ggml : add IQ2 to test-backend-ops + refactoring (#4990)

* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-01-17 18:54:56 +02:00 committed by GitHub
parent ba69bbc84c
commit 38566680cd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 128 additions and 87 deletions

View File

@ -36,6 +36,10 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON" CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
fi fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUBLAS=1"
fi
## helpers ## helpers
# download a file if it does not exist or if it is outdated # download a file if it does not exist or if it is outdated
@ -160,8 +164,8 @@ function gg_run_open_llama_3b_v2 {
set -e set -e
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}
@ -343,8 +347,8 @@ function gg_run_open_llama_7b_v2 {
set -e set -e
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}

View File

@ -692,6 +692,8 @@ GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, str
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
switch (op->op) { switch (op->op) {
case GGML_OP_CPY:
return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS; // missing type_traits.from_float
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
default: default:

View File

@ -5131,10 +5131,10 @@ static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void *
const block_q_t * x = (const block_q_t *) vx; const block_q_t * x = (const block_q_t *) vx;
const block_q8_1 * y = (const block_q8_1 *) vy; const block_q8_1 * y = (const block_q8_1 *) vy;
for (int i = 0; i < blocks_per_row; i += blocks_per_warp) { for (int i = threadIdx.x / (qi/vdr); i < blocks_per_row; i += blocks_per_warp) {
const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index const int ibx = row*blocks_per_row + i; // x block index
const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
@ -10918,6 +10918,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (a->ne[3] != b->ne[3]) { if (a->ne[3] != b->ne[3]) {
return false; return false;
} }
ggml_type a_type = a->type;
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS) {
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
return false;
}
}
return true; return true;
} break; } break;
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:

