
||||
|
||||
class BpeVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), trust_remote_code=True)
|
||||
except ValueError:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), use_fast=False, trust_remote_code=True)
|
||||
|
||||
self.added_tokens_dict: OrderedDict[str, int] = OrderedDict()
|
||||
|
||||
for tok, tokidx in sorted(self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]):
|
||||
if tokidx >= params.n_vocab or tokidx < self.tokenizer.vocab_size:
|
||||
continue
|
||||
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
|
||||
self.unk_token_id: int = self.tokenizer.unk_token_id
|
||||
self.specials: dict[str, int] = {
|
||||
tok: self.tokenizer.get_vocab()[tok]
|
||||
for tok in self.tokenizer.all_special_tokens
|
||||
}
|
||||
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
|
||||
self.vocab_size_base: int = self.tokenizer.vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
|
||||
self.fname_tokenizer: Path = fname_tokenizer
|
||||
|
||||
vocab_file = "tokenizer.model"
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
self.spm = SentencePieceProcessor(str(path_candidate))
|
||||
print(self.spm.vocab_size(), self.vocab_size_base)
|
||||
else:
|
||||
# Fall back to trying to find the added tokens in tokenizer.json
|
||||
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
added_tokens = {}
|
||||
else:
|
||||
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
||||
added_tokens = dict(
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
if item['content'] not in self.bpe_tokenizer)
|
||||
self.spm = None
|
||||
|
||||
vocab_size: int = len(self.bpe_tokenizer)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.tokenizer
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.get_vocab().items()}
|
||||
added_tokens_ids = set(self.added_tokens_dict.values())
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base: int = vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
for i in range(self.vocab_size_base):
|
||||
if i in added_tokens_ids:
|
||||
continue
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.bpe_tokenizer
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
|
||||
text = reverse_vocab[i].encode("utf-8")
|
||||
yield text, self.get_token_score(i), self.get_token_type(i)
|
||||
|
||||
for i, _ in enumerate(tokenizer):
|
||||
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
||||
def get_token_type(self, token_id: int) -> gguf.TokenType:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.bpe_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
added_tokens = {}
|
||||
|
||||
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
||||
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
||||
actual_new_ids = sorted(new_tokens.keys())
|
||||
|
||||
if expected_new_ids != actual_new_ids:
|
||||
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
||||
|
||||
# Token pieces that were added to the base vocabulary.
|
||||
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text: bytes = piece.encode("utf-8")
|
||||
score: float = tokenizer.get_score(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if tokenizer.is_unknown(i):
|
||||
if self.spm is not None and token_id < self.spm.vocab_size():
|
||||
if self.spm.is_unknown(token_id):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if tokenizer.is_control(i):
|
||||
if self.spm.is_control(token_id):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
if self.spm.is_unused(token_id):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if self.spm.is_byte(token_id):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
else:
|
||||
if token_id == self.unk_token_id:
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if token_id in self.special_ids:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
# NOTE: I think added_tokens are user defined.
|
||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
||||
return toktype
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
yield text, score, toktype
|
||||
def get_token_score(self, token_id: int) -> float:
|
||||
if self.spm is not None and token_id < self.spm.vocab_size():
|
||||
return cast(float, self.spm.get_score(token_id))
|
||||
return 0.0
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
||||
|
||||
for text in self.added_tokens_dict:
|
||||
if text in self.specials:
|
||||
|
||||
toktype = self.get_token_type(self.specials[text])
|
||||
score = self.get_token_score(self.specials[text])
|
||||
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
score = -1000.0
|
||||
|
||||
yield text.encode("utf-8"), score, toktype
|
||||
|
||||
def has_newline_token(self) -> bool:
|
||||
return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.sentencepiece_tokens()
|
||||
yield from self.hf_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def get_vocab_type(self) -> str:
|
||||
path_candidates = []
|
||||
vocab_file = "tokenizer.model"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
return "llama"
|
||||
|
||||
vocab_file = "vocab.json"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
return "gpt2"
|
||||
|
||||
vocab_file = "tokenizer.json"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate:
|
||||
if not self.has_newline_token():
|
||||
return "gpt2"
|
||||
return "llama"
|
||||
|
||||
raise FileNotFoundError(
|
||||
f"Could not find {path_candidates} in {self.fname_tokenizer} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir"
|
||||
)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
return f"<VocabLoader with {self.vocab_size_base} base tokens and {len(self.added_tokens_dict)} added tokens>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
|
||||
Vocab: TypeAlias = 'VocabLoader'
|
||||
|
||||
|
||||
#
|
||||
# data loading
|
||||
@ -585,7 +627,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
||||
|
||||
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
||||
# Transformers models put different tensors in different files, but
|
||||
# don't split indivdual tensors between files.
|
||||
# don't split individual tensors between files.
|
||||
model: LazyModel = {}
|
||||
for mp in models_plus:
|
||||
model.update(mp.model)
|
||||
@ -678,7 +720,7 @@ class LazyUnpickler(pickle.Unpickler):
|
||||
return func(*args)
|
||||
|
||||
CLASSES: dict[tuple[str, str], Any] = {
|
||||
# getattr used here as a workaround for mypy not being smart enough to detrmine
|
||||
# getattr used here as a workaround for mypy not being smart enough to determine
|
||||
# the staticmethods have a __func__ attribute.
|
||||
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
||||
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
|
||||
@ -794,20 +836,27 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
|
||||
yield result
|
||||
|
||||
|
||||
def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
||||
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
|
||||
if params.n_vocab != vocab.vocab_size:
|
||||
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
|
||||
if params.n_vocab == vocab.vocab_size_base:
|
||||
if params.n_vocab == vocab.vocab_size:
|
||||
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||
vocab.added_tokens_list = []
|
||||
vocab.vocab_size = vocab.vocab_size_base
|
||||
vocab.added_tokens_dict = OrderedDict()
|
||||
vocab.vocab_size = vocab.vocab_size
|
||||
return
|
||||
|
||||
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
||||
pad_count = params.n_vocab - vocab.vocab_size
|
||||
print(f'Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>')
|
||||
for i in range(1, (params.n_vocab - vocab.vocab_size) + 1):
|
||||
vocab.added_tokens_dict[f'<dummy{i:05}>'] = -1
|
||||
vocab.vocab_size = params.n_vocab
|
||||
return
|
||||
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
|
||||
if vocab.fname_added_tokens is not None:
|
||||
msg += f" combined with {vocab.fname_added_tokens}"
|
||||
msg += f" has {vocab.vocab_size})."
|
||||
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
|
||||
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
|
||||
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
||||
if vocab.vocab_size < params.n_vocab:
|
||||
msg += " Possibly try using the --padvocab option."
