mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 02:14:35 +00:00
sync : ggml (#5452)
* ggml-alloc : v3 (ggml/727) * ggml-alloc v3 ggml-ci * fix ci ggml-ci * whisper : check for backend buffer allocation failures * whisper : avoid leaks when initialization fails * cleanup ggml-ci * style fixes ggml-ci * sync : ggml * update llama.cpp, clip.cpp, export-lora.cpp * update finetune.cpp, train-text-from-scratch.cpp ggml-ci * ggml-backend : reduce alignment to 32 to match gguf and fix mmap --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
3bdc4cd0f5
commit
3b169441df
@ -337,24 +337,14 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = true;
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
struct ggml_gallocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
|
||||
static std::vector<uint8_t> data_compute;
|
||||
data_compute.resize(alloc_size + tensor_alignment);
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_gallocr_alloc_graph(alloc, gf);
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||||
static std::vector<uint8_t> data_work;
|
||||
@ -363,6 +353,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
|
||||
|
||||
ggml_graph_compute(gf, &cplan);
|
||||
|
||||
ggml_gallocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "train.h"
|
||||
@ -13,8 +14,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512;
|
||||
@ -128,7 +127,7 @@ struct my_llama_lora_layer {
|
||||
|
||||
struct my_llama_lora {
|
||||
struct ggml_context * ctx = NULL;
|
||||
std::vector<uint8_t> data;
|
||||
ggml_backend_buffer_t data;
|
||||
|
||||
my_llama_lora_hparams hparams;
|
||||
|
||||
@ -372,63 +371,6 @@ static void set_param_lora(struct my_llama_lora * lora) {
|
||||
}
|
||||
}
|
||||
|
||||
static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) {
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_a);
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_b);
|
||||
ggml_allocr_alloc(alloc, lora->norm_a);
|
||||
ggml_allocr_alloc(alloc, lora->norm_b);
|
||||
ggml_allocr_alloc(alloc, lora->output_a);
|
||||
ggml_allocr_alloc(alloc, lora->output_b);
|
||||
for (uint32_t i = 0; i < lora->layers.size(); ++i) {
|
||||
auto & layer = lora->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_a);
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_b);
|
||||
ggml_allocr_alloc(alloc, layer.wq_a);
|
||||
ggml_allocr_alloc(alloc, layer.wq_b);
|
||||
ggml_allocr_alloc(alloc, layer.wk_a);
|
||||
ggml_allocr_alloc(alloc, layer.wk_b);
|
||||
ggml_allocr_alloc(alloc, layer.wv_a);
|
||||
ggml_allocr_alloc(alloc, layer.wv_b);
|
||||
ggml_allocr_alloc(alloc, layer.wo_a);
|
||||
ggml_allocr_alloc(alloc, layer.wo_b);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_a);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_b);
|
||||
ggml_allocr_alloc(alloc, layer.w1_a);
|
||||
ggml_allocr_alloc(alloc, layer.w1_b);
|
||||
ggml_allocr_alloc(alloc, layer.w2_a);
|
||||
ggml_allocr_alloc(alloc, layer.w2_b);
|
||||
ggml_allocr_alloc(alloc, layer.w3_a);
|
||||
ggml_allocr_alloc(alloc, layer.w3_b);
|
||||
}
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad);
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad);
|
||||
ggml_allocr_alloc(alloc, lora->norm_a->grad);
|
||||
ggml_allocr_alloc(alloc, lora->norm_b->grad);
|
||||
ggml_allocr_alloc(alloc, lora->output_a->grad);
|
||||
ggml_allocr_alloc(alloc, lora->output_b->grad);
|
||||
for (uint32_t i = 0; i < lora->layers.size(); ++i) {
|
||||
auto & layer = lora->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wq_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wq_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wk_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wk_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wv_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wv_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wo_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wo_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w1_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w1_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w2_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w2_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w3_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w3_b->grad);
|
||||
}
|
||||
}
|
||||
|
||||
static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) {
|
||||
const auto & lparams = lora->hparams;
|
||||
|
||||
@ -522,18 +464,8 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
|
||||
|
||||
set_param_lora(lora);
|
||||
|
||||
// measure data size
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
lora->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
|
||||
alloc_lora(alloc, lora);
|
||||
ggml_allocr_free(alloc);
|
||||
// allocate data for lora tensors
|
||||
lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
|
||||
}
|
||||
|
||||
static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
|
||||
@ -579,7 +511,7 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
|
||||
static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
struct my_llama_model * model,
|
||||
struct my_llama_lora * lora,
|
||||
struct ggml_allocr * alloc,
|
||||
ggml_gallocr_t alloc,
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
@ -590,7 +522,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
const int n_tokens,
|
||||
const int n_batch,
|
||||
const bool enable_flash_attn,
|
||||
const bool enable_checkpointing) {
|
||||
const bool enable_checkpointing,
|
||||
const bool measure_only) {
|
||||
|
||||
ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
||||
const int n_past = 0;
|
||||
@ -622,13 +555,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
|
