mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
gguf-py: Refactor and allow reading/modifying existing GGUF files (#3981)
* gguf-py: Refactor and add file reading support * Replay changes from #3871 Credit to @cebtenzzre for that pull * Various type annotation fixes. * sort imports with isort (again) * Fix missing return statement in add_tensor * style cleanup with flake8 * fix NamedTuple and Enum usage * Fix an issue with state init in GGUFReader Move examples to an examples/ directory Clean up examples Add an example of modifying keys in a GGUF file Update documentation with info on examples Try to support people importing gguf/gguf.py directly * Damagage is not a word. * Clean up gguf-py/examples/modify_gguf.py whitespace Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update gguf-py/examples/modify_gguf.py formatting Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update gguf-py/gguf/gguf_reader.py type hint Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Make examples executable, formatting changes * Add more information to GGUFReader and examples comments * Include a gguf Python package version bump * Add convert-gguf-endian.py script * cleanup * gguf-py : bump minor version * Reorganize scripts * Make GGUFReader endian detection less arbitrary * Add JSON dumping support to gguf-dump.py Which I kind of regret now * A few for gguf-dump.py cleanups * Murder accidental tuple in gguf-py/scripts/gguf-dump.py Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * cleanup * constants : remove unneeded type annotations * fix python 3.8 compat * Set up gguf- scripts in pyproject.toml * And include scripts/__init__.py, derp * convert.py: We can't currently support Q8_0 on big endian. * gguf-py: SpecialVocab: Always try available sources for special token ids gguf-py: SpecialVocab: Try to load merges from merges.txt if not in tokenizer.json gguf-py: SpecialVocab: Add 'add_bos_token' type bools to GGUF metadata u * cleanup * Promote add_X_token to GGUF metadata for BOS and EOS --------- Co-authored-by: Jared Van Bortel <jared@nomic.ai> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
This commit is contained in:
parent
4a4fd3eefa
commit
34b0a08207
@ -16,7 +16,7 @@ import torch
|
|||||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||||
|
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
|
@ -12,29 +12,9 @@ import numpy as np
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
# Note: Does not support GGML_QKK_64
|
|
||||||
QK_K = 256
|
|
||||||
# Items here are (block size, type size)
|
|
||||||
GGML_QUANT_SIZES = {
|
|
||||||
gguf.GGMLQuantizationType.F32 : (1, 4),
|
|
||||||
gguf.GGMLQuantizationType.F16 : (1, 2),
|
|
||||||
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
|
|
||||||
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
|
|
||||||
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
|
|
||||||
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
|
|
||||||
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
|
|
||||||
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
|
|
||||||
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
|
||||||
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
|
||||||
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
|
|
||||||
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
|
||||||
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
|
||||||
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
|
|
||||||
}
|
|
||||||
|
|
||||||
class GGMLFormat(IntEnum):
|
class GGMLFormat(IntEnum):
|
||||||
GGML = 0
|
GGML = 0
|
||||||
GGMF = 1
|
GGMF = 1
|
||||||
@ -125,7 +105,7 @@ class Tensor:
|
|||||||
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
||||||
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
||||||
assert name_len < 4096, 'Absurd tensor name length'
|
assert name_len < 4096, 'Absurd tensor name length'
|
||||||
quant = GGML_QUANT_SIZES.get(dtype)
|
quant = gguf.GGML_QUANT_SIZES.get(dtype)
|
||||||
assert quant is not None, 'Unknown tensor type'
|
assert quant is not None, 'Unknown tensor type'
|
||||||
(blksize, tysize) = quant
|
(blksize, tysize) = quant
|
||||||
offset += 12
|
offset += 12
|
||||||
|
@ -6,7 +6,7 @@ import argparse
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
def _flatten_dict(dct, tensors, prefix=None):
|
def _flatten_dict(dct, tensors, prefix=None):
|
||||||
|
16
convert.py
16
convert.py
@ -3,11 +3,9 @@ from __future__ import annotations
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import concurrent.futures
|
import concurrent.futures
|
||||||
import copy
|
|
||||||
import enum
|
import enum
|
||||||
import faulthandler
|
import faulthandler
|
||||||
import functools
|
import functools
|
||||||
import io
|
|
||||||
import itertools
|
import itertools
|
||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
@ -23,14 +21,14 @@ from abc import ABCMeta, abstractmethod
|
|||||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
|
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
import os
|
import os
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@ -851,7 +849,7 @@ class OutputFile:
|
|||||||
elif isinstance(vocab, BpeVocab):
|
elif isinstance(vocab, BpeVocab):
|
||||||
self.gguf.add_tokenizer_model("gpt2")
|
self.gguf.add_tokenizer_model("gpt2")
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab')
|
raise ValueError('Unknown vocab type: Not BpeVocab or SentencePieceVocab')
|
||||||
self.gguf.add_token_list(tokens)
|
self.gguf.add_token_list(tokens)
|
||||||
self.gguf.add_token_scores(scores)
|
self.gguf.add_token_scores(scores)
|
||||||
self.gguf.add_token_types(toktypes)
|
self.gguf.add_token_types(toktypes)
|
||||||
@ -905,7 +903,7 @@ class OutputFile:
|
|||||||
return dt.quantize(arr)
|
return dt.quantize(arr)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess=gguf.GGUFEndian.LITTLE) -> None:
|
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
||||||
check_vocab_size(params, vocab)
|
check_vocab_size(params, vocab)
|
||||||
|
|
||||||
of = OutputFile(fname_out, endianess=endianess)
|
of = OutputFile(fname_out, endianess=endianess)
|
||||||
@ -1114,11 +1112,15 @@ def do_dump_model(model_plus: ModelPlus) -> None:
|
|||||||
|
|
||||||
|
|
||||||
def main(args_in: list[str] | None = None) -> None:
|
def main(args_in: list[str] | None = None) -> None:
|
||||||
|
output_choices = ["f32", "f16"]
|
||||||
|
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||||
|
# We currently only support Q8_0 output on little endian systems.
|
||||||
|
output_choices.append("q8_0")
|
||||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||||
parser.add_argument("--outtype", choices=["f32", "f16", "q8_0"], help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||||
|
@ -9,7 +9,7 @@ import numpy as np
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py' / 'gguf'))
|
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
# gguf constants
|
# gguf constants
|
||||||
|
@ -11,6 +11,16 @@ as an example for its usage.
|
|||||||
pip install gguf
|
pip install gguf
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## API Examples/Simple Tools
|
||||||
|
|
||||||
|
[examples/writer.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/examples/writer.py) — Generates `example.gguf` in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.
|
||||||
|
|
||||||
|
[scripts/gguf-dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-dump.py) — Dumps a GGUF file's metadata to the console.
|
||||||
|
|
||||||
|
[scripts/gguf-set-metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-set-metadata.py) — Allows changing simple metadata values in a GGUF file by key.
|
||||||
|
|
||||||
|
[scripts/gguf-convert-endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-convert-endian.py) — Allows converting the endianness of GGUF files.
|
||||||
|
|
||||||
## Development
|
## Development
|
||||||
Maintainers who participate in development of this package are advised to install it in editable mode:
|
Maintainers who participate in development of this package are advised to install it in editable mode:
|
||||||
|
|
||||||
|
40
gguf-py/examples/writer.py
Executable file
40
gguf-py/examples/writer.py
Executable file
@ -0,0 +1,40 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Necessary to load the local gguf package
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
from gguf import GGUFWriter # noqa: E402
|
||||||
|
|
||||||
|
|
||||||
|
# Example usage:
|
||||||
|
def writer_example() -> None:
|
||||||
|
# Example usage with a file
|
||||||
|
gguf_writer = GGUFWriter("example.gguf", "llama")
|
||||||
|
|
||||||
|
gguf_writer.add_architecture()
|
||||||
|
gguf_writer.add_block_count(12)
|
||||||
|
gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
|
||||||
|
gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||||||
|
gguf_writer.add_custom_alignment(64)
|
||||||
|
|
||||||
|
tensor1 = np.ones((32,), dtype=np.float32) * 100.0
|
||||||
|
tensor2 = np.ones((64,), dtype=np.float32) * 101.0
|
||||||
|
tensor3 = np.ones((96,), dtype=np.float32) * 102.0
|
||||||
|
|
||||||
|
gguf_writer.add_tensor("tensor1", tensor1)
|
||||||
|
gguf_writer.add_tensor("tensor2", tensor2)
|
||||||
|
gguf_writer.add_tensor("tensor3", tensor3)
|
||||||
|
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
writer_example()
|
@ -1 +1,5 @@
|
|||||||
from .gguf import *
|
from .constants import *
|
||||||
|
from .gguf_reader import *
|
||||||
|
from .gguf_writer import *
|
||||||
|
from .tensor_mapping import *
|
||||||
|
from .vocab import *
|
||||||
|
470
gguf-py/gguf/constants.py
Normal file
470
gguf-py/gguf/constants.py
Normal file
@ -0,0 +1,470 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from enum import Enum, IntEnum, auto
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
#
|
||||||
|
# constants
|
||||||
|
#
|
||||||
|
|
||||||
|
GGUF_MAGIC = 0x46554747 # "GGUF"
|
||||||
|
GGUF_VERSION = 3
|
||||||
|
GGUF_DEFAULT_ALIGNMENT = 32
|
||||||
|
|
||||||
|
#
|
||||||
|
# metadata keys
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
class Keys:
|
||||||
|
class General:
|
||||||
|
ARCHITECTURE = "general.architecture"
|
||||||
|
QUANTIZATION_VERSION = "general.quantization_version"
|
||||||
|
ALIGNMENT = "general.alignment"
|
||||||
|
NAME = "general.name"
|
||||||
|
AUTHOR = "general.author"
|
||||||
|
URL = "general.url"
|
||||||
|
DESCRIPTION = "general.description"
|
||||||
|
LICENSE = "general.license"
|
||||||
|
SOURCE_URL = "general.source.url"
|
||||||
|
SOURCE_HF_REPO = "general.source.huggingface.repository"
|
||||||
|
FILE_TYPE = "general.file_type"
|
||||||
|
|
||||||
|
class LLM:
|
||||||
|
CONTEXT_LENGTH = "{arch}.context_length"
|
||||||
|
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||||
|
BLOCK_COUNT = "{arch}.block_count"
|
||||||
|
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||||
|
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||||
|
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||||
|
|
||||||
|
class Attention:
|
||||||
|
HEAD_COUNT = "{arch}.attention.head_count"
|
||||||
|
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
|
||||||
|
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
|
||||||
|
CLAMP_KQV = "{arch}.attention.clamp_kqv"
|
||||||
|
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
|
||||||
|
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
|
||||||
|
|
||||||
|
class Rope:
|
||||||
|
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||||