|
||||
raise Exception(msg)
|
||||
|
||||
|
||||
@ -832,7 +881,17 @@ class OutputFile:
|
||||
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
||||
self.gguf.add_head_count (params.n_head)
|
||||
self.gguf.add_head_count_kv (params.n_head_kv)
|
||||
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
|
||||
|
||||
if params.n_experts:
|
||||
self.gguf.add_expert_count(params.n_experts)
|
||||
|
||||
if params.n_experts_used:
|
||||
self.gguf.add_expert_used_count(params.n_experts_used)
|
||||
|
||||
if params.f_norm_eps:
|
||||
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
|
||||
else:
|
||||
raise ValueError('f_norm_eps is None')
|
||||
|
||||
if params.f_rope_freq_base is not None:
|
||||
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
|
||||
@ -861,12 +920,8 @@ class OutputFile:
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
if isinstance(vocab, SentencePieceVocab):
|
||||
self.gguf.add_tokenizer_model("llama")
|
||||
elif isinstance(vocab, BpeVocab):
|
||||
self.gguf.add_tokenizer_model("gpt2")
|
||||
else:
|
||||
raise ValueError('Unknown vocab type: Not BpeVocab or SentencePieceVocab')
|
||||
vocab_type = vocab.get_vocab_type()
|
||||
self.gguf.add_tokenizer_model(vocab_type)
|
||||
self.gguf.add_token_list(tokens)
|
||||
self.gguf.add_token_scores(scores)
|
||||
self.gguf.add_token_types(toktypes)
|
||||
@ -892,8 +947,12 @@ class OutputFile:
|
||||
self.gguf.close()
|
||||
|
||||
@staticmethod
|
||||
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
||||
check_vocab_size(params, vocab)
|
||||
def write_vocab_only(
|
||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
|
||||
@ -920,8 +979,13 @@ class OutputFile:
|
||||
return dt.quantize(arr)
|
||||
|
||||
@staticmethod
|
||||
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
||||
check_vocab_size(params, vocab)
|
||||
def write_all(
|
||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
concurrency: int = DEFAULT_CONCURRENCY,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
|
||||
@ -956,7 +1020,7 @@ class OutputFile:
|
||||
|
||||
|
||||
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
|
||||
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||
return GGMLFileType.AllF32
|
||||
@ -1079,35 +1143,17 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||
return model_plus
|
||||
|
||||
|
||||
def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
|
||||
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
||||
# a directory, it might be the model directory, and tokenizer.model might
|
||||
# be in the parent of that.
|
||||
if path.is_dir():
|
||||
vocab_file = "tokenizer.model"
|
||||
if vocabtype == 'bpe':
|
||||
vocab_file = "vocab.json"
|
||||
path2 = path / vocab_file
|
||||
# Use `.parent` instead of /.. to handle the symlink case better.
|
||||
path3 = path.parent / vocab_file
|
||||
if path2.exists():
|
||||
path = path2
|
||||
elif path3.exists():
|
||||
path = path3
|
||||
else:
|
||||
raise FileNotFoundError(
|
||||
f"Could not find {vocab_file} in {path} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir")
|
||||
def find_vocab_file_path(path: Path, vocab_file: str) -> Optional[Path]:
|
||||
path2 = path / vocab_file
|
||||
# Use `.parent` instead of /.. to handle the symlink case better.
|
||||
path3 = path.parent / vocab_file
|
||||
|
||||
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
||||
if path2.exists():
|
||||
return path2
|
||||
if path3.exists():
|
||||
return path3
|
||||
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
if vocabtype == "bpe":
|
||||
return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
||||
elif vocabtype == "spm":
|
||||
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
||||
else:
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
return None
|
||||
|
||||
|
||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
||||
@ -1145,11 +1191,11 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin, *.safetensors)")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
|
||||
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
|
||||
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
if args.dump_single:
|
||||
@ -1192,12 +1238,13 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
if not args.outfile:
|
||||
raise ValueError("need --outfile if using --vocab-only")
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
||||
vocab = VocabLoader(params, args.vocab_dir or args.model)
|
||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||
load_merges = args.vocabtype == 'bpe',
|
||||
load_merges = True,
|
||||
n_vocab = vocab.vocab_size)
|
||||
outfile = args.outfile
|
||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
|
||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
|
||||
endianess = endianess, pad_vocab = args.padvocab)
|
||||
print(f"Wrote {outfile}")
|
||||
return
|
||||
|
||||
@ -1205,12 +1252,15 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
vocab = model_plus.vocab
|
||||
else:
|
||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||
vocab = load_vocab(vocab_dir, args.vocabtype)
|
||||
vocab = VocabLoader(params, vocab_dir)
|
||||
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
print(f"Vocab info: {vocab}")
|
||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||
load_merges = args.vocabtype == 'bpe',
|
||||
load_merges = True,
|
||||
n_vocab = vocab.vocab_size)
|
||||
|
||||
print(f"Special vocab info: {special_vocab}")
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
@ -1220,7 +1270,8 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
params.ftype = ftype
|
||||
print(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency, endianess=endianess)
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
|
||||
concurrency = args.concurrency, endianess = endianess, pad_vocab = args.padvocab)
|
||||
print(f"Wrote {outfile}")
|
||||
|
||||
|
||||
|
@ -1258,9 +1258,9 @@ static struct ggml_tensor * forward_lora(
|
||||
}
|
||||
|
||||
static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
|
||||
assert(logits->n_dims == 2);
|
||||
assert(probs->n_dims == 2);
|
||||
assert(best_samples->n_dims == 1);
|
||||
assert(ggml_is_matrix(logits));
|
||||
assert(ggml_is_matrix(probs));
|
||||
assert(ggml_is_vector(best_samples));
|
||||
assert(logits->ne[1] == best_samples->ne[0]);
|
||||
assert(logits->ne[0] == probs->ne[0]);
|
||||
assert(logits->ne[1] == probs->ne[1]);
|
||||
@ -1292,9 +1292,9 @@ static void sample_softmax_batch(
|
||||
struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
|
||||
struct ggml_tensor * best_samples
|
||||
) {
|
||||
GGML_ASSERT(best_samples->n_dims == 2);
|
||||
GGML_ASSERT(logits->n_dims == 3);
|
||||
GGML_ASSERT(probs->n_dims == 3);
|
||||
GGML_ASSERT(ggml_is_matrix(best_samples));
|
||||
GGML_ASSERT(ggml_is_3d(logits));
|
||||
GGML_ASSERT(ggml_is_3d(probs));
|
||||
int n_tokens = best_samples->ne[0];
|
||||
int n_batch = best_samples->ne[1];
|
||||
int n_vocab = logits->ne[0];
|
||||
@ -1334,7 +1334,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
|
||||
}
|
||||
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
assert(probs->n_dims == 2);
|
||||
assert(ggml_is_matrix(probs));
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
|
||||
@ -1386,8 +1386,8 @@ static void get_example_targets(int example_id, struct ggml_tensor * tokens_inpu
|
||||
static void get_example_targets_batch(
|
||||
struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
|
||||
) {
|
||||
GGML_ASSERT(tokens_input->n_dims == 2);
|
||||
GGML_ASSERT( targets->n_dims == 3);
|
||||
GGML_ASSERT(ggml_is_matrix(tokens_input));
|
||||
GGML_ASSERT(ggml_is_3d(targets));
|
||||
int n_tokens = tokens_input->ne[0];
|
||||
int n_batch = tokens_input->ne[1];
|
||||
GGML_ASSERT(n_tokens == targets->ne[1]);
|
||||
|
@ -129,13 +129,13 @@ int main(int argc, char ** argv) {
|
||||
const ggml_type qtype = GGML_TYPE_Q4_1;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
|
||||
ctx_size += ggml_row_size(qtype, sizex*sizey);
|
||||
ctx_size += ggml_row_size(qtype, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
|
||||
ctx_size += 1024*1024*16;
|
||||
|
||||
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
|
@ -427,7 +427,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
|
||||
}
|
||||
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