||||
// KQ_pos - contains the positions
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
|
||||
ggml_allocr_alloc(alloc, KQ_pos);
|
||||
if (!ggml_allocr_is_measure(alloc)) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
ggml_set_input(KQ_pos);
|
||||
|
||||
// rope has so much parameters that we make a custom function for it
|
||||
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
|
||||
@ -780,7 +707,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
// input gradient
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
ggml_set_input(t36->grad);
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
|
||||
@ -805,11 +732,23 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
// note: they will be freed in reverse order
|
||||
for (unsigned int i = 0; i < checkpoints.size(); ++i) {
|
||||
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
|
||||
ggml_allocr_alloc(alloc, checkpoints[i]);
|
||||
ggml_set_input(checkpoints[i]);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_allocr_alloc_graph(alloc, gb);
|
||||
if (measure_only) {
|
||||
ggml_gallocr_reserve(alloc, gb);
|
||||
} else {
|
||||
ggml_gallocr_alloc_graph(alloc, gb);
|
||||
|
||||
// set KQ_pos
|
||||
{
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// remove the additional nodes and leafs
|
||||
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
|
||||
@ -1663,7 +1602,7 @@ int main(int argc, char ** argv) {
|
||||
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
|
||||
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
|
||||
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
|
||||
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f));
|
||||
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f));
|
||||
|
||||
if (params.only_write_lora) {
|
||||
save_train_files_data save_data;
|
||||
@ -1690,10 +1629,6 @@ int main(int argc, char ** argv) {
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
int n_batch = params.common.n_batch;
|
||||
|
||||
|
||||
std::vector<uint8_t> mem_input_data;
|
||||
std::vector<uint8_t> mem_compute_data;
|
||||
|
||||
// context for input tensors without their data
|
||||
struct ggml_init_params ctx_input_params = {
|
||||
ggml_tensor_overhead() * 2, // mem_size
|
||||
@ -1706,17 +1641,11 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
mem_input_data.resize(max_input_size);
|
||||
ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
|
||||
ggml_allocr_alloc(alloc_inps, tokens_input);
|
||||
ggml_allocr_alloc(alloc_inps, target_probs);
|
||||
// measure required memory for input tensors
|
||||
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
|
||||
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// context for compute tensors without their data
|
||||
const size_t estimated_compute_size_wo_data = (
|
||||
@ -1743,7 +1672,7 @@ int main(int argc, char ** argv) {
|
||||
// find best evaluation order
|
||||
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = (enum ggml_cgraph_eval_order) order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@ -1756,14 +1685,15 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
true
|
||||
);
|
||||
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
|
||||
if (max_compute_size < best_compute_size) {
|
||||
best_compute_size = max_compute_size;
|
||||
best_order = gf->order;
|
||||
}
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_gallocr_free(alloc);
|
||||
ggml_free(ctx_compute);
|
||||
}
|
||||
size_t max_compute_size = best_compute_size;
|
||||
@ -1774,9 +1704,8 @@ int main(int argc, char ** argv) {
|
||||
"invalid");
|
||||
|
||||
// allocate compute tensors
|
||||
mem_compute_data.resize(max_compute_size);
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = best_order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@ -1789,11 +1718,9 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
false
|
||||
);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_allocr_free(alloc_inps);
|
||||
|
||||
|
||||
// tokenize data
|
||||
std::vector<llama_token> train_tokens;
|
||||
@ -1908,6 +1835,8 @@ int main(int argc, char ** argv) {
|
||||
ggml_free(ctx_work);
|
||||
ggml_free(ctx_compute);
|
||||
ggml_free(ctx_input);
|
||||
ggml_gallocr_free(alloc);
|
||||
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
printf("%s: total training time: ", __func__);
|
||||
|
@ -367,7 +367,7 @@ struct clip_ctx {
|
||||
ggml_backend_buffer_t params_buffer = NULL;
|
||||
ggml_backend_buffer_t compute_buffer = NULL;
|
||||
ggml_backend_t backend = NULL;
|
||||
ggml_allocr * compute_alloc = NULL;
|
||||
ggml_gallocr_t compute_alloc = NULL;
|
||||
};
|
||||
|
||||
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
|
||||
@ -405,31 +405,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
|
||||
ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
|
||||
|
||||
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
|
||||
float * data = (float *)malloc(ggml_nbytes(inp_raw));
|
||||
|
||||
for (size_t i = 0; i < imgs->size; i++) {
|
||||
const int nx = imgs->data[i].nx;
|
||||
const int ny = imgs->data[i].ny;
|
||||
GGML_ASSERT(nx == image_size && ny == image_size);
|
||||
|
||||
const int n = nx * ny;
|
||||
|
||||
for (int b = 0; b < batch_size; b++) {
|
||||
for (int k = 0; k < 3; k++) {
|
||||
for (int y = 0; y < ny; y++) {
|
||||
for (int x = 0; x < nx; x++) {
|
||||
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
|
||||
free(data);
|
||||
}
|
||||
ggml_set_name(inp_raw, "inp_raw");
|
||||
ggml_set_input(inp_raw);
|
||||
|
||||
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
||||
|
||||
@ -438,13 +415,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
|
||||
// concat class_embeddings and patch_embeddings