|
FREQ_BASE = "{arch}.rope.freq_base"
|
||||||
|
SCALING_TYPE = "{arch}.rope.scaling.type"
|
||||||
|
SCALING_FACTOR = "{arch}.rope.scaling.factor"
|
||||||
|
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
|
||||||
|
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
|
||||||
|
|
||||||
|
class Tokenizer:
|
||||||
|
MODEL = "tokenizer.ggml.model"
|
||||||
|
LIST = "tokenizer.ggml.tokens"
|
||||||
|
TOKEN_TYPE = "tokenizer.ggml.token_type"
|
||||||
|
SCORES = "tokenizer.ggml.scores"
|
||||||
|
MERGES = "tokenizer.ggml.merges"
|
||||||
|
BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||||
|
EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||||
|
UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||||
|
SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||||
|
PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||||
|
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
||||||
|
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
||||||
|
HF_JSON = "tokenizer.huggingface.json"
|
||||||
|
RWKV = "tokenizer.rwkv.world"
|
||||||
|
|
||||||
|
|
||||||
|
#
|
||||||
|
# recommended mapping of model tensor names for storage in gguf
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
class MODEL_ARCH(IntEnum):
|
||||||
|
LLAMA = auto()
|
||||||
|
FALCON = auto()
|
||||||
|
BAICHUAN = auto()
|
||||||
|
GPT2 = auto()
|
||||||
|
GPTJ = auto()
|
||||||
|
GPTNEOX = auto()
|
||||||
|
MPT = auto()
|
||||||
|
STARCODER = auto()
|
||||||
|
PERSIMMON = auto()
|
||||||
|
REFACT = auto()
|
||||||
|
BERT = auto()
|
||||||
|
BLOOM = auto()
|
||||||
|
|
||||||
|
|
||||||
|
class MODEL_TENSOR(IntEnum):
|
||||||
|
TOKEN_EMBD = auto()
|
||||||
|
TOKEN_EMBD_NORM = auto()
|
||||||
|
TOKEN_TYPES = auto()
|
||||||
|
POS_EMBD = auto()
|
||||||
|
OUTPUT = auto()
|
||||||
|
OUTPUT_NORM = auto()
|
||||||
|
ROPE_FREQS = auto()
|
||||||
|
ATTN_Q = auto()
|
||||||
|
ATTN_K = auto()
|
||||||
|
ATTN_V = auto()
|
||||||
|
ATTN_QKV = auto()
|
||||||
|
ATTN_OUT = auto()
|
||||||
|
ATTN_NORM = auto()
|
||||||
|
ATTN_NORM_2 = auto()
|
||||||
|
ATTN_ROT_EMBD = auto()
|
||||||
|
FFN_GATE = auto()
|
||||||
|
FFN_DOWN = auto()
|
||||||
|
FFN_UP = auto()
|
||||||
|
FFN_NORM = auto()
|
||||||
|
ATTN_Q_NORM = auto()
|
||||||
|
ATTN_K_NORM = auto()
|
||||||
|
|
||||||
|
|
||||||
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
|
MODEL_ARCH.LLAMA: "llama",
|
||||||
|
MODEL_ARCH.FALCON: "falcon",
|
||||||
|
MODEL_ARCH.BAICHUAN: "baichuan",
|
||||||
|
MODEL_ARCH.GPT2: "gpt2",
|
||||||
|
MODEL_ARCH.GPTJ: "gptj",
|
||||||
|
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||||
|
MODEL_ARCH.MPT: "mpt",
|
||||||
|
MODEL_ARCH.STARCODER: "starcoder",
|
||||||
|
MODEL_ARCH.PERSIMMON: "persimmon",
|
||||||
|
MODEL_ARCH.REFACT: "refact",
|
||||||
|
MODEL_ARCH.BERT: "bert",
|
||||||
|
MODEL_ARCH.BLOOM: "bloom",
|
||||||
|
}
|
||||||
|
|
||||||
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||||
|
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||||
|
MODEL_TENSOR.OUTPUT: "output",
|
||||||
|
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||||
|
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||||
|
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||||
|
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||||
|
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||||
|
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||||
|
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||||
|
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||||
|
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||||
|
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||||
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||||
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||||
|
}
|
||||||
|
|
||||||
|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
|
MODEL_ARCH.LLAMA: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPTNEOX: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.FALCON: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM_2,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.BAICHUAN: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.STARCODER: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.POS_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.BERT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES,
|
||||||
|
MODEL_TENSOR.POS_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.MPT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPTJ: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.PERSIMMON: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.REFACT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.BLOOM: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPT2: [
|
||||||
|
# TODO
|
||||||
|
],
|
||||||
|
# TODO
|
||||||
|
}
|
||||||
|
|
||||||
|
# tensors that will not be serialized
|
||||||
|
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
|
MODEL_ARCH.LLAMA: [
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.BAICHUAN: [
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.PERSIMMON: [
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
#
|
||||||
|
# types
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
class TokenType(IntEnum):
|
||||||
|
NORMAL = 1
|
||||||
|
UNKNOWN = 2
|
||||||
|
CONTROL = 3
|
||||||
|
USER_DEFINED = 4
|
||||||
|
UNUSED = 5
|
||||||
|
BYTE = 6
|
||||||
|
|
||||||
|
|
||||||
|
class RopeScalingType(Enum):
|
||||||
|
NONE = 'none'
|
||||||
|
LINEAR = 'linear'
|
||||||
|
YARN = 'yarn'
|
||||||
|
|
||||||
|
|
||||||
|
class GGMLQuantizationType(IntEnum):
|
||||||
|
F32 = 0
|
||||||
|
F16 = 1
|
||||||
|
Q4_0 = 2
|
||||||
|
Q4_1 = 3
|
||||||
|
Q5_0 = 6
|
||||||
|
Q5_1 = 7
|
||||||
|
Q8_0 = 8
|
||||||
|
Q8_1 = 9
|
||||||
|
Q2_K = 10
|
||||||
|
Q3_K = 11
|
||||||
|
Q4_K = 12
|
||||||
|
Q5_K = 13
|
||||||
|
Q6_K = 14
|
||||||
|
Q8_K = 15
|
||||||
|
|
||||||
|
|
||||||
|
class GGUFEndian(IntEnum):
|
||||||
|
LITTLE = 0
|
||||||
|
BIG = 1
|
||||||
|
|
||||||
|
|
||||||
|
class GGUFValueType(IntEnum):
|
||||||
|
UINT8 = 0
|
||||||
|
INT8 = 1
|
||||||
|
UINT16 = 2
|
||||||
|
INT16 = 3
|
||||||
|
UINT32 = 4
|
||||||
|
INT32 = 5
|
||||||
|
FLOAT32 = 6
|
||||||
|
BOOL = 7
|
||||||
|
STRING = 8
|
||||||
|
ARRAY = 9
|
||||||
|
UINT64 = 10
|
||||||
|
INT64 = 11
|
||||||
|
FLOAT64 = 12
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_type(val: Any) -> GGUFValueType:
|
||||||
|
if isinstance(val, (str, bytes, bytearray)):
|
||||||
|
return GGUFValueType.STRING
|
||||||
|
elif isinstance(val, list):
|
||||||
|
return GGUFValueType.ARRAY
|
||||||
|
elif isinstance(val, float):
|
||||||
|
return GGUFValueType.FLOAT32
|
||||||
|
elif isinstance(val, bool):
|
||||||
|
return GGUFValueType.BOOL
|
||||||
|
elif isinstance(val, int):
|
||||||
|
return GGUFValueType.INT32
|
||||||
|
# TODO: need help with 64-bit types in Python
|
||||||
|
else:
|
||||||
|
print("Unknown type:", type(val))
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
|
||||||
|
# Note: Does not support GGML_QKK_64
|
||||||
|
QK_K = 256
|
||||||
|
# Items here are (block size, type size)
|
||||||
|
GGML_QUANT_SIZES = {
|
||||||
|
GGMLQuantizationType.F32: (1, 4),
|
||||||
|
GGMLQuantizationType.F16: (1, 2),
|
||||||
|
GGMLQuantizationType.Q4_0: (32, 2 + 16),
|
||||||
|
GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
|
||||||
|
GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
|
||||||
|
GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
|
||||||
|
GGMLQuantizationType.Q8_0: (32, 2 + 32),
|
||||||
|
GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
|
||||||
|
GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
||||||
|
GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
||||||
|
GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
|
||||||
|
GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
||||||
|
GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
||||||
|
GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# Aliases for backward compatibility.
|
||||||
|
|
||||||
|
# general
|
||||||
|
KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
|
||||||
|
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
|
||||||
|
KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
|
||||||
|
KEY_GENERAL_NAME = Keys.General.NAME
|
||||||
|
KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
|
||||||
|
KEY_GENERAL_URL = Keys.General.URL
|
||||||
|
KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
|
||||||
|
KEY_GENERAL_LICENSE = Keys.General.LICENSE
|
||||||
|
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
|
||||||
|
KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
|
||||||
|
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
|
||||||
|
|
||||||
|
# LLM
|
||||||
|
KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
|
||||||
|
KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
|
||||||
|
KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
|
||||||
|
KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
|
||||||
|
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
|
||||||
|
KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
|
||||||
|
|
||||||
|
# attention
|
||||||
|
KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
|
||||||
|
KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
|
||||||
|
KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
|
||||||
|
KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
|
||||||
|
KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
|
||||||
|
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
|
||||||
|
|
||||||
|
# RoPE
|
||||||
|
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
|
||||||
|
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
|
||||||
|
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
|
||||||
|
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
|
||||||
|
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
|
||||||
|
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
|
||||||
|
|
||||||
|
# tokenization
|
||||||
|
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
|
||||||
|
KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
|
||||||
|
KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
|
||||||
|
KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
|
||||||
|
KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
|
||||||
|
KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
|
||||||
|
KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
|
||||||
|
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
|
||||||
|
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
|
||||||
|
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
|
||||||
|
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
|
||||||
|
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
|
1149
gguf-py/gguf/gguf.py
1149
gguf-py/gguf/gguf.py
File diff suppressed because it is too large
Load Diff
264
gguf-py/gguf/gguf_reader.py
Normal file
264
gguf-py/gguf/gguf_reader.py
Normal file
@ -0,0 +1,264 @@
|
|||||||
|
#
|
||||||
|
# GGUF file reading/modification support. For API usage information,
|
||||||
|
# please see the files scripts/ for some fairly simple examples.
|
||||||
|
#
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import os
|
||||||
|
from collections import OrderedDict
|
||||||
|
from typing import Any, Literal, NamedTuple, TypeVar, Union
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Allow running file in package as a script.