View File

@ -1274,7 +1274,12 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
} }
float sumlx = 0; float sumlx = 0;
float suml2 = 0; float suml2 = 0;
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 0; i < n; ++i) {
#else
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
#endif
int l = nearest_int(iscale * x[i]); int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l)); l = MAX(-nmax, MIN(nmax-1, l));
L[i] = l + nmax; L[i] = l + nmax;
@ -1649,7 +1654,12 @@ static float make_qkx3_quants(int n, int nmax, const float * restrict x, const f
float max = x[0]; float max = x[0];
float sum_w = weights ? weights[0] : x[0]*x[0]; float sum_w = weights ? weights[0] : x[0]*x[0];
float sum_x = sum_w * x[0]; float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 1; i < n; ++i) {
#else
for (int i = 1; i < n; ++i) { for (int i = 1; i < n; ++i) {
#endif
if (x[i] < min) min = x[i]; if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i]; if (x[i] > max) max = x[i];
float w = weights ? weights[i] : x[i]*x[i]; float w = weights ? weights[i] : x[i]*x[i];
@ -1660,7 +1670,7 @@ static float make_qkx3_quants(int n, int nmax, const float * restrict x, const f
min = 0; min = 0;
} }
if (max <= min) { if (max <= min) {
for (int i = 0; i < n; ++i) L[i] = 0; memset(L, 0, n);
*the_min = -min; *the_min = -min;
return 0.f; return 0.f;
} }
@ -1862,7 +1872,7 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri
size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
(void)hist; (void)hist;
int row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
if (!quant_weights) { if (!quant_weights) {
quantize_row_q2_K_reference(src, dst, nrow*n_per_row); quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
} }
@ -2181,7 +2191,7 @@ static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restri
size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
(void)hist; (void)hist;
int row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
if (!quant_weights) { if (!quant_weights) {
quantize_row_q3_K_reference(src, dst, nrow*n_per_row); quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
} }
@ -2448,7 +2458,7 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri
size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
(void)hist; (void)hist;
int row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
if (!quant_weights) { if (!quant_weights) {
quantize_row_q4_K_reference(src, dst, nrow*n_per_row); quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
} }
@ -2771,7 +2781,7 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri
size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
(void)hist; (void)hist;
int row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
if (!quant_weights) { if (!quant_weights) {
quantize_row_q5_K_reference(src, dst, nrow*n_per_row); quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
} }
@ -3025,7 +3035,7 @@ static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restri
size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
(void)hist; (void)hist;
int row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
if (!quant_weights) { if (!quant_weights) {
quantize_row_q6_K_reference(src, dst, nrow*n_per_row); quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
} }
@ -3072,7 +3082,7 @@ size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int
if (!quant_weights) { if (!quant_weights) {
return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist); return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
} }
int row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
char * qrow = (char *)dst; char * qrow = (char *)dst;
for (int row = 0; row < nrow; ++row) { for (int row = 0; row < nrow; ++row) {
quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights); quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
@ -3116,7 +3126,7 @@ size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int
if (!quant_weights) { if (!quant_weights) {
return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist); return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
} }
int row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
char * qrow = (char *)dst; char * qrow = (char *)dst;
for (int row = 0; row < nrow; ++row) { for (int row = 0; row < nrow; ++row) {
quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights); quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
@ -3169,7 +3179,7 @@ size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int
if (!quant_weights) { if (!quant_weights) {
return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist); return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
} }
int row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
char * qrow = (char *)dst; char * qrow = (char *)dst;
for (int row = 0; row < nrow; ++row) { for (int row = 0; row < nrow; ++row) {
quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights); quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
@ -3221,7 +3231,7 @@ size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int
if (!quant_weights) { if (!quant_weights) {
return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist); return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
} }
int row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row); size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
char * qrow = (char *)dst; char * qrow = (char *)dst;
for (int row = 0; row < nrow; ++row) { for (int row = 0; row < nrow; ++row) {
quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights); quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
@ -8565,7 +8575,7 @@ static int iq2_compare_func(const void * left, const void * right) {
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
} }
static void q2xs_init_impl(int grid_size) { void iq2xs_init_impl(int grid_size) {
const int gindex = iq2_data_index(grid_size); const int gindex = iq2_data_index(grid_size);
if (iq2_data[gindex].grid) { if (iq2_data[gindex].grid) {
return; return;
@ -8720,19 +8730,7 @@ static void q2xs_init_impl(int grid_size) {
free(dist2); free(dist2);
} }
void ggml_init_iq2_quantization(enum ggml_type type) { void iq2xs_free_impl(int grid_size) {
if (type == GGML_TYPE_IQ2_XXS) {
q2xs_init_impl(256);
}
else if (type == GGML_TYPE_IQ2_XS) {
q2xs_init_impl(512);
}
else {
fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type);
}
}
static void q2xs_deinit_impl(int grid_size) {
GGML_ASSERT(grid_size == 256 || grid_size == 512 || grid_size == 1024); GGML_ASSERT(grid_size == 256 || grid_size == 512 || grid_size == 1024);
const int gindex = iq2_data_index(grid_size); const int gindex = iq2_data_index(grid_size);
if (iq2_data[gindex].grid) { if (iq2_data[gindex].grid) {
@ -8742,18 +8740,6 @@ static void q2xs_deinit_impl(int grid_size) {
} }
} }
void ggml_deinit_iq2_quantization(enum ggml_type type) {
if (type == GGML_TYPE_IQ2_XXS) {
q2xs_deinit_impl(256);
}
else if (type == GGML_TYPE_IQ2_XS) {
q2xs_deinit_impl(512);
}
else {
fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type);
}
}
static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
int num_neighbors = neighbours[0]; int num_neighbors = neighbours[0];
@ -8786,10 +8772,10 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
const int * kmap_q2xs = iq2_data[gindex].map; const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
GGML_ASSERT(quant_weights); GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kgrid_q2xs); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kmap_q2xs); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0); GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 3; const int kMaxQ = 3;
@ -9005,10 +8991,10 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v
const int * kmap_q2xs = iq2_data[gindex].map; const int * kmap_q2xs = iq2_data[gindex].map;
const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
GGML_ASSERT(quant_weights); GGML_ASSERT(quant_weights && "missing quantization weights");
GGML_ASSERT(kmap_q2xs); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kgrid_q2xs); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(kneighbors_q2xs); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
GGML_ASSERT(n%QK_K == 0); GGML_ASSERT(n%QK_K == 0);
const int kMaxQ = 3; const int kMaxQ = 3;