|
||||
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
ggml_allocr_alloc(ctx->compute_alloc, embeddings);
|
||||
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
}
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
@ -453,15 +425,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
|
||||
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_allocr_alloc(ctx->compute_alloc, positions);
|
||||
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
|
||||
embeddings =
|
||||
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
||||
@ -560,15 +525,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||
|
||||
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
|
||||
ggml_allocr_alloc(ctx->compute_alloc, patches);
|
||||
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
patches_data[i] = i + 1;
|
||||
}
|
||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||
free(patches_data);
|
||||
}
|
||||
ggml_set_name(patches, "patches");
|
||||
ggml_set_input(patches);
|
||||
|
||||
// shape [1, 576, 1024]
|
||||
// ne is whcn, ne = [1024, 576, 1, 1]
|
||||
@ -809,7 +767,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
|
||||
// data
|
||||
size_t buffer_size = 0;
|
||||
size_t model_size = 0;
|
||||
{
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(ctx, i);
|
||||
@ -817,7 +775,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
enum ggml_type type = gguf_get_tensor_type(ctx, i);
|
||||
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
|
||||
size_t tensor_size = ggml_nbytes(cur);
|
||||
buffer_size += tensor_size;
|
||||
model_size += tensor_size;
|
||||
if (verbosity >= 3) {
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
|
||||
@ -825,8 +783,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
}
|
||||
|
||||
buffer_size += n_tensors * 128 /* CLIP PADDING */;
|
||||
|
||||
clip_ctx * new_clip = new clip_ctx;
|
||||
|
||||
// update projector type
|
||||
@ -886,12 +842,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
|
||||
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
|
||||
printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
|
||||
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
|
||||
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
|
||||
|
||||
// load tensors
|
||||
{
|
||||
@ -925,12 +881,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
|
||||
// alloc memory and offload data
|
||||
new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
|
||||
ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
|
||||
new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(ctx, i);
|
||||
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
|
||||
ggml_allocr_alloc(alloc, cur);
|
||||
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
|
||||
fin.seekg(offset, std::ios::beg);
|
||||
if (!fin) {
|
||||
@ -949,7 +903,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
ggml_allocr_free(alloc);
|
||||
fin.close();
|
||||
}
|
||||
|
||||
@ -1077,15 +1030,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
// measure mem requirement and allocate
|
||||
{
|
||||
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
|
||||
new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
|
||||
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
|
||||
clip_image_f32_batch batch;
|
||||
batch.size = 1;
|
||||
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
|
||||
size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
|
||||
ggml_allocr_free(new_clip->compute_alloc);
|
||||
new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
|
||||
new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
|
||||
|
||||
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
|
||||
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
|
||||
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
|
||||
}
|
||||
|
||||
@ -1267,12 +1217,72 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
|
||||
}
|
||||
|
||||
// reset alloc buffer to clean the memory from previous invocations
|
||||
ggml_allocr_reset(ctx->compute_alloc);
|
||||
|
||||
// build the inference graph
|
||||
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
|
||||
ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
|
||||
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
|
||||
|
||||
// set inputs
|
||||
const auto & model = ctx->vision_model;
|
||||
const auto & hparams = model.hparams;
|
||||
const int image_size = hparams.image_size;
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_positions = num_patches + 1;
|
||||
|
||||
{
|
||||
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
float * data = (float *)malloc(ggml_nbytes(inp_raw));
|
||||
|
||||
for (size_t i = 0; i < imgs->size; i++) {
|
||||
const int nx = imgs->data[i].nx;
|
||||
const int ny = imgs->data[i].ny;
|
||||
GGML_ASSERT(nx == image_size && ny == image_size);
|
||||
|
||||
const int n = nx * ny;
|
||||
|
||||
for (int b = 0; b < batch_size; b++) {
|
||||
for (int k = 0; k < 3; k++) {
|
||||
for (int y = 0; y < ny; y++) {
|
||||
for (int x = 0; x < nx; x++) {
|
||||
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
|
||||
free(data);
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
for (int i = 0; i < num_positions; i++) {
|
||||
positions_data[i] = i;
|
||||
}
|
||||
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
|
||||
free(positions_data);
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
patches_data[i] = i + 1;
|
||||
}
|
||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||
free(patches_data);
|
||||
}
|
||||
|
||||
if (ggml_backend_is_cpu(ctx->backend)) {
|
||||
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "common.h"
|
||||