assert(probs->n_dims == 2);
|
||||
assert(ggml_is_matrix(probs));
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
@ -639,7 +639,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
|
||||
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||
int ct;
|
||||
switch (gg_weights->n_dims){
|
||||
switch (ggml_n_dims(gg_weights)) {
|
||||
case 1:
|
||||
ct = 0;
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||
|
@ -1110,7 +1110,7 @@ static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor,
|
||||
name = ggml_get_name(tensor);
|
||||
}
|
||||
uint32_t name_len = strlen(name);
|
||||
uint32_t nd = tensor->n_dims;
|
||||
uint32_t nd = ggml_n_dims(tensor);
|
||||
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
|
||||
(uint32_t)tensor->ne[1],
|
||||
(uint32_t)tensor->ne[2],
|
||||
|
@ -195,7 +195,7 @@ static bool gguf_ex_read_1(const std::string & fname) {
|
||||
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
|
||||
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
|
||||
|
||||
// print first 10 elements
|
||||
const float * data = (const float *) cur->data;
|
||||
|
@ -53,6 +53,13 @@ static std::vector<T> split(const std::string & str, char delim) {
|
||||
return values;
|
||||
}
|
||||
|
||||
template<typename T, typename F>
|
||||
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
|
||||
std::vector<std::string> str_values;
|
||||
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
|
||||
return str_values;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T avg(const std::vector<T> & v) {
|
||||
if (v.empty()) {
|
||||
@ -126,7 +133,8 @@ struct cmd_params {
|
||||
std::vector<int> n_prompt;
|
||||
std::vector<int> n_gen;
|
||||
std::vector<int> n_batch;
|
||||
std::vector<bool> f32_kv;
|
||||
std::vector<ggml_type> type_k;
|
||||
std::vector<ggml_type> type_v;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<int> n_gpu_layers;
|
||||
std::vector<int> main_gpu;
|
||||
@ -142,7 +150,8 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_batch */ {512},
|
||||
/* f32_kv */ {false},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* main_gpu */ {0},
|
||||
@ -162,7 +171,8 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
@ -173,9 +183,32 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf("\n");
|
||||
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
|
||||
}
|
||||
|
||||
static ggml_type ggml_type_from_name(const std::string & s) {
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (s == "q4_0") {
|
||||
return GGML_TYPE_Q4_0;
|
||||
}
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
|
||||
static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
cmd_params params;
|
||||
std::string arg;
|
||||
@ -224,13 +257,38 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
|
||||
} else if (arg == "--memory-f32") {
|
||||
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
|
||||
auto p = split<std::string>(argv[i], split_delim);
|
||||
std::vector<ggml_type> types;
|
||||
for (const auto & t : p) {
|
||||
ggml_type gt = ggml_type_from_name(t);
|
||||
if (gt == GGML_TYPE_COUNT) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
types.push_back(gt);
|
||||
}
|
||||
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
|
||||
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<std::string>(argv[i], split_delim);
|
||||
std::vector<ggml_type> types;
|
||||
for (const auto & t : p) {
|
||||
ggml_type gt = ggml_type_from_name(t);
|
||||
if (gt == GGML_TYPE_COUNT) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
types.push_back(gt);
|
||||
}
|
||||
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -321,7 +379,8 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
@ -336,7 +395,8 @@ struct cmd_params_instance {
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
int n_batch;
|
||||
bool f32_kv;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_threads;
|
||||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
@ -365,7 +425,8 @@ struct cmd_params_instance {
|
||||
|
||||
cparams.n_ctx = n_prompt + n_gen;
|
||||
cparams.n_batch = n_batch;
|
||||
cparams.f16_kv = !f32_kv;
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.mul_mat_q = mul_mat_q;
|
||||
|
||||
return cparams;
|
||||
@ -380,7 +441,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
cmd_params_instance instance = {
|
||||
@ -388,7 +450,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
@ -410,7 +473,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
@ -422,7 +486,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ 0,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
@ -441,7 +506,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .n_prompt = */ 0,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
@ -489,7 +555,8 @@ struct test {
|
||||
uint64_t model_n_params;
|
||||
int n_batch;
|
||||
int n_threads;
|
||||
bool f32_kv;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
bool mul_mat_q;
|
||||
@ -508,7 +575,8 @@ struct test {
|
||||
model_n_params = llama_model_n_params(lmodel);
|
||||
n_batch = inst.n_batch;
|
||||
n_threads = inst.n_threads;
|
||||
f32_kv = inst.f32_kv;
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
n_gpu_layers = inst.n_gpu_layers;
|
||||
main_gpu = inst.main_gpu;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
@ -571,7 +639,7 @@ struct test {
|
||||
"cuda", "opencl", "metal", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "f16_kv",
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
@ -621,7 +689,7 @@ struct test {
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
@ -805,8 +873,11 @@ struct markdown_printer : public printer {
|
||||
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
||||
fields.push_back("n_batch");
|
||||
}
|
||||
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
|
||||
fields.push_back("f16_kv");
|
||||
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
|
||||
fields.push_back("type_k");
|
||||
}
|
||||
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
|
||||
fields.push_back("type_v");
|
||||
}
|
||||
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
||||
fields.push_back("main_gpu");
|
||||
|
@ -514,7 +514,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
ctx_size += padded_size;
|
||||
if (verbosity >= 3) {
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i,
|
||||
cur->n_dims, cur->name, tensor_size, padded_size, offset);
|
||||
ggml_n_dims(cur), cur->name, tensor_size, padded_size, offset);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -739,7 +739,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
|
||||
temp->ny = longer_side;
|
||||
temp->size = 3 * longer_side * longer_side;
|
||||
temp->data = new uint8_t[temp->size]();
|
||||
uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA
|
||||
uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
|
||||
|
||||
// fill with background color
|
||||
for (size_t i = 0; i < temp->size; i++) {
|
||||
@ -962,7 +962,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
}
|
||||
|
||||
// quantize only 2D tensors
|
||||
quantize &= (cur->n_dims == 2);
|
||||
quantize &= (ggml_n_dims(cur) == 2);
|
||||
|
||||
if (quantize) {
|
||||
new_type = type;
|
||||
@ -1035,7 +1035,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
fout.put(0);
|
||||
}
|
||||
|
||||
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), cur->n_dims, quantize,
|
||||
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
||||
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
|
@ -51,7 +51,7 @@ def bytes_to_unicode():
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
|
@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/lookahead
|
||||
|
||||
Demonstartion of lookahead decoding technique:
|
||||
Demonstration of lookahead decoding technique:
|
||||
|
||||
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
|
||||
|
@ -437,6 +437,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
||||
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
|
@ -321,7 +321,6 @@ int main(int argc, char ** argv) {
|
||||
auto cparams = llama_context_default_params();
|
||||
cparams.n_ctx = 256;
|
||||
cparams.seed = 1;
|
||||
cparams.f16_kv = false;
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
|
@ -222,7 +222,7 @@ node index.js
|
||||
|
||||
`content`: Set the text to process.