View File

@ -257,3 +257,6 @@ size_t quantize_q4_0 (const float * src, void * dst, int nrows, int n_per_row,
size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
void iq2xs_init_impl(int grid_size);
void iq2xs_free_impl(int grid_size);

34
ggml.c
View File

@ -18524,6 +18524,28 @@ enum ggml_opt_result ggml_opt_resume_g(
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
void ggml_quantize_init(enum ggml_type type) {
ggml_critical_section_start();
switch (type) {
case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
default: // nothing
break;
}
ggml_critical_section_end();
}
void ggml_quantize_free(void) {
ggml_critical_section_start();
iq2xs_free_impl(256);
iq2xs_free_impl(512);
ggml_critical_section_end();
}
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) { size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK4_0 == 0); assert(k % QK4_0 == 0);
const int nb = k / QK4_0; const int nb = k / QK4_0;
@ -18651,9 +18673,15 @@ size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t *
return (n/QK8_0*sizeof(block_q8_0)); return (n/QK8_0*sizeof(block_q8_0));
} }
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
return
type == GGML_TYPE_IQ2_XXS ||
type == GGML_TYPE_IQ2_XS;
}
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
int nrows, int n_per_row, int64_t * hist, const float * imatrix) { int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
(void)imatrix; ggml_quantize_init(type); // this is noop if already initialized
size_t result = 0; size_t result = 0;
int n = nrows * n_per_row; int n = nrows * n_per_row;
switch (type) { switch (type) {
@ -18766,13 +18794,13 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
} break; } break;
case GGML_TYPE_F16: case GGML_TYPE_F16:
{ {
int elemsize = sizeof(ggml_fp16_t); size_t elemsize = sizeof(ggml_fp16_t);
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n); ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
result = n * elemsize; result = n * elemsize;
} break; } break;
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
int elemsize = sizeof(float); size_t elemsize = sizeof(float);
result = n * elemsize; result = n * elemsize;
memcpy((uint8_t *)dst + start * elemsize, src + start, result); memcpy((uint8_t *)dst + start * elemsize, src + start, result);
} break; } break;

20
ggml.h
View File

@ -2065,6 +2065,18 @@ extern "C" {
// quantization // quantization
// //
// - ggml_quantize_init can be called multiple times with the same type
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
// automatically called by ggml_quantize_chunk for convenience
//
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
// call this at the end of the program to avoid memory leaks
//
// note: these are thread-safe
//
GGML_API void ggml_quantize_init(enum ggml_type type);
GGML_API void ggml_quantize_free(void);
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
@ -2078,13 +2090,13 @@ extern "C" {
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
// some quantization type cannot be used without an importance matrix
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
// calls ggml_quantize_init internally (i.e. can allocate memory)
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix); int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
// These are needed for IQ2_XS and IQ2_XXS quantizations
GGML_API void ggml_init_iq2_quantization(enum ggml_type type);
GGML_API void ggml_deinit_iq2_quantization(enum ggml_type type);
// //
// gguf // gguf
// //