#include "train.h"
|
||||
#include "llama.h"
|
||||
@ -19,8 +20,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512;
|
||||
@ -58,7 +57,7 @@ struct my_llama_layer {
|
||||
|
||||
struct my_llama_model {
|
||||
struct ggml_context * ctx = NULL;
|
||||
std::vector<uint8_t> data;
|
||||
ggml_backend_buffer_t data = NULL;
|
||||
|
||||
my_llama_hparams hparams;
|
||||
|
||||
@ -147,39 +146,6 @@ static void set_param_model(struct my_llama_model * model) {
|
||||
}
|
||||
}
|
||||
|
||||
static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) {
|
||||
ggml_allocr_alloc(alloc, model->tok_embeddings);
|
||||
ggml_allocr_alloc(alloc, model->norm);
|
||||
ggml_allocr_alloc(alloc, model->output);
|
||||
for (uint32_t i = 0; i < model->layers.size(); ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm);
|
||||
ggml_allocr_alloc(alloc, layer.wq);
|
||||
ggml_allocr_alloc(alloc, layer.wk);
|
||||
ggml_allocr_alloc(alloc, layer.wv);
|
||||
ggml_allocr_alloc(alloc, layer.wo);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm);
|
||||
ggml_allocr_alloc(alloc, layer.w1);
|
||||
ggml_allocr_alloc(alloc, layer.w2);
|
||||
ggml_allocr_alloc(alloc, layer.w3);
|
||||
}
|
||||
ggml_allocr_alloc(alloc, model->tok_embeddings->grad);
|
||||
ggml_allocr_alloc(alloc, model->norm->grad);
|
||||
ggml_allocr_alloc(alloc, model->output->grad);
|
||||
for (uint32_t i = 0; i < model->layers.size(); ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wq->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wk->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wv->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wo->grad);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w1->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w2->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w3->grad);
|
||||
}
|
||||
}
|
||||
|
||||
static void init_model(struct my_llama_model * model) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
@ -252,17 +218,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
|
||||
set_param_model(model);
|
||||
|
||||
// measure data size
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
model->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
|
||||
alloc_model(alloc, model);
|
||||
model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
|
||||
}
|
||||
|
||||
static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
|
||||
@ -297,7 +254,7 @@ static void randomize_model(struct my_llama_model * model, int seed, float mean,
|
||||
|
||||
static struct ggml_tensor * llama_build_train_graphs(
|
||||
struct my_llama_model * model,
|
||||
struct ggml_allocr * alloc,
|
||||
ggml_gallocr_t alloc,
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
@ -308,7 +265,8 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
const int n_tokens,
|
||||
const int n_batch,
|
||||
const bool enable_flash_attn,
|
||||
const bool enable_checkpointing) {
|
||||
const bool enable_checkpointing,
|
||||
const bool measure_only) {
|
||||
|
||||
ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
||||
const int n_past = 0;
|
||||
@ -334,13 +292,7 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
|
||||
// KQ_pos - contains the positions
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
|
||||
ggml_allocr_alloc(alloc, KQ_pos);
|
||||
if (!ggml_allocr_is_measure(alloc)) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
ggml_set_input(KQ_pos);
|
||||
|
||||
// rope has so much parameters that we make a custom function for it
|
||||
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
|
||||
@ -448,21 +400,31 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
ggml_set_input(t36->grad);
|
||||
|
||||
// allocating checkpoints in one block to reduce memory fragmentation
|
||||
// note: they will be freed in reverse order
|
||||
for (int i = 0; i < (int) checkpoints.size(); ++i) {
|
||||
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
|
||||
ggml_allocr_alloc(alloc, checkpoints[i]);
|
||||
ggml_set_input(checkpoints[i]);
|
||||
}
|
||||
}
|
||||
|
||||
//int n_leafs_after = gb->n_leafs;
|
||||
//int n_nodes_after = gb->n_nodes;
|
||||
if (measure_only) {
|
||||
// FIXME: will still allocate
|
||||
ggml_gallocr_reserve(alloc, gb);
|
||||
} else {
|
||||
ggml_gallocr_alloc_graph(alloc, gb);
|
||||
|
||||
ggml_allocr_alloc_graph(alloc, gb);
|
||||
if (!measure_only) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// remove the additional nodes and leafs
|
||||
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
|
||||
@ -1046,7 +1008,7 @@ int main(int argc, char ** argv) {
|
||||
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
|
||||
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
|
||||
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
|
||||
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f));
|
||||
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
|
||||
|
||||
if (params.only_write_model) {
|
||||
save_train_files_data save_data;
|
||||
@ -1073,11 +1035,6 @@ int main(int argc, char ** argv) {
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
int n_batch = params.common.n_batch;
|
||||
|
||||
std::vector<uint8_t> mem_input_data;
|
||||
std::vector<uint8_t> mem_compute_data;
|
||||
|
||||
ggml_allocr * alloc = NULL;
|
||||
|
||||
// context for input tensors without their data
|
||||
struct ggml_init_params ctx_input_params = {
|
||||
ggml_tensor_overhead() * 2, // mem_size
|
||||
@ -1091,16 +1048,10 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
mem_input_data.resize(max_input_size);
|
||||
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
|
||||
ggml_allocr_alloc(alloc, tokens_input);
|
||||
ggml_allocr_alloc(alloc, target_probs);
|
||||