|
||||
|
||||
**POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
|
||||
*Options:*
|
||||
|
||||
|
@ -11227,7 +11227,7 @@ class binary_reader
|
||||
}
|
||||
if (is_ndarray) // ndarray dimensional vector can only contain integers, and can not embed another array
|
||||
{
|
||||
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimentional vector is not allowed", "size"), nullptr));
|
||||
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimensional vector is not allowed", "size"), nullptr));
|
||||
}
|
||||
std::vector<size_t> dim;
|
||||
if (JSON_HEDLEY_UNLIKELY(!get_ubjson_ndarray_size(dim)))
|
||||
|
@ -34,7 +34,8 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
headers: {
|
||||
'Connection': 'keep-alive',
|
||||
'Content-Type': 'application/json',
|
||||
'Accept': 'text/event-stream'
|
||||
'Accept': 'text/event-stream',
|
||||
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
|
||||
},
|
||||
signal: controller.signal,
|
||||
});
|
||||
@ -114,7 +115,7 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
return content;
|
||||
}
|
||||
|
||||
// Call llama, return an event target that you can subcribe to
|
||||
// Call llama, return an event target that you can subscribe to
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
|
@ -223,7 +223,7 @@
|
||||
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
|
||||
repeat_penalty: 1.18, // 1.0 = disabled
|
||||
top_k: 40, // <= 0 to use vocab size
|
||||
top_p: 0.5, // 1.0 = disabled
|
||||
top_p: 0.95, // 1.0 = disabled
|
||||
min_p: 0.05, // 0 = disabled
|
||||
tfs_z: 1.0, // 1.0 = disabled
|
||||
typical_p: 1.0, // 1.0 = disabled
|
||||
@ -235,10 +235,11 @@
|
||||
grammar: '',
|
||||
n_probs: 0, // no completion_probabilities,
|
||||
image_data: [],
|
||||
cache_prompt: true
|
||||
cache_prompt: true,
|
||||
api_key: ''
|
||||
})
|
||||
|
||||
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */
|
||||
/* START: Support for storing prompt templates and parameters in browsers LocalStorage */
|
||||
|
||||
const local_storage_storageKey = "llamacpp_server_local_storage";
|
||||
|
||||
@ -282,7 +283,7 @@
|
||||
let importedTemplates = local_storage_getDataAsObject('user_templates')
|
||||
|
||||
if (importedTemplates) {
|
||||
// saved templates were successfuly imported.
|
||||
// saved templates were successfully imported.
|
||||
|
||||
console.log('Processing saved templates and updating default template')
|
||||
params.value = { ...params.value, image_data: [] };
|
||||
@ -303,7 +304,7 @@
|
||||
}
|
||||
|
||||
function userTemplateResetToDefault() {
|
||||
console.log('Reseting themplate to default')
|
||||
console.log('Resetting template to default')
|
||||
selectedUserTemplate.value.name = 'default';
|
||||
selectedUserTemplate.value.data = savedUserTemplates.value['default'];
|
||||
}
|
||||
@ -762,7 +763,7 @@
|
||||
|
||||
<fieldset class="two">
|
||||
${IntField({ label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict })}
|
||||
${FloatField({ label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
|
||||
${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
|
||||
${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })}
|
||||
${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
|
||||
${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
|
||||
@ -790,6 +791,10 @@
|
||||
<fieldset>
|
||||
${IntField({ label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs })}
|
||||
</fieldset>
|
||||
<fieldset>
|
||||
<label for="api_key">API Key</label>
|
||||
<input type="text" name="api_key" value="${params.value.api_key}" placeholder="Enter API key" oninput=${updateParams} />
|
||||
</fieldset>
|
||||
</details>
|
||||
</form>
|
||||
`
|
||||
|
@ -36,6 +36,7 @@ using json = nlohmann::json;
|
||||
struct server_params
|
||||
{
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string api_key;
|
||||
std::string public_path = "examples/server/public";
|
||||
int32_t port = 8080;
|
||||
int32_t read_timeout = 600;
|
||||
@ -376,7 +377,6 @@ struct llama_client_slot
|
||||
|
||||
int32_t num_prompt_tokens = 0;
|
||||
int32_t num_prompt_tokens_processed = 0;
|
||||
int32_t multibyte_pending = 0;
|
||||
|
||||
json prompt;
|
||||
std::string generated_text;
|
||||
@ -425,7 +425,6 @@ struct llama_client_slot
|
||||
stopped_word = false;
|
||||
stopped_limit = false;
|
||||
stopping_word = "";
|
||||
multibyte_pending = 0;
|
||||
n_past = 0;
|
||||
sent_count = 0;
|
||||
sent_token_probs_index = 0;
|
||||
@ -992,35 +991,36 @@ struct llama_server_context
|
||||
slot.generated_text += token_str;
|
||||
slot.has_next_token = true;
|
||||
|
||||
if (slot.multibyte_pending > 0)
|
||||
// check if there is incomplete UTF-8 character at the end
|
||||
bool incomplete = false;
|
||||
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
|
||||
{
|
||||
slot.multibyte_pending -= token_str.size();
|
||||
}
|
||||
else if (token_str.size() == 1)
|
||||
{
|
||||
const char c = token_str[0];
|
||||
// 2-byte characters: 110xxxxx 10xxxxxx
|
||||
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
|
||||
if ((c & 0xC0) == 0x80)
|
||||
{
|
||||
// continuation byte: 10xxxxxx
|
||||
continue;
|
||||
}
|
||||
if ((c & 0xE0) == 0xC0)
|
||||
{
|
||||
slot.multibyte_pending = 1;
|
||||
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
|
||||
// 2-byte character: 110xxxxx ...
|
||||
incomplete = i < 2;
|
||||
}
|
||||
else if ((c & 0xF0) == 0xE0)
|
||||
{
|
||||
slot.multibyte_pending = 2;
|
||||
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
||||
// 3-byte character: 1110xxxx ...