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
from gguf.constants import (
|
||||||
|
GGML_QUANT_SIZES,
|
||||||
|
GGUF_DEFAULT_ALIGNMENT,
|
||||||
|
GGUF_MAGIC,
|
||||||
|
GGUF_VERSION,
|
||||||
|
GGMLQuantizationType,
|
||||||
|
GGUFValueType,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION]
|
||||||
|
|
||||||
|
|
||||||
|
class ReaderField(NamedTuple):
|
||||||
|
# Offset to start of this field.
|
||||||
|
offset: int
|
||||||
|
|
||||||
|
# Name of the field (not necessarily from file data).
|
||||||
|
name: str
|
||||||
|
|
||||||
|
# Data parts. Some types have multiple components, such as strings
|
||||||
|
# that consist of a length followed by the string data.
|
||||||
|
parts: list[npt.NDArray[Any]] = []
|
||||||
|
|
||||||
|
# Indexes into parts that we can call the actual data. For example
|
||||||
|
# an array of strings will be populated with indexes to the actual
|
||||||
|
# string data.
|
||||||
|
data: list[int] = [-1]
|
||||||
|
|
||||||
|
types: list[GGUFValueType] = []
|
||||||
|
|
||||||
|
|
||||||
|
class ReaderTensor(NamedTuple):
|
||||||
|
name: str
|
||||||
|
tensor_type: GGMLQuantizationType
|
||||||
|
shape: npt.NDArray[np.uint32]
|
||||||
|
n_elements: int
|
||||||
|
n_bytes: int
|
||||||
|
data_offset: int
|
||||||
|
data: npt.NDArray[Any]
|
||||||
|
field: ReaderField
|
||||||
|
|
||||||
|
|
||||||
|
class GGUFReader:
|
||||||
|
# I - same as host, S - swapped
|
||||||
|
byte_order: Literal['I' | 'S'] = 'I'
|
||||||
|
alignment: int = GGUF_DEFAULT_ALIGNMENT
|
||||||
|
|
||||||
|
# Note: Internal helper, API may change.
|
||||||
|
gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = {
|
||||||
|
GGUFValueType.UINT8: np.uint8,
|
||||||
|
GGUFValueType.INT8: np.int8,
|
||||||
|
GGUFValueType.UINT16: np.uint16,
|
||||||
|
GGUFValueType.INT16: np.int16,
|
||||||
|
GGUFValueType.UINT32: np.uint32,
|
||||||
|
GGUFValueType.INT32: np.int32,
|
||||||
|
GGUFValueType.FLOAT32: np.float32,
|
||||||
|
GGUFValueType.UINT64: np.uint64,
|
||||||
|
GGUFValueType.INT64: np.int64,
|
||||||
|
GGUFValueType.FLOAT64: np.float64,
|
||||||
|
GGUFValueType.BOOL: np.bool_,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r' | 'r+' | 'c'] = 'r'):
|
||||||
|
self.data = np.memmap(path, mode = mode)
|
||||||
|
offs = 0
|
||||||
|
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
|
||||||
|
raise ValueError('GGUF magic invalid')
|
||||||
|
offs += 4
|
||||||
|
temp_version = self._get(offs, np.uint32)
|
||||||
|
if temp_version[0] & 65535 == 0:
|
||||||
|
# If we get 0 here that means it's (probably) a GGUF file created for
|
||||||
|
# the opposite byte order of the machine this script is running on.
|
||||||
|
self.byte_order = 'S'
|
||||||
|
temp_version = temp_version.newbyteorder(self.byte_order)
|
||||||
|
version = temp_version[0]
|
||||||
|
if version not in READER_SUPPORTED_VERSIONS:
|
||||||
|
raise ValueError(f'Sorry, file appears to be version {version} which we cannot handle')
|
||||||
|
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
|
||||||
|
self.tensors: list[ReaderTensor] = []
|
||||||
|
offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32]))
|
||||||
|
temp_counts = self._get(offs, np.uint64, 2)
|
||||||
|
offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64]))
|
||||||
|
offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64]))
|
||||||
|
tensor_count, kv_count = temp_counts
|
||||||
|
offs = self._build_fields(offs, kv_count)
|
||||||
|
offs, tensors_fields = self._build_tensors_fields(offs, tensor_count)
|
||||||
|
new_align = self.fields.get('general.alignment')
|
||||||
|
if new_align is not None:
|
||||||
|
if new_align.types != [GGUFValueType.UINT64]:
|
||||||
|
raise ValueError('Bad type for general.alignment field')
|
||||||
|
self.alignment = new_align.parts[-1][0]
|
||||||
|
padding = offs % self.alignment
|
||||||
|
if padding != 0:
|
||||||
|
offs += self.alignment - padding
|
||||||
|
self._build_tensors(offs, tensors_fields)
|
||||||
|
|
||||||
|
_DT = TypeVar('_DT', bound = npt.DTypeLike)
|
||||||
|
|
||||||
|
# Fetch a key/value metadata field by key.
|
||||||
|
def get_field(self, key: str) -> Union[ReaderField, None]:
|
||||||
|
return self.fields.get(key, None)
|
||||||
|
|
||||||
|
# Fetch a tensor from the list by index.
|
||||||
|
def get_tensor(self, idx: int) -> ReaderTensor:
|
||||||
|
return self.tensors[idx]
|
||||||
|
|
||||||
|
def _get(
|
||||||
|
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I' | 'S' | '<'] = None,
|
||||||
|
) -> npt.NDArray[Any]:
|
||||||
|
count = int(count)
|
||||||
|
itemsize = int(np.empty([], dtype = dtype).itemsize)
|
||||||
|
end_offs = offset + itemsize * count
|
||||||
|
return (
|
||||||
|
self.data[offset:end_offs]
|
||||||
|
.view(dtype = dtype)[:count]
|
||||||
|
.newbyteorder(override_order or self.byte_order)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
|
||||||
|
if field.name in self.fields:
|
||||||
|
raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}')
|
||||||
|
self.fields[field.name] = field
|
||||||
|
return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts)
|
||||||
|
|
||||||
|
def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]:
|
||||||
|
slen = self._get(offset, np.uint64)
|
||||||
|
return slen, self._get(offset + 8, np.uint8, slen[0])
|
||||||
|
|
||||||
|
def _get_field_parts(
|
||||||
|
self, orig_offs: int, raw_type: int,
|
||||||
|
) -> tuple[int, list[npt.NDArray[Any]], list[int], list[GGUFValueType]]:
|
||||||
|
offs = orig_offs
|
||||||
|
types: list[GGUFValueType] = []
|
||||||
|
gtype = GGUFValueType(raw_type)
|
||||||
|
types.append(gtype)
|
||||||
|
# Handle strings.
|
||||||
|
if gtype == GGUFValueType.STRING:
|
||||||
|
sparts: list[npt.NDArray[Any]] = list(self._get_str(offs))
|
||||||
|
size = sum(int(part.nbytes) for part in sparts)
|
||||||
|
return size, sparts, [1], types
|
||||||
|
# Check if it's a simple scalar type.
|
||||||
|
nptype = self.gguf_scalar_to_np.get(gtype)
|
||||||
|
if nptype is not None:
|
||||||
|
val = self._get(offs, nptype)
|
||||||
|
return int(val.nbytes), [val], [0], types
|
||||||
|
# Handle arrays.
|
||||||
|
if gtype == GGUFValueType.ARRAY:
|
||||||
|
raw_itype = self._get(offs, np.uint32)
|
||||||
|
offs += int(raw_itype.nbytes)
|
||||||
|
alen = self._get(offs, np.uint64)
|
||||||
|
offs += int(alen.nbytes)
|
||||||
|
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
|
||||||
|
data_idxs: list[int] = []
|
||||||
|
for idx in range(alen[0]):
|
||||||
|
curr_size, curr_parts, curr_idxs, curr_types = self._get_field_parts(offs, raw_itype[0])
|
||||||
|
if idx == 0:
|
||||||
|
types += curr_types
|
||||||
|
idxs_offs = len(aparts)
|
||||||
|
aparts += curr_parts
|
||||||
|
data_idxs += (idx + idxs_offs for idx in curr_idxs)