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
|
||||
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// context for compute tensors without their data
|
||||
const size_t estimated_compute_size_wo_data = (
|
||||
@ -1127,7 +1078,7 @@ int main(int argc, char ** argv) {
|
||||
// find best evaluation order
|
||||
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = (enum ggml_cgraph_eval_order) order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@ -1140,9 +1091,10 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
true
|
||||
);
|
||||
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
|
||||
if (max_compute_size < best_compute_size) {
|
||||
best_compute_size = max_compute_size;
|
||||
best_order = gf->order;
|
||||
@ -1157,9 +1109,8 @@ int main(int argc, char ** argv) {
|
||||
"invalid");
|
||||
|
||||
// allocate compute tensors
|
||||
mem_compute_data.resize(max_compute_size);
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = best_order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@ -1172,7 +1123,8 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
false
|
||||
);
|
||||
|
||||
std::vector<llama_token> train_tokens;
|
||||
|
1373
ggml-alloc.c
1373
ggml-alloc.c
File diff suppressed because it is too large
Load Diff
110
ggml-alloc.h
110
ggml-alloc.h
@ -6,88 +6,62 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_backend;
|
||||
struct ggml_backend_buffer;
|
||||
struct ggml_backend_buffer_type;
|
||||
|
||||
//
|
||||
// Legacy API
|
||||
//
|
||||
|
||||
typedef struct ggml_allocr * ggml_allocr_t;
|
||||
|
||||
// initialize allocator for use with CPU backend only
|
||||
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
// initialize allocator for use with ggml-backend
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
|
||||
|
||||
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
|
||||
|
||||
// tell the allocator to parse nodes following the order described in the list
|
||||
// you should call this if your graph are optimized to execute out-of-order
|
||||
GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
|
||||
|
||||
GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
|
||||
GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
|
||||
GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
|
||||
GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
|
||||
|
||||
GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
|
||||
|
||||
//
|
||||
// ggml-backend v2 API
|
||||
//
|
||||
|
||||
// Separate tensor and graph allocator objects
|
||||
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
|
||||
// The original API is kept as a wrapper around the new API
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
// Tensor allocator
|
||||
typedef struct ggml_tallocr * ggml_tallocr_t;
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
|
||||
|
||||
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
|
||||
|
||||
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
|
||||
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor);
|
||||
|
||||
// Graph allocator
|
||||
/*
|
||||
Example usage:
|
||||
ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type());
|
||||
|
||||
// optional: create a worst-case graph and reserve the buffers to avoid reallocations
|
||||
ggml_gallocr_reserve(galloc, build_graph(max_batch));
|
||||
|
||||
// allocate the graph
|
||||
struct ggml_cgraph * graph = build_graph(batch);
|
||||
ggml_gallocr_alloc_graph(galloc, graph);
|
||||
|
||||
printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0));
|
||||
|
||||
// evaluate the graph
|
||||
ggml_backend_graph_compute(backend, graph);
|
||||
*/
|
||||
|
||||
// special tensor flags for use with the graph allocator:
|
||||
// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses
|
||||
// ggml_set_output(): output tensors are never freed and never overwritten
|
||||
|
||||
typedef struct ggml_gallocr * ggml_gallocr_t;
|
||||
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
|
||||
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs);
|
||||
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
|
||||
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
|
||||
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
|
||||
// pre-allocate buffers from a measure graph - does not allocate or modify the graph
|
||||
// call with a worst-case graph to avoid buffer reallocations
|
||||
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
|
||||
// returns false if the buffer allocation failed
|
||||
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids);
|
||||
|
||||
// Allocate tensors from the allocators given by the hash table
|
||||
GGML_API void ggml_gallocr_alloc_graph_n(
|
||||
ggml_gallocr_t galloc,
|
||||
struct ggml_cgraph * graph,
|
||||
struct ggml_hash_set hash_set,
|
||||
ggml_tallocr_t * hash_node_talloc);
|
||||
// automatic reallocation if the topology changes when using a single buffer
|
||||
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)
|
||||
GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
|
||||
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
|
||||
|
||||
// Utils
|
||||
// Create a buffer and allocate all the tensors in a ggml_context
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
492
ggml-backend.c
492
ggml-backend.c
@ -475,6 +475,8 @@ ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
|
||||
|
||||
// backend CPU
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return "CPU";
|
||||
|
||||
@ -482,7 +484,14 @@ GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)buffer->context;
|
||||
uintptr_t data = (uintptr_t)buffer->context;
|
||||
|
||||
// align the buffer
|
||||