|
||||
incomplete = i < 3;
|
||||
}
|
||||
else if ((c & 0xF8) == 0xF0)
|
||||
{
|
||||
slot.multibyte_pending = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
slot.multibyte_pending = 0;
|
||||
// 4-byte character: 11110xxx ...
|
||||
incomplete = i < 4;
|
||||
}
|
||||
// else 1-byte character or invalid byte
|
||||
break;
|
||||
}
|
||||
|
||||
if (slot.multibyte_pending == 0)
|
||||
if (!incomplete)
|
||||
{
|
||||
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
|
||||
const std::string str_test = slot.generated_text.substr(pos);
|
||||
@ -1055,7 +1055,7 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
if (slot.multibyte_pending > 0 && !slot.has_next_token)
|
||||
if (incomplete)
|
||||
{
|
||||
slot.has_next_token = true;
|
||||
}
|
||||
@ -1954,6 +1954,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
@ -2003,6 +2004,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
sparams.public_path = argv[i];
|
||||
}
|
||||
else if (arg == "--api-key")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.api_key = argv[i];
|
||||
}
|
||||
else if (arg == "--timeout" || arg == "-to")
|
||||
{
|
||||
if (++i >= argc)
|
||||
@ -2108,10 +2118,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
params.yarn_beta_slow = std::stof(argv[i]);
|
||||
}
|
||||
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
||||
{
|
||||
params.memory_f16 = false;
|
||||
}
|
||||
else if (arg == "--threads" || arg == "-t")
|
||||
{
|
||||
if (++i >= argc)
|
||||
@ -2386,7 +2392,9 @@ json oaicompat_completion_params_parse(
|
||||
llama_params["__oaicompat"] = true;
|
||||
|
||||
// Map OpenAI parameters to llama.cpp parameters
|
||||
llama_params["model"] = json_value(body, "model", std::string("uknown"));
|
||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
||||
llama_params["top_k"] = json_value(body, "top_k", 40);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 0.95);
|
||||
@ -2672,6 +2680,32 @@ int main(int argc, char **argv)
|
||||
|
||||
httplib::Server svr;
|
||||
|
||||
// Middleware for API key validation
|
||||
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
|
||||
// If API key is not set, skip validation
|
||||
if (sparams.api_key.empty()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Check for API key in the header
|
||||
auto auth_header = req.get_header_value("Authorization");
|
||||
std::string prefix = "Bearer ";
|
||||
if (auth_header.substr(0, prefix.size()) == prefix) {
|
||||
std::string received_api_key = auth_header.substr(prefix.size());
|
||||
if (received_api_key == sparams.api_key) {
|
||||
return true; // API key is valid
|
||||
}
|
||||
}
|
||||
|
||||
// API key is invalid or not provided
|
||||
res.set_content("Unauthorized: Invalid API Key", "text/plain");
|
||||
res.status = 401; // Unauthorized
|
||||
|
||||
LOG_WARNING("Unauthorized: Invalid API Key", {});
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
svr.set_default_headers({{"Server", "llama.cpp"},
|
||||
{"Access-Control-Allow-Origin", "*"},
|
||||
{"Access-Control-Allow-Headers", "content-type"}});
|
||||
@ -2714,8 +2748,11 @@ int main(int argc, char **argv)
|
||||
res.set_content(data.dump(), "application/json");
|
||||
});
|
||||
|
||||
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
|
||||
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
if (!validate_api_key(req, res)) {
|
||||
return;
|
||||
}
|
||||
json data = json::parse(req.body);
|
||||
const int task_id = llama.request_completion(data, false, false, -1);
|
||||
if (!json_value(data, "stream", false)) {
|
||||
@ -2802,8 +2839,11 @@ int main(int argc, char **argv)
|
||||
});
|
||||
|
||||
// TODO: add mount point without "/v1" prefix -- how?
|
||||
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
|
||||
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
if (!validate_api_key(req, res)) {
|
||||
return;
|
||||
}
|
||||
json data = oaicompat_completion_params_parse(json::parse(req.body));
|
||||
|
||||
const int task_id = llama.request_completion(data, false, false, -1);
|
||||
@ -2872,8 +2912,11 @@ int main(int argc, char **argv)
|
||||
}
|
||||
});
|
||||
|
||||
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
|
||||
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
if (!validate_api_key(req, res)) {
|
||||
return;
|
||||
}
|
||||
json data = json::parse(req.body);
|
||||
const int task_id = llama.request_completion(data, true, false, -1);
|
||||
if (!json_value(data, "stream", false)) {
|
||||
@ -3008,11 +3051,15 @@ int main(int argc, char **argv)
|
||||
|
||||
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
|
||||
{
|
||||
if (res.status == 401)
|
||||
{
|
||||
res.set_content("Unauthorized", "text/plain");
|
||||
}
|
||||
if (res.status == 400)
|
||||
{
|
||||
res.set_content("Invalid request", "text/plain");
|
||||
}
|
||||
else if (res.status != 500)
|
||||
else if (res.status == 404)
|
||||
{
|
||||
res.set_content("File Not Found", "text/plain");
|
||||
res.status = 404;
|
||||
@ -3035,11 +3082,15 @@ int main(int argc, char **argv)
|
||||
// to make it ctrl+clickable:
|
||||
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
|
||||
LOG_INFO("HTTP server listening", {
|
||||
{"hostname", sparams.hostname},
|
||||
{"port", sparams.port},
|
||||
});
|
||||
std::unordered_map<std::string, std::string> log_data;
|
||||
log_data["hostname"] = sparams.hostname;
|
||||
log_data["port"] = std::to_string(sparams.port);
|
||||
|
||||
if (!sparams.api_key.empty()) {
|
||||
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
|
||||
}
|
||||
|
||||
LOG_INFO("HTTP server listening", log_data);
|
||||
// run the HTTP server in a thread - see comment below
|
||||
std::thread t([&]()
|
||||
{
|
||||
|
@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/speculative
|
||||
|
||||
Demonstartion of speculative decoding and tree-based speculative decoding techniques
|
||||
Demonstration of speculative decoding and tree-based speculative decoding techniques
|
||||
|
||||
More info:
|
||||
|
||||
|
@ -203,8 +203,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
||||
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
if (!params.use_color) {
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
|
||||
if (id == llama_token_eos(model_tgt)) {
|
||||
has_eos = true;
|
||||
@ -236,10 +237,18 @@ int main(int argc, char ** argv) {
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
if (params.use_color) {
|
||||
// Color token according to its origin sequence
|
||||
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (params.use_color) {
|
||||
printf("%s", token_str.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||
|
||||
@ -419,7 +428,7 @@ int main(int argc, char ** argv) {
|
||||
++n_past_tgt;
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop so we erase it here
|
||||
// the first token is always proposed by the target model before the speculation loop so we erase it here
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
|
@ -1295,10 +1295,6 @@ int main(int argc, char ** argv) {
|
||||
opt_cb_data.last_save_iter = opt->iter;
|
||||
}
|
||||
|
||||
if (alloc) {
|
||||
ggml_allocr_free(alloc);
|
||||
}
|
||||
|
||||
ggml_free(opt->ctx);
|
||||
free_train_state(train);
|
||||
ggml_free(model.ctx);
|
||||
|
49
ggml-alloc.c
49
ggml-alloc.c
@ -168,10 +168,6 @@ static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor *
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
||||
|
||||
if (!alloc->measure) {
|
||||
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
|
||||
}
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, tensor);
|
||||
#endif
|
||||
@ -237,7 +233,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
|
||||
}
|
||||
|
||||
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
|
||||
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
|
||||
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
|
||||
|
||||
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
||||
|
||||
@ -449,7 +445,6 @@ static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * n
|
||||
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