|
||||||
|
offs += curr_size
|
||||||
|
return offs - orig_offs, aparts, data_idxs, types
|
||||||
|
# We can't deal with this one.
|
||||||
|
raise ValueError('Unknown/unhandled field type {gtype}')
|
||||||
|
|
||||||
|
def _get_tensor(self, orig_offs: int) -> ReaderField:
|
||||||
|
offs = orig_offs
|
||||||
|
name_len, name_data = self._get_str(offs)
|
||||||
|
offs += int(name_len.nbytes + name_data.nbytes)
|
||||||
|
n_dims = self._get(offs, np.uint32)
|
||||||
|
offs += int(n_dims.nbytes)
|
||||||
|
dims = self._get(offs, np.uint64, n_dims[0])
|
||||||
|
offs += int(dims.nbytes)
|
||||||
|
raw_dtype = self._get(offs, np.uint32)
|
||||||
|
offs += int(raw_dtype.nbytes)
|
||||||
|
offset_tensor = self._get(offs, np.uint64)
|
||||||
|
offs += int(offset_tensor.nbytes)
|
||||||
|
return ReaderField(
|
||||||
|
orig_offs,
|
||||||
|
str(bytes(name_data), encoding = 'utf-8'),
|
||||||
|
[name_len, name_data, n_dims, dims, raw_dtype, offset_tensor],
|
||||||
|
[1, 3, 4, 5],
|
||||||
|
)
|
||||||
|
|
||||||
|
def _build_fields(self, offs: int, count: int) -> int:
|
||||||
|
for _ in range(count):
|
||||||
|
orig_offs = offs
|
||||||
|
kv_klen, kv_kdata = self._get_str(offs)
|
||||||
|
offs += int(kv_klen.nbytes + kv_kdata.nbytes)
|
||||||
|
raw_kv_type = self._get(offs, np.uint32)
|
||||||
|
offs += int(raw_kv_type.nbytes)
|
||||||
|
parts: list[npt.NDArray[Any]] = [kv_klen, kv_kdata, raw_kv_type]
|
||||||
|
idxs_offs = len(parts)
|
||||||
|
field_size, field_parts, field_idxs, field_types = self._get_field_parts(offs, raw_kv_type[0])
|
||||||
|
parts += field_parts
|
||||||
|
self._push_field(ReaderField(
|
||||||
|
orig_offs,
|
||||||
|
str(bytes(kv_kdata), encoding = 'utf-8'),
|
||||||
|
parts,
|
||||||
|
[idx + idxs_offs for idx in field_idxs],
|
||||||
|
field_types,
|
||||||
|
), skip_sum = True)
|
||||||
|
offs += field_size
|
||||||
|
return offs
|
||||||
|
|
||||||
|
def _build_tensors_fields(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
|
||||||
|
tensor_fields = []
|
||||||
|
for _ in range(count):
|
||||||
|
field = self._get_tensor(offs)
|
||||||
|
offs += sum(int(part.nbytes) for part in field.parts)
|
||||||
|
tensor_fields.append(field)
|
||||||
|
return offs, tensor_fields
|
||||||
|
|
||||||
|
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
|
||||||
|
tensors = []
|
||||||
|
for field in fields:
|
||||||
|
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
|
||||||
|
ggml_type = GGMLQuantizationType(raw_dtype[0])
|
||||||
|
n_elems = np.prod(dims)
|
||||||
|
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
|
||||||
|
n_bytes = n_elems * type_size // block_size
|
||||||
|
data_offs = int(start_offs + offset_tensor[0])
|
||||||
|
item_type: npt.DTypeLike
|
||||||
|
if ggml_type == GGMLQuantizationType.F32:
|
||||||
|
item_count = n_elems
|
||||||
|
item_type = np.float32
|
||||||
|
elif ggml_type == GGMLQuantizationType.F16:
|
||||||
|
item_count = n_elems
|
||||||
|
item_type = np.float16
|
||||||
|
else:
|
||||||
|
item_count = n_bytes
|
||||||
|
item_type = np.uint8
|
||||||
|
tensors.append(ReaderTensor(
|
||||||
|
name = str(bytes(name_data), encoding = 'utf-8'),
|
||||||
|
tensor_type = ggml_type,
|
||||||
|
shape = dims,
|
||||||
|
n_elements = n_elems,
|
||||||
|
n_bytes = n_bytes,
|
||||||
|
data_offset = data_offs,
|
||||||
|
data = self._get(data_offs, item_type, item_count),
|
||||||
|
field = field,
|
||||||
|
))
|
||||||
|
self.tensors = tensors
|
409
gguf-py/gguf/gguf_writer.py
Normal file
409
gguf-py/gguf/gguf_writer.py
Normal file
@ -0,0 +1,409 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import struct
|
||||||
|
import tempfile
|
||||||
|
from enum import Enum, auto
|
||||||
|
from io import BufferedWriter
|
||||||
|
from typing import IO, Any, Sequence
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from .constants import (
|
||||||
|
GGUF_DEFAULT_ALIGNMENT,
|
||||||
|
GGUF_MAGIC,
|
||||||
|
GGUF_VERSION,
|
||||||
|
GGMLQuantizationType,
|
||||||
|
GGUFEndian,
|
||||||
|
GGUFValueType,
|
||||||
|
Keys,
|
||||||
|
RopeScalingType,
|
||||||
|
TokenType,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class WriterState(Enum):
|
||||||
|
EMPTY = auto()
|
||||||
|
HEADER = auto()
|
||||||
|
KV_DATA = auto()
|
||||||
|
TI_DATA = auto()
|
||||||
|
|
||||||
|
|
||||||
|
class GGUFWriter:
|
||||||
|
fout: BufferedWriter
|
||||||
|
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
|
||||||
|
tensors: list[np.ndarray[Any, Any]]
|
||||||
|
_simple_value_packing = {
|
||||||
|
GGUFValueType.UINT8: "B",
|
||||||
|
GGUFValueType.INT8: "b",
|
||||||
|
GGUFValueType.UINT16: "H",
|
||||||
|
GGUFValueType.INT16: "h",
|
||||||
|
GGUFValueType.UINT32: "I",
|
||||||
|
GGUFValueType.INT32: "i",
|
||||||
|
GGUFValueType.FLOAT32: "f",
|
||||||
|
GGUFValueType.UINT64: "Q",
|
||||||
|
GGUFValueType.INT64: "q",
|
||||||
|
GGUFValueType.FLOAT64: "d",
|
||||||
|
GGUFValueType.BOOL: "?",
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, path: os.PathLike[str] | str, arch: str, use_temp_file: bool = True,
|
||||||
|
endianess: GGUFEndian = GGUFEndian.LITTLE,
|
||||||
|
):
|
||||||
|
self.fout = open(path, "wb")
|
||||||
|
self.arch = arch
|
||||||
|
self.endianess = endianess
|
||||||
|
self.offset_tensor = 0
|
||||||
|
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
|
||||||
|
self.kv_data = b""
|
||||||
|
self.kv_data_count = 0
|
||||||
|
self.ti_data = b""
|
||||||
|
self.ti_data_count = 0
|
||||||
|
self.use_temp_file = use_temp_file
|
||||||
|
self.temp_file = None
|
||||||
|
self.tensors = []
|
||||||
|
print("gguf: This GGUF file is for {0} Endian only".format(
|
||||||
|
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
||||||
|
))
|
||||||
|
self.state = WriterState.EMPTY
|
||||||
|
|
||||||
|
self.add_architecture()
|
||||||
|
|
||||||
|
def write_header_to_file(self) -> None:
|
||||||
|
if self.state is not WriterState.EMPTY:
|
||||||
|
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
||||||
|
|
||||||
|
self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True)
|
||||||
|
self._write_packed("I", GGUF_VERSION)
|
||||||
|
self._write_packed("Q", self.ti_data_count)
|
||||||
|
self._write_packed("Q", self.kv_data_count)
|
||||||
|
self.flush()
|
||||||
|
self.state = WriterState.HEADER
|
||||||
|
|
||||||
|
def write_kv_data_to_file(self) -> None:
|
||||||
|
if self.state is not WriterState.HEADER:
|
||||||
|
raise ValueError(f'Expected output file to contain the header, got {self.state}')
|
||||||
|
|
||||||
|
self.fout.write(self.kv_data)
|
||||||
|
self.flush()
|
||||||
|
self.state = WriterState.KV_DATA
|
||||||
|
|
||||||
|
def write_ti_data_to_file(self) -> None:
|
||||||
|
if self.state is not WriterState.KV_DATA:
|
||||||
|
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
|
||||||
|
|
||||||
|
self.fout.write(self.ti_data)
|
||||||
|
self.flush()
|
||||||
|
self.state = WriterState.TI_DATA
|
||||||
|
|
||||||
|
def add_key(self, key: str) -> None:
|
||||||
|
self.add_val(key, GGUFValueType.STRING, add_vtype=False)
|
||||||
|
|
||||||
|
def add_uint8(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.UINT8)
|
||||||
|
|
||||||
|
def add_int8(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.INT8)
|
||||||
|
|
||||||
|
def add_uint16(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.UINT16)
|
||||||
|
|
||||||
|
def add_int16(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.INT16)
|
||||||
|
|
||||||
|
def add_uint32(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.UINT32)
|
||||||
|
|
||||||
|
def add_int32(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.INT32)
|
||||||
|
|
||||||
|
def add_float32(self, key: str, val: float) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.FLOAT32)
|
||||||
|
|
||||||
|
def add_uint64(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.UINT64)
|
||||||
|
|
||||||
|
def add_int64(self, key: str, val: int) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.INT64)
|
||||||
|
|
||||||
|
def add_float64(self, key: str, val: float) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.FLOAT64)
|
||||||
|
|
||||||
|
def add_bool(self, key: str, val: bool) -> None:
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.BOOL)
|
||||||
|
|
||||||
|
def add_string(self, key: str, val: str) -> None:
|
||||||
|
if not val:
|
||||||
|
return
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.STRING)
|
||||||
|
|
||||||
|
def add_array(self, key: str, val: Sequence[Any]) -> None:
|
||||||
|
if not isinstance(val, Sequence):
|
||||||
|
raise ValueError("Value must be a sequence for array type")
|
||||||
|
|
||||||
|
self.add_key(key)
|
||||||
|
self.add_val(val, GGUFValueType.ARRAY)
|
||||||
|
|
||||||
|
def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True) -> None:
|
||||||
|
if vtype is None:
|
||||||
|
vtype = GGUFValueType.get_type(val)
|
||||||
|
|
||||||
|
if add_vtype:
|
||||||
|
self.kv_data += self._pack("I", vtype)
|
||||||
|
self.kv_data_count += 1
|
||||||
|
|
||||||
|
pack_fmt = self._simple_value_packing.get(vtype)
|
||||||
|
if pack_fmt is not None:
|
||||||
|
self.kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
|
||||||
|
elif vtype == GGUFValueType.STRING:
|
||||||
|
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
||||||
|
self.kv_data += self._pack("Q", len(encoded_val))
|
||||||
|
self.kv_data += encoded_val
|
||||||
|
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
|
||||||
|
ltype = GGUFValueType.get_type(val[0])
|
||||||
|
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
||||||
|
raise ValueError("All items in a GGUF array should be of the same type")
|
||||||
|
self.kv_data += self._pack("I", ltype)
|
||||||
|
self.kv_data += self._pack("Q", len(val))
|
||||||
|
for item in val:
|
||||||
|
self.add_val(item, add_vtype=False)
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid GGUF metadata value type or value")
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def ggml_pad(x: int, n: int) -> int:
|
||||||
|
return ((x + n - 1) // n) * n
|
||||||
|
|
||||||