if (data % TENSOR_ALIGNMENT != 0) {
|
||||
data = GGML_PAD(data, TENSOR_ALIGNMENT);
|
||||
}
|
||||
|
||||
return (void *)data;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
@ -540,8 +549,6 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU";
|
||||
|
||||
@ -550,9 +557,11 @@ GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
||||
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
||||
|
||||
GGML_ASSERT(data != NULL && "failed to allocate buffer");
|
||||
void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
|
||||
}
|
||||
@ -766,6 +775,9 @@ static struct ggml_backend_i cpu_backend_i = {
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
||||
if (ctx == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||
ctx->work_data = NULL;
|
||||
@ -774,6 +786,10 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
ctx->abort_callback_data = NULL;
|
||||
|
||||
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
|
||||
if (cpu_backend == NULL) {
|
||||
free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
*cpu_backend = (struct ggml_backend) {
|
||||
/* .interface = */ cpu_backend_i,
|
||||
@ -802,6 +818,7 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
|
||||
GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
|
||||
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
|
||||
}
|
||||
|
||||
@ -865,6 +882,8 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_back
|
||||
ctx->n_buffers = n_buffers;
|
||||
ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
|
||||
|
||||
GGML_ASSERT(ctx->buffers != NULL);
|
||||
|
||||
size_t total_size = 0;
|
||||
for (size_t i = 0; i < n_buffers; i++) {
|
||||
ctx->buffers[i] = buffers[i];
|
||||
@ -886,6 +905,18 @@ GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer,
|
||||
}
|
||||
}
|
||||
|
||||
// creates a copy of the tensor with the same memory layout
|
||||
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
dup->nb[i] = tensor->nb[i];
|
||||
}
|
||||
return dup;
|
||||
}
|
||||
|
||||
static bool ggml_is_view_op(enum ggml_op op) {
|
||||
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
|
||||
}
|
||||
|
||||
// scheduler
|
||||
|
||||
@ -894,7 +925,7 @@ GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer,
|
||||
#define GGML_MAX_SPLIT_INPUTS 16
|
||||
|
||||
struct ggml_backend_sched_split {
|
||||
ggml_tallocr_t tallocr;
|
||||
int backend_id;
|
||||
int i_start;
|
||||
int i_end;
|
||||
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
|
||||
@ -909,15 +940,17 @@ struct ggml_backend_sched {
|
||||
int n_backends;
|
||||
ggml_backend_t backends[GGML_MAX_BACKENDS];
|
||||
ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
|
||||
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
|
||||
|
||||
ggml_gallocr_t galloc;
|
||||
|
||||
// hash keys of the nodes in the graph
|
||||
struct ggml_hash_set hash_set;
|
||||
// hash values (arrays of [hash_set.size])
|
||||
ggml_tallocr_t * node_talloc; // tallocr assigned to each node (indirectly this is the backend)
|
||||
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // copies of each node for each destination backend
|
||||
// hash values
|
||||
int * tensor_backend_id;
|
||||
struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
|
||||
|
||||
int * node_backend_ids; // [n_nodes]
|
||||
int n_nodes;
|
||||
|
||||
// copy of the graph with modified inputs
|
||||
struct ggml_cgraph * graph;
|
||||
@ -927,77 +960,46 @@ struct ggml_backend_sched {
|
||||
|
||||
struct ggml_context * ctx;
|
||||
|
||||
ggml_backend_sched_eval_callback callback_eval;
|
||||
void * callback_eval_user_data;
|
||||
|
||||
// align context_buffer to GGML_MEM_ALIGN
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(GGML_MEM_ALIGN))
|
||||
#else
|
||||
__attribute__((aligned(GGML_MEM_ALIGN)))
|
||||
#endif
|
||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
||||
|
||||
ggml_backend_sched_eval_callback callback_eval;
|
||||
void * callback_eval_user_data;
|
||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
||||
};
|
||||
|
||||
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
||||
#define node_allocr(node) sched->node_talloc[hash_id(node)]
|
||||
#define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
|
||||
#define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
|
||||
|
||||
static bool ggml_is_view_op(enum ggml_op op) {
|
||||
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
|
||||
}
|
||||
|
||||
// returns the priority of the backend, lower is better
|
||||
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
// returns the priority of the backend, lower id is higher priority
|
||||
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->backends[i] == backend) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return INT_MAX;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->tallocs[i] == allocr) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return INT_MAX;
|
||||
}
|
||||
|
||||
static ggml_tallocr_t sched_allocr_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
|
||||
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
|
||||
if (buffer == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check if this is already allocate in a allocr buffer (from user manual allocations)
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_tallocr_get_buffer(sched->tallocs[i]) == buffer) {
|
||||
return sched->tallocs[i];
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// find highest prio backend that supports the buffer type
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
||||
return sched->tallocs[i];
|
||||
return i;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
|
||||
}
|
||||
|
||||