|
||||
ggml_tallocr_t alloc = node_tallocr(galloc, view);
|
||||
|
||||
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
|
||||
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
|
||||
if (update_backend) {
|
||||
view->backend = view->view_src->backend;
|
||||
@ -459,7 +454,7 @@ static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool upd
|
||||
|
||||
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
|
||||
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
|
||||
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
|
||||
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
|
||||
|
||||
if (!alloc->measure) {
|
||||
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
||||
@ -765,3 +760,43 @@ size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
|
||||
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
|
||||
}
|
||||
|
||||
// utils
|
||||
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
|
||||
|
||||
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
||||
|
||||
size_t nbytes = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->data == NULL && t->view_src == NULL) {
|
||||
nbytes += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
||||
}
|
||||
}
|
||||
|
||||
if (nbytes == 0) {
|
||||
fprintf(stderr, "%s: no tensors to allocate\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
|
||||
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->data == NULL) {
|
||||
if (t->view_src == NULL) {
|
||||
ggml_tallocr_alloc(tallocr, t);
|
||||
} else {
|
||||
ggml_backend_view_init(buffer, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tallocr_free(tallocr);
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
|
||||
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ extern "C" {
|
||||
|
||||
struct ggml_backend;
|
||||
struct ggml_backend_buffer;
|
||||
struct ggml_backend_buffer_type;
|
||||
|
||||
//
|
||||
// Legacy API
|
||||
@ -42,7 +43,7 @@ GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph
|
||||
// ggml-backend v2 API
|
||||
//
|
||||
|
||||
// Seperate tensor and graph allocator objects
|
||||
// Separate tensor and graph allocator objects
|
||||
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
|
||||
// The original API is kept as a wrapper around the new API
|
||||
|
||||
@ -80,6 +81,12 @@ GGML_API void ggml_gallocr_alloc_graph_n(
|
||||
struct ggml_hash_set hash_set,
|
||||
ggml_tallocr_t * hash_node_talloc);
|
||||
|
||||
|
||||
// Utils
|
||||
// Create a buffer and allocate all the tensors in a ggml_context
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -12,31 +12,50 @@ extern "C" {
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
// buffer type
|
||||
typedef void * ggml_backend_buffer_type_context_t;
|
||||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer_type {
|
||||
struct ggml_backend_buffer_type_i iface;
|
||||
ggml_backend_buffer_type_context_t context;
|
||||
};
|
||||
|
||||
// buffer
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
|
||||
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
|
||||
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
|
||||
void (*free_buffer)(ggml_backend_buffer_t buffer);
|
||||
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_i iface;
|
||||
|
||||
ggml_backend_t backend;
|
||||
struct ggml_backend_buffer_i iface;
|
||||
ggml_backend_buffer_type_t buft;
|
||||
ggml_backend_buffer_context_t context;
|
||||
|
||||
size_t size;
|
||||
};
|
||||
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
struct ggml_backend * backend,
|
||||
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
ggml_backend_buffer_context_t context,
|
||||
size_t size);
|
||||
|
||||
|
||||
//
|
||||
// Backend
|
||||
//
|
||||
@ -49,20 +68,17 @@ extern "C" {
|
||||
void (*free)(ggml_backend_t backend);
|
||||
|
||||
// buffer allocation
|
||||
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
|
||||
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
|
||||
|
||||
// get buffer alignment
|
||||
size_t (*get_alignment)(ggml_backend_t backend);
|
||||
|
||||
// tensor data access
|
||||
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
|
||||
// (optional) asynchroneous tensor data access
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
void (*synchronize) (ggml_backend_t backend);
|
||||
|
||||
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
// (optional) asynchroneous tensor copy
|
||||
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
void (*synchronize) (ggml_backend_t backend);
|
||||
|
||||
// compute graph with a plan
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
@ -82,6 +98,15 @@ extern "C" {
|
||||
ggml_backend_context_t context;
|
||||
};
|
||||
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
typedef ggml_backend_t (*ggml_backend_init_fn)(const char * params, void * user_data);
|
||||
|
||||
void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
771
ggml-backend.c
771
ggml-backend.c
File diff suppressed because it is too large
Load Diff
@ -7,41 +7,44 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
// buffer type
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||
|
||||
// backend buffer functions
|
||||
// buffer
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
|
||||
|
||||
//
|
||||
// Backend
|
||||
//
|
||||
|
||||
struct ggml_backend;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||
|
||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
@ -57,6 +60,7 @@ extern "C" {
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
@ -68,8 +72,23 @@ extern "C" {
|
||||
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
|
||||
|
||||
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
|
||||
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
|
||||
|
||||
//
|
||||
// Backend scheduler
|
||||
@ -131,6 +150,32 @@ extern "C" {
|
||||
ggml_backend_sched_t sched,
|
||||
struct ggml_cgraph * graph);
|
||||
|
||||
|
||||
//
|
||||
// Utils
|
||||
//
|
||||
|
||||
struct ggml_backend_graph_copy {
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx_allocated;
|
||||
struct ggml_context * ctx_unallocated;
|
||||
struct ggml_cgraph * graph;
|
||||
};
|
||||
|
||||
// Copy a graph to a different backend
|
||||
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
||||
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
2219
ggml-cuda.cu
2219
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
10
ggml-cuda.h
10
ggml-cuda.h
@ -49,7 +49,15 @@ GGML_API int ggml_cuda_get_device_count(void);
|
||||
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
|
||||
// backend API
|
||||
GGML_API ggml_backend_t ggml_backend_cuda_init(void); // TODO: take a list of devices to use
|
||||
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// pinned host buffer for use with CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -232,7 +232,7 @@ bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml
|
||||
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
||||
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
||||
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
||||
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// return index, asserts if table is full
|
||||
|
@ -99,6 +99,12 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
1209
ggml-metal.m
1209
ggml-metal.m
File diff suppressed because it is too large
Load Diff
2461
ggml-metal.metal
2461
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
@ -3114,7 +3114,7 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
|
||||
|
||||
size_t vl = __riscv_vsetvl_e8m1(qk/2);
|
||||
|
||||
// These tempory registers are for masking and shift operations
|
||||
// These temporary registers are for masking and shift operations
|
||||
vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
|
||||
vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
|
||||
|
||||
@ -4757,7 +4757,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
vl = 16;
|
||||
|
||||
// retreive lane to multiply with scale
|
||||
// retrieve lane to multiply with scale
|
||||
vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