|
def add_tensor_info(
|
||||||
|
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
|
||||||
|
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
||||||
|
) -> None:
|
||||||
|
if self.state is not WriterState.EMPTY:
|
||||||
|
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
||||||
|
|
||||||
|
if raw_dtype is None and tensor_dtype not in (np.float32, np.float16):
|
||||||
|
raise ValueError("Only F32 and F16 tensors are supported for now")
|
||||||
|
|
||||||
|
encoded_name = name.encode("utf8")
|
||||||
|
self.ti_data += self._pack("Q", len(encoded_name))
|
||||||
|
self.ti_data += encoded_name
|
||||||
|
n_dims = len(tensor_shape)
|
||||||
|
self.ti_data += self._pack("I", n_dims)
|
||||||
|
for i in range(n_dims):
|
||||||
|
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||||
|
if raw_dtype is None:
|
||||||
|
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
|
||||||
|
else:
|
||||||
|
dtype = raw_dtype
|
||||||
|
self.ti_data += self._pack("I", dtype)
|
||||||
|
self.ti_data += self._pack("Q", self.offset_tensor)
|
||||||
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||||
|
self.ti_data_count += 1
|
||||||
|
|
||||||
|
def add_tensor(
|
||||||
|
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
|
||||||
|
raw_dtype: GGMLQuantizationType | None = None,
|
||||||
|
) -> None:
|
||||||
|
if self.endianess == GGUFEndian.BIG:
|
||||||
|
tensor.byteswap(inplace=True)
|
||||||
|
if self.use_temp_file and self.temp_file is None:
|
||||||
|
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
||||||
|
fp.seek(0)
|
||||||
|
self.temp_file = fp
|
||||||
|
|
||||||
|
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
|
||||||
|
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
|
||||||
|
|
||||||
|
if self.temp_file is None:
|
||||||
|
self.tensors.append(tensor)
|
||||||
|
return
|
||||||
|
|
||||||
|
tensor.tofile(self.temp_file)
|
||||||
|
self.write_padding(self.temp_file, tensor.nbytes)
|
||||||
|
|
||||||
|
def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
|
||||||
|
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
|
||||||
|
if pad != 0:
|
||||||
|
fp.write(bytes([0] * pad))
|
||||||
|
|
||||||
|
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
|
||||||
|
if self.state is not WriterState.TI_DATA:
|
||||||
|
raise ValueError(f'Expected output file to contain tensor info, got {self.state}')
|
||||||
|
|
||||||
|
if self.endianess == GGUFEndian.BIG:
|
||||||
|
tensor.byteswap(inplace=True)
|
||||||
|
self.write_padding(self.fout, self.fout.tell())
|
||||||
|
tensor.tofile(self.fout)
|
||||||
|
self.write_padding(self.fout, tensor.nbytes)
|
||||||
|
|
||||||
|
def write_tensors_to_file(self) -> None:
|
||||||
|
self.write_ti_data_to_file()
|
||||||
|
|
||||||
|
self.write_padding(self.fout, self.fout.tell())
|
||||||
|
|
||||||
|
if self.temp_file is None:
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
tensor = self.tensors.pop(0)
|
||||||
|
except IndexError:
|
||||||
|
break
|
||||||
|
tensor.tofile(self.fout)
|
||||||
|
self.write_padding(self.fout, tensor.nbytes)
|
||||||
|
return
|
||||||
|
|
||||||
|
self.temp_file.seek(0)
|
||||||
|
|
||||||
|
shutil.copyfileobj(self.temp_file, self.fout)
|
||||||
|
self.flush()
|
||||||
|
self.temp_file.close()
|
||||||
|
|
||||||
|
def flush(self) -> None:
|
||||||
|
self.fout.flush()
|
||||||
|
|
||||||
|
def close(self) -> None:
|
||||||
|
self.fout.close()
|
||||||
|
|
||||||
|
def add_architecture(self) -> None:
|
||||||
|
self.add_string(Keys.General.ARCHITECTURE, self.arch)
|
||||||
|
|
||||||
|
def add_author(self, author: str) -> None:
|
||||||
|
self.add_string(Keys.General.AUTHOR, author)
|
||||||
|
|
||||||
|
def add_tensor_data_layout(self, layout: str) -> None:
|
||||||
|
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||||
|
|
||||||
|
def add_url(self, url: str) -> None:
|
||||||
|
self.add_string(Keys.General.URL, url)
|
||||||
|
|
||||||
|
def add_description(self, description: str) -> None:
|
||||||
|
self.add_string(Keys.General.DESCRIPTION, description)
|
||||||
|
|
||||||
|
def add_source_url(self, url: str) -> None:
|
||||||
|
self.add_string(Keys.General.SOURCE_URL, url)
|
||||||
|
|
||||||
|
def add_source_hf_repo(self, repo: str) -> None:
|
||||||
|
self.add_string(Keys.General.SOURCE_HF_REPO, repo)
|
||||||
|
|
||||||
|
def add_file_type(self, ftype: int) -> None:
|
||||||
|
self.add_uint32(Keys.General.FILE_TYPE, ftype)
|
||||||
|
|
||||||
|
def add_name(self, name: str) -> None:
|
||||||
|
self.add_string(Keys.General.NAME, name)
|
||||||
|
|
||||||
|
def add_quantization_version(self, quantization_version: GGMLQuantizationType) -> None:
|
||||||
|
self.add_uint32(
|
||||||
|
Keys.General.QUANTIZATION_VERSION, quantization_version)
|
||||||
|
|
||||||
|
def add_custom_alignment(self, alignment: int) -> None:
|
||||||
|
self.data_alignment = alignment
|
||||||
|
self.add_uint32(Keys.General.ALIGNMENT, alignment)
|
||||||
|
|
||||||
|
def add_context_length(self, length: int) -> None:
|
||||||
|
self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
|
||||||
|
|
||||||
|
def add_embedding_length(self, length: int) -> None:
|
||||||
|
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
|
||||||
|
|
||||||
|
def add_block_count(self, length: int) -> None:
|
||||||
|
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
|
||||||
|
|
||||||
|
def add_feed_forward_length(self, length: int) -> None:
|
||||||
|
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||||
|
|
||||||
|
def add_parallel_residual(self, use: bool) -> None:
|
||||||
|
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||||
|
|
||||||
|
def add_head_count(self, count: int) -> None:
|
||||||
|
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
|
||||||
|
|
||||||
|
def add_head_count_kv(self, count: int) -> None:
|
||||||
|
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
||||||
|
|
||||||
|
def add_max_alibi_bias(self, bias: float) -> None:
|
||||||
|
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
|
||||||
|
|
||||||
|
def add_clamp_kqv(self, value: float) -> None:
|
||||||
|
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_layer_norm_eps(self, value: float) -> None:
|
||||||
|
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_layer_norm_rms_eps(self, value: float) -> None:
|
||||||
|
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_rope_dimension_count(self, count: int) -> None:
|
||||||
|
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
|
||||||
|
|
||||||
|
def add_rope_freq_base(self, value: float) -> None:
|
||||||
|
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_rope_scaling_type(self, value: RopeScalingType) -> None:
|
||||||
|
self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
|
||||||
|
|
||||||
|
def add_rope_scaling_factor(self, value: float) -> None:
|
||||||
|
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
|
||||||
|
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_rope_scaling_finetuned(self, value: bool) -> None:
|
||||||
|
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_tokenizer_model(self, model: str) -> None:
|
||||||
|
self.add_string(Keys.Tokenizer.MODEL, model)
|
||||||
|
|
||||||
|
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
|
||||||
|
self.add_array(Keys.Tokenizer.LIST, tokens)
|
||||||
|
|
||||||
|
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
|
||||||
|
self.add_array(Keys.Tokenizer.MERGES, merges)
|
||||||
|
|
||||||
|
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
|
||||||
|
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
|
||||||
|
|
||||||
|
def add_token_scores(self, scores: Sequence[float]) -> None:
|
||||||
|
self.add_array(Keys.Tokenizer.SCORES, scores)
|
||||||
|
|
||||||
|
def add_bos_token_id(self, id: int) -> None:
|
||||||
|
self.add_uint32(Keys.Tokenizer.BOS_ID, id)
|
||||||
|
|
||||||
|
def add_eos_token_id(self, id: int) -> None:
|
||||||
|
self.add_uint32(Keys.Tokenizer.EOS_ID, id)
|
||||||
|
|
||||||
|
def add_unk_token_id(self, id: int) -> None:
|
||||||
|
self.add_uint32(Keys.Tokenizer.UNK_ID, id)
|
||||||
|
|
||||||
|
def add_sep_token_id(self, id: int) -> None:
|
||||||
|
self.add_uint32(Keys.Tokenizer.SEP_ID, id)
|
||||||
|
|
||||||
|
def add_pad_token_id(self, id: int) -> None:
|
||||||
|
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
|
||||||
|
|
||||||
|
def add_add_bos_token(self, value: bool) -> None:
|
||||||
|
self.add_bool(Keys.Tokenizer.ADD_BOS, value)
|
||||||
|
|
||||||
|
def add_add_eos_token(self, value: bool) -> None:
|
||||||
|
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
|
||||||
|
|
||||||
|
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||||
|
pack_prefix = ''
|
||||||
|
if not skip_pack_prefix:
|
||||||
|
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
|
||||||
|
return struct.pack(f'{pack_prefix}{fmt}', value)
|
||||||
|
|
||||||
|
def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None:
|
||||||
|
self.fout.write(self._pack(fmt, value, skip_pack_prefix))
|
257
gguf-py/gguf/tensor_mapping.py
Normal file
257
gguf-py/gguf/tensor_mapping.py
Normal file
@ -0,0 +1,257 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from typing import Sequence
|
||||||
|
|
||||||
|
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
|
||||||
|
|
||||||
|
|
||||||
|
class TensorNameMap:
|
||||||
|
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
|
# Token embeddings
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD: (
|
||||||
|
"gpt_neox.embed_in", # gptneox
|
||||||
|
"transformer.wte", # gpt2 gpt-j mpt refact
|
||||||
|
"transformer.word_embeddings", # falcon
|
||||||
|
"word_embeddings", # bloom
|
||||||
|
"model.embed_tokens", # llama-hf
|
||||||
|
"tok_embeddings", # llama-pth
|
||||||
|
"embeddings.word_embeddings", # bert
|
||||||
|
"language_model.embedding.word_embeddings", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Token type embeddings
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES: (
|
||||||
|
"embeddings.token_type_embeddings", # bert