static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
|
||||
if (allocr == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->tallocs[i] == allocr) {
|
||||
return sched->backends[i];
|
||||
}
|
||||
}
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
|
||||
#if 0
|
||||
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
|
||||
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
|
||||
@ -1008,37 +1010,39 @@ static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_I
|
||||
#endif
|
||||
|
||||
// returns the backend that should be used for the node based on the current locations
|
||||
static ggml_tallocr_t sched_allocr_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
|
||||
// TODO: use supports_op to check if the backend supports the op
|
||||
|
||||
// assign pre-allocated nodes to their backend
|
||||
// dst
|
||||
ggml_tallocr_t cur_allocr = sched_allocr_from_buffer(sched, node->buffer);
|
||||
if (cur_allocr != NULL) {
|
||||
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
|
||||
if (cur_backend != -1) {
|
||||
SET_CAUSE(node, "1.dst");
|
||||
return cur_allocr;
|
||||
return cur_backend;
|
||||
}
|
||||
// view_src
|
||||
if (node->view_src != NULL) {
|
||||
cur_allocr = sched_allocr_from_buffer(sched, node->view_src->buffer);
|
||||
if (cur_allocr != NULL) {
|
||||
if (tensor->view_src != NULL) {
|
||||
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
|
||||
if (cur_backend != -1) {
|
||||
SET_CAUSE(node, "1.vsrc");
|
||||
return cur_allocr;
|
||||
return cur_backend;
|
||||
}
|
||||
}
|
||||
// assign nodes that use weights to the backend of the weights
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
const struct ggml_tensor * src = node->src[i];
|
||||
const struct ggml_tensor * src = tensor->src[i];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
ggml_tallocr_t src_allocr = sched_allocr_from_buffer(sched, src->buffer);
|
||||
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
|
||||
// operations with weights are always run on the same backend as the weights
|
||||
SET_CAUSE(node, "1.wgt%d", i);
|
||||
return src_allocr;
|
||||
return src_backend;
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static char * fmt_size(size_t size) {
|
||||
@ -1051,11 +1055,11 @@ static char * fmt_size(size_t size) {
|
||||
return buffer;
|
||||
}
|
||||
|
||||
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
int cur_split = 0;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
|
||||
ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
|
||||
ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
|
||||
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
|
||||
sched->splits[cur_split].n_inputs);
|
||||
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
|
||||
@ -1069,17 +1073,15 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
|
||||
ggml_backend_t tensor_backend = tensor_backend(node);
|
||||
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
|
||||
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
|
||||
ggml_backend_t src_backend = tensor_backend(src);
|
||||
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
|
||||
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
|
||||
}
|
||||
@ -1087,23 +1089,13 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
}
|
||||
}
|
||||
|
||||
// creates a copy of the tensor with the same memory layout
|
||||
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
dup->nb[i] = tensor->nb[i];
|
||||
}
|
||||
return dup;
|
||||
}
|
||||
|
||||
|
||||
//#define DEBUG_PASS1
|
||||
//#define DEBUG_PASS2
|
||||
//#define DEBUG_PASS3
|
||||
//#define DEBUG_PASS4
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
// reset splits
|
||||
sched->n_splits = 0;
|
||||
sched->is_reset = false;
|
||||
@ -1125,28 +1117,28 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
// pass 1: assign backends to ops with pre-allocated inputs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
if (node_allocr(leaf) != NULL) {
|
||||
if (tensor_backend_id(leaf) != -1) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
node_allocr(leaf) = sched_allocr_from_cur(sched, leaf);
|
||||
tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||
}
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (node_allocr(node) != NULL) {
|
||||
if (tensor_backend_id(node) != -1) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
node_allocr(node) = sched_allocr_from_cur(sched, node);
|
||||
tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
// src
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
if (node_allocr(src) == NULL) {
|
||||
node_allocr(src) = sched_allocr_from_cur(sched, src);
|
||||
if (tensor_backend_id(src) == -1) {
|
||||
tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1161,22 +1153,22 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
|
||||
// pass 2.1 expand gpu up
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) {
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
if (tensor_backend_id == sched->n_backends - 1) {
|
||||
// skip cpu (lowest prio backend)
|
||||
cur_allocr = NULL;
|
||||
cur_backend_id = -1;
|
||||
} else {
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = tensor_backend_id;
|
||||
}
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
SET_CAUSE(node, "2.1");
|
||||
}
|
||||
}
|
||||
@ -1184,22 +1176,22 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
|
||||
// pass 2.2 expand gpu down
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
int cur_backend_id = -1;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
if (sched_allocr_prio(sched, node_allocr) == sched->n_backends - 1) {
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
if (tensor_backend_id == sched->n_backends - 1) {