|
||||
vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
|
||||
vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
|
||||
|
96
ggml.h
96
ggml.h
@ -215,9 +215,9 @@
|
||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_PARAMS 1024
|
||||
#define GGML_MAX_PARAMS 2048
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_SRC 10
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
@ -283,6 +283,20 @@
|
||||
const type prefix##3 = (pointer)->array[3]; \
|
||||
GGML_UNUSED(prefix##3);
|
||||
|
||||
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -381,6 +395,7 @@ extern "C" {
|
||||
GGML_OP_GROUP_NORM,
|
||||
|
||||
GGML_OP_MUL_MAT,
|
||||
GGML_OP_MUL_MAT_ID,
|
||||
GGML_OP_OUT_PROD,
|
||||
|
||||
GGML_OP_SCALE,
|
||||
@ -407,8 +422,10 @@ extern "C" {
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_ARGSORT,
|
||||
GGML_OP_LEAKY_RELU,
|
||||
|
||||
GGML_OP_FLASH_ATTN,
|
||||
GGML_OP_FLASH_FF,
|
||||
@ -448,7 +465,8 @@ extern "C" {
|
||||
GGML_UNARY_OP_GELU,
|
||||
GGML_UNARY_OP_GELU_QUICK,
|
||||
GGML_UNARY_OP_SILU,
|
||||
GGML_UNARY_OP_LEAKY
|
||||
|
||||
GGML_UNARY_OP_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
@ -484,7 +502,6 @@ extern "C" {
|
||||
|
||||
struct ggml_backend_buffer * buffer;
|
||||
|
||||
int n_dims;
|
||||
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = ggml_type_size(type)
|
||||
@ -516,7 +533,7 @@ extern "C" {
|
||||
|
||||
void * extra; // extra things e.g. for ggml-cuda.cu
|
||||
|
||||
char padding[12];
|
||||
char padding[8];
|
||||
};
|
||||
|
||||
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
||||
@ -621,16 +638,22 @@ extern "C" {
|
||||
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
||||
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
|
||||
|
||||
GGML_API int ggml_blck_size (enum ggml_type type);
|
||||
GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||
GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
||||
GGML_API int ggml_blck_size(enum ggml_type type);
|
||||
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
||||
GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
||||
"use ggml_row_size() instead");
|
||||
|
||||
GGML_API const char * ggml_type_name(enum ggml_type type);
|
||||
GGML_API const char * ggml_op_name (enum ggml_op op);
|
||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||
|
||||
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
||||
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
||||
|
||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
||||
@ -641,6 +664,11 @@ extern "C" {
|
||||
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
@ -773,6 +801,9 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// dst = a
|
||||
// view(dst, nb1, nb2, nb3, offset) += b
|
||||
// return dst
|
||||
GGML_API struct ggml_tensor * ggml_acc(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -937,15 +968,14 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_leaky(
|
||||
GGML_API struct ggml_tensor * ggml_leaky_relu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
struct ggml_tensor * a, float negative_slope, bool inplace);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_relu_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// TODO: double-check this computation is correct
|
||||
GGML_API struct ggml_tensor * ggml_gelu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@ -1027,6 +1057,16 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// indirect matrix multiplication
|
||||
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
||||
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// A: m columns, n rows,
|
||||
// B: p columns, n rows,
|
||||
// result is m columns, p rows
|
||||
@ -1234,6 +1274,7 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// supports 3D: a->ne[2] == b->ne[1]
|
||||
GGML_API struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -1520,6 +1561,32 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
int scale_factor);
|
||||
|
||||
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
||||
GGML_API struct ggml_tensor * ggml_pad(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0,
|
||||
int p1,
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// sort rows
|
||||
enum ggml_sort_order {
|
||||
GGML_SORT_ASC,
|
||||
GGML_SORT_DESC,
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_argsort(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_sort_order order);
|
||||
|
||||
// top k elements per row
|
||||
GGML_API struct ggml_tensor * ggml_top_k(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int k);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_flash_attn(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * q,
|
||||
@ -1581,7 +1648,6 @@ extern "C" {
|
||||
int kh);
|
||||
|
||||
// used in sam
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -1756,7 +1822,7 @@ extern "C" {
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||
|
@ -61,7 +61,7 @@ If you want to publish the package manually for any reason, you need to have `tw
|
||||
pip install build twine
|
||||
```
|
||||
|
||||
Then, folow these steps to release a new version:
|
||||
Then, follow these steps to release a new version:
|
||||
|
||||
1. Bump the version in `pyproject.toml`.
|
||||
2. Build the package:
|
||||
|
@ -38,6 +38,8 @@ class Keys:
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
@ -111,10 +113,14 @@ class MODEL_TENSOR(IntEnum):
|
||||
ATTN_NORM = auto()
|
||||
ATTN_NORM_2 = auto()
|
||||
ATTN_ROT_EMBD = auto()
|
||||
FFN_GATE_INP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE = auto()
|
||||
FFN_DOWN = auto()
|
||||
FFN_UP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE_EXP = auto()
|
||||
FFN_DOWN_EXP = auto()
|
||||
FFN_UP_EXP = auto()
|
||||
ATTN_Q_NORM = auto()
|
||||
ATTN_K_NORM = auto()
|
||||
|
||||
@ -154,10 +160,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
@ -172,10 +182,14 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.GPTNEOX: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -339,6 +339,12 @@ class GGUFWriter:
|
||||
def add_clamp_kqv(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
|
||||
|
||||
def add_expert_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_used_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_layer_norm_eps(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
||||
|
||||
|
@ -149,6 +149,11 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
@ -164,11 +169,21 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.w1", # qwen
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward gate
|
||||
MODEL_TENSOR.FFN_GATE: (
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
@ -185,6 +200,11 @@ class TensorNameMap:
|
||||
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
),
|
||||
@ -213,11 +233,14 @@ class TensorNameMap:
|
||||
for tensor, keys in self.block_mappings_cfg.items():
|
||||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid)
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
# TODO: make this configurable
|
||||
n_experts = 8
|
||||
for xid in range(n_experts):
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid, xid = xid)
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||
result = self.mapping.get(key)
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.6.0"
|
||||
version = "0.7.0"
|
||||
description = "Read and write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
33
llama.h
33
llama.h
@ -42,7 +42,7 @@
|
||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 2
|
||||
#define LLAMA_SESSION_VERSION 3
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
@ -158,6 +158,22 @@ extern "C" {
|
||||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||
} llama_batch;
|
||||
|
||||
enum llama_model_kv_override_type {
|
||||
LLAMA_KV_OVERRIDE_INT,
|
||||
LLAMA_KV_OVERRIDE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_BOOL,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
char key[128];
|
||||
enum llama_model_kv_override_type tag;
|
||||
union {
|
||||
int64_t int_value;
|
||||
double float_value;
|
||||
bool bool_value;
|
||||
};