|
||||||
|
),
|
||||||
|
|
||||||
|
# Normalization of token embeddings
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD_NORM: (
|
||||||
|
"word_embeddings_layernorm", # bloom
|
||||||
|
),
|
||||||
|
|
||||||
|
# Position embeddings
|
||||||
|
MODEL_TENSOR.POS_EMBD: (
|
||||||
|
"transformer.wpe", # gpt2
|
||||||
|
"embeddings.position_embeddings", # bert
|
||||||
|
),
|
||||||
|
|
||||||
|
# Output
|
||||||
|
MODEL_TENSOR.OUTPUT: (
|
||||||
|
"embed_out", # gptneox
|
||||||
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan
|
||||||
|
"output", # llama-pth bloom
|
||||||
|
"word_embeddings_for_head", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Output norm
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM: (
|
||||||
|
"gpt_neox.final_layer_norm", # gptneox
|
||||||
|
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||||
|
"model.norm", # llama-hf baichuan
|
||||||
|
"norm", # llama-pth
|
||||||
|
"embeddings.LayerNorm", # bert
|
||||||
|
"transformer.norm_f", # mpt
|
||||||
|
"ln_f", # refact bloom
|
||||||
|
"language_model.encoder.final_layernorm", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Rope frequencies
|
||||||
|
MODEL_TENSOR.ROPE_FREQS: (
|
||||||
|
"rope.freqs", # llama-pth
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
|
# Attention norm
|
||||||
|
MODEL_TENSOR.ATTN_NORM: (
|
||||||
|
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||||
|
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
|
||||||
|
"transformer.blocks.{bid}.norm_1", # mpt
|
||||||
|
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||||
|
"h.{bid}.input_layernorm", # bloom
|
||||||
|
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||||
|
"model.layers.{bid}.input_layernorm", # llama-hf
|
||||||
|
"layers.{bid}.attention_norm", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||||
|
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
||||||
|
"model.layers.{bid}.ln1", # yi
|
||||||
|
),
|
||||||
|
|
||||||
|
# Attention norm 2
|
||||||
|
MODEL_TENSOR.ATTN_NORM_2: (
|
||||||
|
"transformer.h.{bid}.ln_attn", # falcon40b
|
||||||
|
),
|
||||||
|
|
||||||
|
# Attention query-key-value
|
||||||
|
MODEL_TENSOR.ATTN_QKV: (
|
||||||
|
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||||
|
"transformer.h.{bid}.attn.c_attn", # gpt2
|
||||||
|
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||||
|
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||||
|
"h.{bid}.self_attention.query_key_value", # bloom
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Attention query
|
||||||
|
MODEL_TENSOR.ATTN_Q: (
|
||||||
|
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||||
|
"layers.{bid}.attention.wq", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.query", # bert
|
||||||
|
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||||
|
),
|
||||||
|
|
||||||
|
# Attention key
|
||||||
|
MODEL_TENSOR.ATTN_K: (
|
||||||
|
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||||
|
"layers.{bid}.attention.wk", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.key", # bert
|
||||||
|
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||||
|
),
|
||||||
|
|
||||||
|
# Attention value
|
||||||
|
MODEL_TENSOR.ATTN_V: (
|
||||||
|
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||||
|
"layers.{bid}.attention.wv", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.value", # bert
|
||||||
|
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||||
|
),
|
||||||
|
|
||||||
|
# Attention output
|
||||||
|
MODEL_TENSOR.ATTN_OUT: (
|
||||||
|
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||||
|
"transformer.h.{bid}.attn.c_proj", # gpt2 refact
|
||||||
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||||
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||||
|
"h.{bid}.self_attention.dense", # bloom
|
||||||
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||||
|
"layers.{bid}.attention.wo", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||||
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Rotary embeddings
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD: (
|
||||||
|
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
|
||||||
|
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
|
||||||
|
),
|
||||||
|
|
||||||
|
# Feed-forward norm
|
||||||
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
|
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||||
|
"transformer.h.{bid}.ln_2", # gpt2 refact
|
||||||
|
"h.{bid}.post_attention_layernorm", # bloom
|
||||||
|
"transformer.blocks.{bid}.norm_2", # mpt
|
||||||
|
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||||
|
"layers.{bid}.ffn_norm", # llama-pth
|
||||||
|
"encoder.layer.{bid}.output.LayerNorm", # bert
|
||||||
|
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||||
|
"model.layers.{bid}.ln2", # yi
|
||||||
|
),
|
||||||
|
|
||||||
|
# Feed-forward up
|
||||||
|
MODEL_TENSOR.FFN_UP: (
|
||||||
|
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||||
|
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
||||||
|
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||||
|
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||||
|
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
||||||
|
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
|
||||||
|
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||||
|
"encoder.layer.{bid}.intermediate.dense", # bert
|
||||||
|
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
||||||
|
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Feed-forward gate
|
||||||
|
MODEL_TENSOR.FFN_GATE: (
|
||||||
|
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||||
|
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||||
|
),
|
||||||
|
|
||||||
|
# Feed-forward down
|
||||||
|
MODEL_TENSOR.FFN_DOWN: (
|
||||||
|
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||||
|
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact
|
||||||
|
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||||
|
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||||
|
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
||||||
|
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
||||||
|
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||||
|
"encoder.layer.{bid}.output.dense", # bert
|
||||||
|
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
||||||
|
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM: (
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ROPE_FREQS: (
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
||||||
|
|
||||||
|
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||||
|
self.mapping = {}
|
||||||
|
for tensor, keys in self.mappings_cfg.items():
|
||||||
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
|
continue
|
||||||
|
tensor_name = TENSOR_NAMES[tensor]
|
||||||
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
|
for key in keys:
|
||||||
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
|
for bid in range(n_blocks):
|
||||||
|
for tensor, keys in self.block_mappings_cfg.items():
|
||||||
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
|
continue
|
||||||
|
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||||
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
|
for key in keys:
|
||||||
|
key = key.format(bid = bid)
|
||||||
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
|
|
||||||
|
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||||
|
result = self.mapping.get(key)
|
||||||
|
if result is not None:
|
||||||
|
return result
|
||||||
|
for suffix in try_suffixes:
|
||||||
|
if key.endswith(suffix):
|
||||||
|
result = self.mapping.get(key[:-len(suffix)])
|
||||||
|
if result is not None:
|
||||||
|
return result[0], result[1] + suffix
|
||||||
|
return None
|
||||||
|
|
||||||
|
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
|
||||||
|
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||||
|
if result is None:
|
||||||
|
return None
|
||||||
|
return result[1]
|
||||||
|
|
||||||
|
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
|
||||||
|
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||||
|
if result is None:
|
||||||
|
return None
|
||||||
|
return result[0]
|
||||||
|
|
||||||
|
def __getitem__(self, key: str) -> str:
|
||||||
|
try:
|
||||||
|
return self.mapping[key][1]
|
||||||
|
except KeyError:
|
||||||
|
raise KeyError(key)
|
||||||
|
|
||||||
|
def __contains__(self, key: str) -> bool:
|
||||||
|
return key in self.mapping
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return repr(self.mapping)
|
||||||
|
|
||||||
|
|
||||||
|
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
|
||||||
|
return TensorNameMap(arch, n_blocks)
|
164
gguf-py/gguf/vocab.py
Normal file
164
gguf-py/gguf/vocab.py
Normal file
@ -0,0 +1,164 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Callable
|
||||||
|
|
||||||
|
from .gguf_writer import GGUFWriter
|
||||||
|
|
||||||
|
|
||||||
|
class SpecialVocab:
|
||||||
|
merges: list[str]
|
||||||
|
add_special_token: dict[str, bool]
|
||||||
|
special_token_ids: dict[str, int]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, path: str | os.PathLike[str], load_merges: bool = False,
|
||||||
|
special_token_types: tuple[str, ...] | None = None,
|
||||||
|
n_vocab: int | None = None,
|
||||||
|
):
|
||||||
|
self.special_token_ids = {}
|
||||||
|
self.add_special_token = {}
|
||||||
|
self.n_vocab = n_vocab
|
||||||
|
self.load_merges = load_merges
|
||||||
|
self.merges = []
|
||||||
|
if special_token_types is not None:
|
||||||
|
self.special_token_types = special_token_types
|
||||||
|
else:
|
||||||
|
self.special_token_types = ('bos', 'eos', 'unk', 'sep', 'pad')
|
||||||
|
self._load(Path(path))
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return '<SpecialVocab with {} merges, special tokens {}, add special tokens {}>'.format(
|
||||||
|
len(self.merges), self.special_token_ids or "unset", self.add_special_token or "unset",
|
||||||
|
)
|
||||||
|
|
||||||
|