View File

@ -8747,8 +8747,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// placeholder for the meta data // placeholder for the meta data
::zeros(fout, meta_size); ::zeros(fout, meta_size);
std::set<ggml_type> used_iq2;
for (int i = 0; i < ml.n_tensors; ++i) { for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * tensor = ml.get_tensor_meta(i); struct ggml_tensor * tensor = ml.get_tensor_meta(i);
@ -8801,11 +8799,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else { } else {
const size_t nelements = ggml_nelements(tensor); const size_t nelements = ggml_nelements(tensor);
if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS) && used_iq2.find(new_type) == used_iq2.end()) {
ggml_init_iq2_quantization(new_type);
used_iq2.insert(new_type);
}
const float * imatrix = nullptr; const float * imatrix = nullptr;
if (imatrix_data) { if (imatrix_data) {
auto it = imatrix_data->find(tensor->name); auto it = imatrix_data->find(tensor->name);
@ -8931,10 +8924,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
fout.close(); fout.close();
for (auto type : used_iq2) {
ggml_deinit_iq2_quantization(type);
}
gguf_free(ctx_out); gguf_free(ctx_out);
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
@ -9342,6 +9331,7 @@ void llama_backend_free(void) {
#ifdef GGML_USE_MPI #ifdef GGML_USE_MPI
ggml_mpi_backend_free(); ggml_mpi_backend_free();
#endif #endif
ggml_quantize_free();
} }
int64_t llama_time_us(void) { int64_t llama_time_us(void) {

View File

@ -16,39 +16,37 @@
#include <vector> #include <vector>
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
// static RNG initialization (revisit if n_threads stops being constant)
static const size_t n_threads = std::thread::hardware_concurrency();
static std::vector<std::default_random_engine> generators = []() {
std::random_device rd;
std::vector<std::default_random_engine> vec;
vec.reserve(n_threads);
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
return vec;
}();
size_t size = ggml_nelements(tensor); size_t size = ggml_nelements(tensor);
std::vector<float> data(size); std::vector<float> data(size);
#if 0 auto init_thread = [&](size_t ith, size_t start, size_t end) {
static std::default_random_engine generator(1234);
std::uniform_real_distribution<float> distribution(min, max);
for (size_t i = 0; i < size; i++) {
data[i] = distribution(generator);
}
#else
auto init_thread = [&](size_t start, size_t end) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_real_distribution<float> distribution(min, max); std::uniform_real_distribution<float> distribution(min, max);
for (size_t i = start; i < end; i++) { for (size_t i = start; i < end; i++) {
data[i] = distribution(generator); data[i] = distribution(generators[ith]);
} }
}; };
size_t n_threads = std::thread::hardware_concurrency();
std::vector<std::thread> threads; std::vector<std::thread> threads;
threads.reserve(n_threads); threads.reserve(n_threads);
for (size_t i = 0; i < n_threads; i++) { for (size_t i = 0; i < n_threads; i++) {
size_t start = i*size/n_threads; size_t start = i*size/n_threads;
size_t end = (i+1)*size/n_threads; size_t end = (i+1)*size/n_threads;
threads.emplace_back(init_thread, start, end); threads.emplace_back(init_thread, i, start, end);
} }
for (auto & t : threads) { for (auto & t : threads) {
t.join(); t.join();
} }
#endif
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float)); ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
@ -56,7 +54,16 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size)); std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
int64_t hist[16]; int64_t hist[16];
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, nullptr); std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
const float * im = imatrix.data();
if (!ggml_quantize_requires_imatrix(tensor->type)) {
// when the imatrix is optional, we want to test both quantization with and without imatrix
// use one of the random numbers to decide
if (data[0] > 0.5f*(min + max)) {
im = nullptr;
}
}
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, im);
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
// This is going to create some weird integers though. // This is going to create some weird integers though.
@ -1472,7 +1479,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
GGML_TYPE_Q8_0, GGML_TYPE_Q8_0,
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
GGML_TYPE_Q6_K GGML_TYPE_Q6_K,
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS,
}; };
// unary ops // unary ops
@ -1752,6 +1760,8 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
ggml_quantize_free();
printf("\033[1;32mOK\033[0m\n"); printf("\033[1;32mOK\033[0m\n");
return 0; return 0;
} }