|
||||
};
|
||||
|
||||
struct llama_model_params {
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
@ -165,9 +181,13 @@ extern "C" {
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// override key-value pairs of the model meta data
|
||||
const struct llama_model_kv_override * kv_overrides;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
@ -191,11 +211,14 @@ extern "C" {
|
||||
float yarn_beta_slow; // YaRN high correction dim
|
||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||
|
||||
enum ggml_type type_k; // data type for K cache
|
||||
enum ggml_type type_v; // data type for V cache
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool f16_kv; // use fp16 for KV cache, fp32 otherwise
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool embedding; // embedding mode only
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||||
bool embedding; // embedding mode only
|
||||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||||
};
|
||||
|
||||
// model quantization parameters
|
||||
|
@ -1,3 +1,5 @@
|
||||
numpy==1.24.4
|
||||
sentencepiece==0.1.98
|
||||
transformers>=4.34.0
|
||||
gguf>=0.1.0
|
||||
protobuf>=4.21.0
|
||||
|
38
scripts/get-flags.mk
Normal file
38
scripts/get-flags.mk
Normal file
@ -0,0 +1,38 @@
|
||||
ifeq '' '$(findstring clang,$(shell $(GF_CC) --version))'
|
||||
GF_CC_IS_GCC = 1
|
||||
GF_CC_VER := $(shell { $(GF_CC) -dumpfullversion 2>/dev/null || $(GF_CC) -dumpversion; } | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
else
|
||||
GF_CC_IS_CLANG = 1
|
||||
ifeq '' '$(findstring Apple,$(shell $(GF_CC) --version))'
|
||||
GF_CC_IS_LLVM_CLANG = 1
|
||||
else
|
||||
GF_CC_IS_APPLE_CLANG = 1
|
||||
endif
|
||||
GF_CC_VER := \
|
||||
$(shell $(GF_CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \
|
||||
| awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
endif
|
||||
|
||||
ifeq ($(GF_CC_IS_CLANG), 1)
|
||||
# clang options
|
||||
GF_CFLAGS = -Wunreachable-code-break -Wunreachable-code-return
|
||||
GF_CXXFLAGS = -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
|
||||
|
||||
ifneq '' '$(and $(GF_CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(GF_CC_VER) \>= 030800)))'
|
||||
GF_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
ifneq '' '$(and $(GF_CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(GF_CC_VER) \>= 070300)))'
|
||||
GF_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
else
|
||||
# gcc options
|
||||
GF_CFLAGS = -Wdouble-promotion
|
||||
GF_CXXFLAGS = -Wno-array-bounds
|
||||
|
||||
ifeq ($(shell expr $(GF_CC_VER) \>= 070100), 1)
|
||||
GF_CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
ifeq ($(shell expr $(GF_CC_VER) \>= 080100), 1)
|
||||
GF_CXXFLAGS += -Wextra-semi
|
||||
endif
|
||||
endif
|
@ -20,5 +20,6 @@ cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
||||
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h
|
||||
|
||||
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
|
||||
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp
|
||||
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
|
||||
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp
|
||||
cp -rpv ../ggml/tests/test-backend-ops.cpp ./tests/test-backend-ops.cpp
|
||||
|
@ -22,26 +22,32 @@ endfunction()
|
||||
llama_build_and_test_executable(test-quantize-fns.cpp)
|
||||
llama_build_and_test_executable(test-quantize-perf.cpp)
|
||||
llama_build_and_test_executable(test-sampling.cpp)
|
||||
|
||||
llama_build_executable(test-tokenizer-0-llama.cpp)
|
||||
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||
|
||||
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
||||
llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||
|
||||
llama_build_executable(test-tokenizer-1-llama.cpp)
|
||||
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||
llama_test_executable(test-tokenizer-1-baichuan test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
|
||||
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||
llama_test_executable (test-tokenizer-1-baichuan test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
|
||||
|
||||
llama_build_executable(test-tokenizer-1-bpe.cpp)
|
||||
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||
llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
|
||||
llama_test_executable(test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
|
||||
llama_test_executable(test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
|
||||
llama_test_executable(test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
|
||||
llama_test_executable(test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
|
||||
# llama_test_executable(test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
|
||||
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||
llama_test_executable (test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||
llama_test_executable (test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
|
||||
llama_test_executable (test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
|
||||
llama_test_executable (test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
|
||||
llama_test_executable (test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
|
||||
llama_test_executable (test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
|
||||
# llama_test_executable (test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
|
||||
|
||||
llama_build_and_test_executable(test-grammar-parser.cpp)
|
||||
llama_build_and_test_executable(test-llama-grammar.cpp)
|
||||
llama_build_and_test_executable(test-grad0.cpp) # SLOW
|
||||
llama_build_and_test_executable(test-grad0.cpp)
|
||||
# llama_build_and_test_executable(test-opt.cpp) # SLOW
|
||||
llama_build_and_test_executable(test-backend-ops.cpp)
|
||||
|
||||
llama_build_and_test_executable(test-rope.cpp)
|
||||
|
||||
|
1688
tests/test-backend-ops.cpp
Normal file
1688
tests/test-backend-ops.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,4 @@
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
|
||||
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
|
@ -117,7 +117,7 @@ static void usage(char * argv[]) {
|
||||
printf(" --size SIZE set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE);
|
||||
printf(" -3 use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE);
|
||||
printf(" -4 use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE);
|
||||
printf(" --op OP set test opration as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
||||
printf(" --op OP set test operation as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
||||
printf(" quantize_row_q_dot, vec_dot_q (all)\n");
|
||||
printf(" --type TYPE set test type as");
|
||||
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
||||
@ -202,7 +202,7 @@ int main(int argc, char * argv[]) {
|
||||
}
|
||||
int alignment = std::stoi(argv[i]);
|
||||
if (alignment < 0 || alignment > MAX_ALIGNMENT) {
|
||||
fprintf(stderr, "error: aligment-offset must be less than %d\n", MAX_ALIGNMENT);
|
||||
fprintf(stderr, "error: alignment-offset must be less than %d\n", MAX_ALIGNMENT);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
@ -286,7 +286,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.from_float_reference(test_data1, test_q1, size);
|
||||
return test_q1[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -300,7 +300,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.from_float(test_data1, test_q1, size);
|
||||
return test_q1[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -315,7 +315,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.to_float(test_q1, test_out, size);
|
||||
return test_out[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -330,7 +330,7 @@ int main(int argc, char * argv[]) {
|
||||
vdot.from_float(test_data1, test_q1, size);
|
||||
return test_q1[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -347,7 +347,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.vec_dot(size, &result, test_q1, test_q2);
|
||||
return result;
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
|
Loading…
Reference in New Issue
Block a user