def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
|
||||||
|
if self.merges:
|
||||||
|
if not quiet:
|
||||||
|
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||||
|
gw.add_token_merges(self.merges)
|
||||||
|
elif self.load_merges:
|
||||||
|
print(
|
||||||
|
'gguf: WARNING: Adding merges requested but no merges found, output may be non-functional.',
|
||||||
|
file = sys.stderr,
|
||||||
|
)
|
||||||
|
for typ, tokid in self.special_token_ids.items():
|
||||||
|
id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
|
||||||
|
if id_handler is None:
|
||||||
|
print(
|
||||||
|
f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping',
|
||||||
|
file = sys.stderr,
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
if not quiet:
|
||||||
|
print(f'gguf: Setting special token type {typ} to {tokid}')
|
||||||
|
id_handler(tokid)
|
||||||
|
for typ, value in self.add_special_token.items():
|
||||||
|
add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None)
|
||||||
|
if add_handler is None:
|
||||||
|
print(
|
||||||
|
f'gguf: WARNING: No handler for add_{typ}_token with value {value} - skipping',
|
||||||
|
file = sys.stderr,
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
if not quiet:
|
||||||
|
print(f'gguf: Setting add_{typ}_token to {value}')
|
||||||
|
add_handler(value)
|
||||||
|
|
||||||
|
def _load(self, path: Path) -> None:
|
||||||
|
self._try_load_from_tokenizer_json(path)
|
||||||
|
self._try_load_from_config_json(path)
|
||||||
|
if self.load_merges and not self.merges:
|
||||||
|
self._try_load_merges_txt(path)
|
||||||
|
|
||||||
|
def _try_load_merges_txt(self, path: Path) -> bool:
|
||||||
|
merges_file = path / 'merges.txt'
|
||||||
|
if not merges_file.is_file():
|
||||||
|
return False
|
||||||
|
with open(merges_file, 'r') as fp:
|
||||||
|
first_line = next(fp, '').strip()
|
||||||
|
if not first_line.startswith('#'):
|
||||||
|
fp.seek(0)
|
||||||
|
line_num = 0
|
||||||
|
else:
|
||||||
|
line_num = 1
|
||||||
|
merges = []
|
||||||
|
for line in fp:
|
||||||
|
line_num += 1
|
||||||
|
line = line.strip()
|
||||||
|
if not line:
|
||||||
|
continue
|
||||||
|
parts = line.split(None, 3)
|
||||||
|
if len(parts) != 2:
|
||||||
|
print(
|
||||||
|
f'gguf: WARNING: {merges_file.name}: Line {line_num}: Entry malformed, ignoring',
|
||||||
|
file = sys.stderr,
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
merges.append(f'{parts[0]} {parts[1]}')
|
||||||
|
self.merges = merges
|
||||||
|
return True
|
||||||
|
|
||||||
|
def _set_special_token(self, typ: str, tid: Any) -> None:
|
||||||
|
if not isinstance(tid, int) or tid < 0:
|
||||||
|
return
|
||||||
|
if self.n_vocab is None or tid < self.n_vocab:
|
||||||
|
if typ in self.special_token_ids:
|
||||||
|
return
|
||||||
|
self.special_token_ids[typ] = tid
|
||||||
|
return
|
||||||
|
print(
|
||||||
|
f'gguf: WARNING: Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping',
|
||||||
|
file = sys.stderr,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||||
|
tokenizer_file = path / 'tokenizer.json'
|
||||||
|
if not tokenizer_file.is_file():
|
||||||
|
return False
|
||||||
|
with open(tokenizer_file, encoding = 'utf-8') as f:
|
||||||
|
tokenizer = json.load(f)
|
||||||
|
if self.load_merges:
|
||||||
|
merges = tokenizer.get('model', {}).get('merges')
|
||||||
|
if isinstance(merges, list) and merges and isinstance(merges[0], str):
|
||||||
|
self.merges = merges
|
||||||
|
tokenizer_config_file = path / 'tokenizer_config.json'
|
||||||
|
added_tokens = tokenizer.get('added_tokens')
|
||||||
|
if added_tokens is None or not tokenizer_config_file.is_file():
|
||||||
|
return True
|
||||||
|
with open(tokenizer_config_file, encoding = 'utf-8') as f:
|
||||||
|
tokenizer_config = json.load(f)
|
||||||
|
for typ in self.special_token_types:
|
||||||
|
add_entry = tokenizer_config.get(f'add_{typ}_token')
|
||||||
|
if isinstance(add_entry, bool):
|
||||||
|
self.add_special_token[typ] = add_entry
|
||||||
|
entry = tokenizer_config.get(f'{typ}_token')
|
||||||
|
if isinstance(entry, str):
|
||||||
|
tc_content = entry
|
||||||
|
elif isinstance(entry, dict):
|
||||||
|
entry_content = entry.get('content')
|
||||||
|
if not isinstance(entry_content, str):
|
||||||
|
continue
|
||||||
|
tc_content = entry_content
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
# We only need the first match here.
|
||||||
|
maybe_token_id = next(
|
||||||
|
(atok.get('id') for atok in added_tokens if atok.get('content') == tc_content),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
self._set_special_token(typ, maybe_token_id)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def _try_load_from_config_json(self, path: Path) -> bool:
|
||||||
|
config_file = path / 'config.json'
|
||||||
|
if not config_file.is_file():
|
||||||
|
return False
|
||||||
|
with open(config_file, encoding = 'utf-8') as f:
|
||||||
|
config = json.load(f)
|
||||||
|
for typ in self.special_token_types:
|
||||||
|
self._set_special_token(typ, config.get(f'{typ}_token_id'))
|
||||||
|
return True
|
@ -1,11 +1,12 @@
|
|||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "gguf"
|
name = "gguf"
|
||||||
version = "0.4.6"
|
version = "0.5.0"
|
||||||
description = "Write ML models in GGUF for GGML"
|
description = "Write ML models in GGUF for GGML"
|
||||||
authors = ["GGML <ggml@ggml.ai>"]
|
authors = ["GGML <ggml@ggml.ai>"]
|
||||||
packages = [
|
packages = [
|
||||||
{include = "gguf"},
|
{include = "gguf"},
|
||||||
{include = "gguf/py.typed"},
|
{include = "gguf/py.typed"},
|
||||||
|
{include = "scripts"},
|
||||||
]
|
]
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
homepage = "https://ggml.ai"
|
homepage = "https://ggml.ai"
|
||||||
@ -27,3 +28,8 @@ pytest = "^5.2"
|
|||||||
[build-system]
|
[build-system]
|
||||||
requires = ["poetry-core>=1.0.0"]
|
requires = ["poetry-core>=1.0.0"]
|
||||||
build-backend = "poetry.core.masonry.api"
|
build-backend = "poetry.core.masonry.api"
|
||||||
|
|
||||||
|
[tool.poetry.scripts]
|
||||||
|
gguf-convert-endian = "scripts:gguf_convert_endian_entrypoint"
|
||||||
|
gguf-dump = "scripts:gguf_dump_entrypoint"
|
||||||
|
gguf-set-metadata = "scripts:gguf_set_metadata_entrypoint"
|
||||||
|
12
gguf-py/scripts/__init__.py
Normal file
12
gguf-py/scripts/__init__.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from importlib import import_module
|
||||||
|
|
||||||
|
|
||||||
|
os.environ["NO_LOCAL_GGUF"] = "TRUE"
|
||||||
|
|
||||||
|
gguf_convert_endian_entrypoint = import_module("scripts.gguf-convert-endian").main
|
||||||
|
gguf_dump_entrypoint = import_module("scripts.gguf-dump").main
|
||||||
|
gguf_set_metadata_entrypoint = import_module("scripts.gguf-set-metadata").main
|
||||||
|
|
||||||
|
del import_module, os
|
113
gguf-py/scripts/gguf-convert-endian.py
Executable file
113
gguf-py/scripts/gguf-convert-endian.py
Executable file
@ -0,0 +1,113 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Necessary to load the local gguf package
|
||||||
|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
|
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
|
||||||
|
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||||
|
# Host is little endian
|
||||||
|
host_endian = "little"
|
||||||
|
swapped_endian = "big"
|
||||||
|
else:
|
||||||
|
# Sorry PDP or other weird systems that don't use BE or LE.
|
||||||
|
host_endian = "big"
|
||||||
|
swapped_endian = "little"
|
||||||
|
if reader.byte_order == "S":
|
||||||
|
file_endian = swapped_endian
|
||||||
|
else:
|
||||||
|
file_endian = host_endian
|
||||||
|
if args.order == "native":
|
||||||
|
order = host_endian
|
||||||
|
print(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian")
|
||||||
|
if file_endian == order:
|
||||||
|
print(f"* File is already {order.upper()} endian. Nothing to do.")
|
||||||
|
sys.exit(0)
|
||||||
|
print("* Checking tensors for conversion compatibility")
|
||||||
|
for tensor in reader.tensors:
|
||||||
|
if tensor.tensor_type not in (
|
||||||
|
gguf.GGMLQuantizationType.F32,
|
||||||
|
gguf.GGMLQuantizationType.F16,
|
||||||
|
gguf.GGMLQuantizationType.Q8_0,
|
||||||
|
):
|
||||||
|
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
|
||||||
|
print(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}")
|
||||||
|
if args.dry_run:
|
||||||
|
return
|
||||||
|
print("\n*** Warning *** Warning *** Warning **")
|
||||||
|
print("* This conversion process may damage the file. Ensure you have a backup.")
|
||||||
|
if order != host_endian:
|
||||||
|
print("* Requested endian differs from host, you will not be able to load the model on this machine.")
|
||||||
|
print("* The file will be modified immediately, so if conversion fails or is interrupted")
|
||||||
|
print("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:")
|
||||||
|
response = input("YES, I am sure> ")
|
||||||
|
if response != "YES":
|
||||||
|
print("You didn't enter YES. Okay then, see ya!")
|
||||||
|
sys.exit(0)
|
||||||
|
print(f"\n* Converting fields ({len(reader.fields)})")
|
||||||
|
for idx, field in enumerate(reader.fields.values()):
|
||||||
|
print(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}")
|
||||||
|
for part in field.parts:
|
||||||
|
part.byteswap(inplace=True)
|
||||||
|
print(f"\n* Converting tensors ({len(reader.tensors)})")
|
||||||
|
for idx, tensor in enumerate(reader.tensors):
|
||||||
|
print(
|
||||||
|
f" - {idx:4}: Converting tensor {repr(tensor.name)}, type={tensor.tensor_type.name}, "
|
||||||
|
f"elements={tensor.n_elements}... ",
|
||||||
|
end="",
|
||||||
|
)
|
||||||
|
tensor_type = tensor.tensor_type
|
||||||
|
for part in tensor.field.parts:
|
||||||
|
part.byteswap(inplace=True)
|
||||||
|
if tensor_type != gguf.GGMLQuantizationType.Q8_0:
|
||||||
|
tensor.data.byteswap(inplace=True)
|
||||||
|
print()
|
||||||
|
continue
|
||||||
|
# A Q8_0 block consists of a f16 delta followed by 32 int8 quants, so 34 bytes
|
||||||
|
block_size = 34
|
||||||
|
n_blocks = len(tensor.data) // block_size
|
||||||
|
for block_num in range(n_blocks):
|
||||||
|
block_offs = block_num * block_size
|
||||||
|
# I know I said f16, but it doesn't matter here - any simple 16 bit type works.
|
||||||
|
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
|
||||||
|
delta.byteswap(inplace=True)
|
||||||
|
if block_num % 100000 == 0:
|
||||||
|
print(f"[{(n_blocks - block_num) // 1000}K]", end="")
|
||||||
|
sys.stdout.flush()
|
||||||
|
print()
|
||||||
|
print("* Completion")
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description="Convert GGUF file byte order")
|
||||||
|
parser.add_argument(
|
||||||
|
"model", type=str,
|
||||||
|
help="GGUF format model filename",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"order", type=str, choices=['big', 'little', 'native'],
|
||||||
|
help="Requested byte order",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--dry-run", action="store_true",
|
||||||
|
help="Don't actually change anything",
|
||||||
|
)
|
||||||
|
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||||
|
print(f'* Loading: {args.model}')
|
||||||
|
reader = gguf.GGUFReader(args.model, 'r' if args.dry_run else 'r+')
|
||||||
|
convert_byteorder(reader, args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
116
gguf-py/scripts/gguf-dump.py
Executable file
116
gguf-py/scripts/gguf-dump.py
Executable file
@ -0,0 +1,116 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Necessary to load the local gguf package
|
||||||
|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
from gguf import GGUFReader, GGUFValueType # noqa: E402
|
||||||
|
|
||||||
|
|
||||||
|
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
|
||||||
|
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
|
||||||
|
if reader.byte_order == 'S':
|
||||||
|
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
|
||||||
|
else:
|
||||||
|
file_endian = host_endian
|
||||||
|
return (host_endian, file_endian)
|
||||||
|
|
||||||
|
|
||||||
|
# For more information about what field.parts and field.data represent,
|
||||||
|
# please see the comments in the modify_gguf.py example.
|
||||||
|
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||||
|
host_endian, file_endian = get_file_host_endian(reader)
|
||||||
|
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.')
|
||||||
|
print(f'\n* Dumping {len(reader.fields)} key/value pair(s)')
|
||||||
|
for n, field in enumerate(reader.fields.values(), 1):
|
||||||
|
if not field.types:
|
||||||
|
pretty_type = 'N/A'
|
||||||
|
elif field.types[0] == GGUFValueType.ARRAY:
|
||||||
|
nest_count = len(field.types) - 1
|
||||||
|
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
|
||||||
|
else:
|
||||||
|
pretty_type = str(field.types[-1].name)
|
||||||
|
print(f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}', end = '')
|
||||||
|
if len(field.types) == 1:
|
||||||
|
curr_type = field.types[0]
|
||||||
|
if curr_type == GGUFValueType.STRING:
|
||||||
|
print(' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf8')[:60])), end = '')
|
||||||
|
elif field.types[0] in reader.gguf_scalar_to_np:
|
||||||
|
print(' = {0}'.format(field.parts[-1][0]), end = '')
|
||||||
|
print()
|
||||||
|
if args.no_tensors:
|
||||||
|
return
|
||||||
|
print(f'\n* Dumping {len(reader.tensors)} tensor(s)')
|
||||||
|
for n, tensor in enumerate(reader.tensors, 1):
|
||||||
|
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
|
||||||
|
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}')
|
||||||
|
|
||||||
|
|
||||||
|
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||||
|
import json
|
||||||
|
host_endian, file_endian = get_file_host_endian(reader)
|
||||||
|
metadata: dict[str, Any] = {}
|
||||||
|
tensors: dict[str, Any] = {}
|
||||||
|
result = {
|
||||||
|
"filename": args.model,
|
||||||
|
"endian": file_endian,
|
||||||
|
"metadata": metadata,
|
||||||
|
"tensors": tensors,
|
||||||
|
}
|
||||||
|
for idx, field in enumerate(reader.fields.values()):
|
||||||
|
curr: dict[str, Any] = {
|
||||||
|
"index": idx,
|
||||||
|
"type": field.types[0].name if field.types else 'UNKNOWN',
|
||||||
|
"offset": field.offset,
|
||||||
|
}
|
||||||
|
metadata[field.name] = curr
|
||||||
|
if field.types[:1] == [GGUFValueType.ARRAY]:
|
||||||
|
curr["array_types"] = [t.name for t in field.types][1:]
|
||||||
|
if not args.json_array:
|
||||||
|
continue
|
||||||
|
itype = field.types[-1]
|
||||||
|
if itype == GGUFValueType.STRING:
|
||||||
|
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
|
||||||
|
else:
|
||||||
|
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
|
||||||
|
elif field.types[0] == GGUFValueType.STRING:
|
||||||
|
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
|
||||||
|
else:
|
||||||
|
curr["value"] = field.parts[-1].tolist()[0]
|
||||||
|
for idx, tensor in enumerate(reader.tensors):
|
||||||
|
tensors[tensor.name] = {
|
||||||
|
"index": idx,
|
||||||
|
"shape": tensor.shape.tolist(),
|
||||||
|
"type": tensor.tensor_type.name,
|
||||||
|
"offset": tensor.field.offset,
|
||||||
|
}
|
||||||
|
json.dump(result, sys.stdout)
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
|
||||||
|
parser.add_argument("model", type=str, help="GGUF format model filename")
|
||||||
|
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
|
||||||
|
parser.add_argument("--json", action="store_true", help="Produce JSON output")
|
||||||
|
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
|
||||||
|
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||||
|
if not args.json:
|
||||||
|
print(f'* Loading: {args.model}')
|
||||||
|
reader = GGUFReader(args.model, 'r')
|
||||||
|
if args.json:
|
||||||
|
dump_metadata_json(reader, args)
|
||||||
|
else:
|
||||||
|
dump_metadata(reader, args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
90
gguf-py/scripts/gguf-set-metadata.py
Executable file
90
gguf-py/scripts/gguf-set-metadata.py
Executable file
@ -0,0 +1,90 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# Necessary to load the local gguf package
|
||||||
|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
|
||||||
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||||
|
|
||||||
|
from gguf import GGUFReader # noqa: E402
|
||||||
|
|
||||||
|
|
||||||
|
def minimal_example(filename: str) -> None:
|
||||||
|
reader = GGUFReader(filename, 'r+')
|
||||||
|
field = reader.fields['tokenizer.ggml.bos_token_id']
|
||||||
|
if field is None:
|
||||||
|
return
|
||||||
|
part_index = field.data[0]
|
||||||
|
field.parts[part_index][0] = 2 # Set tokenizer.ggml.bos_token_id to 2
|
||||||
|
#
|
||||||
|
# So what's this field.data thing? It's helpful because field.parts contains
|
||||||
|
# _every_ part of the GGUF field. For example, tokenizer.ggml.bos_token_id consists
|
||||||
|
# of:
|
||||||
|
#
|
||||||
|
# Part index 0: Key length (27)
|
||||||
|
# Part index 1: Key data ("tokenizer.ggml.bos_token_id")
|
||||||
|
# Part index 2: Field type (4, the id for GGUFValueType.UINT32)
|
||||||
|
# Part index 3: Field value
|
||||||
|
#
|
||||||
|
# Note also that each part is an NDArray slice, so even a part that
|
||||||
|
# is only a single value like the key length will be a NDArray of
|
||||||
|
# the key length type (numpy.uint32).
|
||||||
|
#
|
||||||
|
# The .data attribute in the Field is a list of relevant part indexes
|
||||||
|
# and doesn't contain internal GGUF details like the key length part.
|
||||||
|
# In this case, .data will be [3] - just the part index of the
|
||||||
|
# field value itself.
|
||||||
|
|
||||||
|
|
||||||
|
def set_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||||
|
field = reader.get_field(args.key)
|
||||||
|
if field is None:
|
||||||
|
print(f'! Field {repr(args.key)} not found', file = sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
# Note that field.types is a list of types. This is because the GGUF
|
||||||
|
# format supports arrays. For example, an array of UINT32 would
|
||||||
|
# look like [GGUFValueType.ARRAY, GGUFValueType.UINT32]
|
||||||
|
handler = reader.gguf_scalar_to_np.get(field.types[0]) if field.types else None
|
||||||
|
if handler is None:
|
||||||
|
print(
|
||||||
|
f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}',
|
||||||
|
file = sys.stderr,
|
||||||
|
)
|
||||||
|
sys.exit(1)
|
||||||
|
current_value = field.parts[field.data[0]][0]
|
||||||
|
new_value = handler(args.value)
|
||||||
|
print(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}')
|
||||||
|
if current_value == new_value:
|
||||||
|
print(f'- Key {repr(args.key)} already set to requested value {current_value}')
|
||||||
|
sys.exit(0)
|
||||||
|
if args.dry_run:
|
||||||
|
sys.exit(0)
|
||||||
|
if not args.force:
|
||||||
|
print('*** Warning *** Warning *** Warning **')
|
||||||
|
print('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.')
|
||||||
|
print('* Enter exactly YES if you are positive you want to proceed:')
|
||||||
|
response = input('YES, I am sure> ')
|
||||||
|
if response != 'YES':
|
||||||
|
print("You didn't enter YES. Okay then, see ya!")
|
||||||
|
sys.exit(0)
|
||||||
|
field.parts[field.data[0]][0] = new_value
|
||||||
|
print('* Field changed. Successful completion.')
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description="Set a simple value in GGUF file metadata")
|
||||||
|
parser.add_argument("model", type=str, help="GGUF format model filename")
|
||||||
|
parser.add_argument("key", type=str, help="Metadata key to set")
|
||||||
|
parser.add_argument("value", type=str, help="Metadata value to set")
|
||||||
|
parser.add_argument("--dry-run", action="store_true", help="Don't actually change anything")
|
||||||
|
parser.add_argument("--force", action="store_true", help="Change the field without confirmation")
|
||||||
|
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
|
||||||
|
print(f'* Loading: {args.model}')
|
||||||
|
reader = GGUFReader(args.model, 'r' if args.dry_run else 'r+')
|
||||||
|
set_metadata(reader, args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -1,7 +1,7 @@
|
|||||||
import gguf
|
import gguf # noqa: F401
|
||||||
|
|
||||||
# TODO: add tests
|
# TODO: add tests
|
||||||
|
|
||||||
|
|
||||||
def test_write_gguf():
|
def test_write_gguf() -> None:
|
||||||
pass
|
pass
|
||||||
|
Loading…
Reference in New Issue
Block a user