|
||||
// skip cpu (lowest prio backend)
|
||||
cur_allocr = NULL;
|
||||
cur_backend_id = -1;
|
||||
} else {
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = tensor_backend_id;
|
||||
}
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
SET_CAUSE(node, "2.2");
|
||||
}
|
||||
}
|
||||
@ -1207,17 +1199,17 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
|
||||
// pass 2.3 expand rest up
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
cur_allocr = node_allocr;
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
cur_backend_id = tensor_backend_id;
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
SET_CAUSE(node, "2.3");
|
||||
}
|
||||
}
|
||||
@ -1225,17 +1217,17 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
|
||||
// pass 2.4 expand rest down
|
||||
{
|
||||
ggml_tallocr_t cur_allocr = NULL;
|
||||
int cur_backend_id = -1;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr != NULL) {
|
||||
cur_allocr = node_allocr;
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
if (tensor_backend_id != -1) {
|
||||
cur_backend_id = tensor_backend_id;
|
||||
} else {
|
||||
node_allocr(node) = cur_allocr;
|
||||
tensor_backend_id(node) = cur_backend_id;
|
||||
SET_CAUSE(node, "2.4");
|
||||
}
|
||||
}
|
||||
@ -1247,9 +1239,9 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
// pass 3: assign backends to remaining src from dst and view_src
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t cur_allocr = node_allocr(node);
|
||||
if (node->view_src != NULL && cur_allocr == NULL) {
|
||||
cur_allocr = node_allocr(node) = node_allocr(node->view_src);
|
||||
int cur_backend_id = tensor_backend_id(node);
|
||||
if (node->view_src != NULL && cur_backend_id == -1) {
|
||||
cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
|
||||
SET_CAUSE(node, "3.vsrc");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
@ -1257,14 +1249,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr == NULL) {
|
||||
int src_backend_id = tensor_backend_id(src);
|
||||
if (src_backend_id == -1) {
|
||||
if (src->view_src != NULL) {
|
||||
// views are always on the same backend as the source
|
||||
node_allocr(src) = node_allocr(src->view_src);
|
||||
tensor_backend_id(src) = tensor_backend_id(src->view_src);
|
||||
SET_CAUSE(src, "3.vsrc");
|
||||
} else {
|
||||
node_allocr(src) = cur_allocr;
|
||||
tensor_backend_id(src) = cur_backend_id;
|
||||
SET_CAUSE(src, "3.cur");
|
||||
}
|
||||
}
|
||||
@ -1281,15 +1273,14 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (!ggml_is_view_op(node->op)) {
|
||||
sched->splits[0].tallocr = node_allocr(node);
|
||||
sched->splits[0].backend_id = tensor_backend_id(node);
|
||||
break;
|
||||
}
|
||||
}
|
||||
sched->splits[0].i_start = 0;
|
||||
sched->splits[0].n_inputs = 0;
|
||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
||||
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
|
||||
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
int cur_backend_id = sched->splits[0].backend_id;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
@ -1297,19 +1288,18 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
int tensor_backend_id = tensor_backend_id(node);
|
||||
|
||||
GGML_ASSERT(node_allocr != NULL); // all nodes should be assigned by now
|
||||
GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
|
||||
|
||||
if (node_allocr != cur_allocr) {
|
||||
if (tensor_backend_id != cur_backend_id) {
|
||||
sched->splits[cur_split].i_end = i;
|
||||
cur_split++;
|
||||
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
|
||||
sched->splits[cur_split].tallocr = node_allocr;
|
||||
sched->splits[cur_split].backend_id = tensor_backend_id;
|
||||
sched->splits[cur_split].i_start = i;
|
||||
sched->splits[cur_split].n_inputs = 0;
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
cur_backend_id = tensor_backend_id;
|
||||
}
|
||||
|
||||
// find inputs that are not on the same backend
|
||||
@ -1318,43 +1308,25 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
GGML_ASSERT(src_allocr != NULL); // all inputs should be assigned by now
|
||||
if (src_allocr != node_allocr) {
|
||||
int src_backend_id = tensor_backend_id(src);
|
||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||
if (src_backend_id != tensor_backend_id) {
|
||||
// create a copy of the input in the split's backend
|
||||
size_t id = hash_id(src);
|
||||
if (sched->node_copies[id][cur_backend_id] == NULL) {
|
||||
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
||||
if (sched->tensor_copies[id][cur_backend_id] == NULL) {
|
||||
ggml_backend_t backend = sched->backends[cur_backend_id];
|
||||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
|
||||
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
||||
node_allocr(tensor_copy) = cur_allocr;
|
||||
sched->tensor_copies[id][cur_backend_id] = tensor_copy;
|
||||
tensor_backend_id(tensor_copy) = cur_backend_id;
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
|
||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = src;
|
||||
}
|
||||
node->src[j] = sched->node_copies[id][cur_backend_id];
|
||||
|
||||
#if 0
|
||||
// check if the input is already in the split
|
||||
bool found = false;
|
||||
for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) {
|
||||
if (sched->splits[cur_split].inputs[k] == src) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!found) {
|
||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
//printf("split %d input %d: %s (%s)\n", cur_split, n_inputs, src->name, ggml_backend_name(get_allocr_backend(sched, src_allocr)));
|
||||
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = src;
|
||||
}
|
||||
#endif
|
||||
node->src[j] = sched->tensor_copies[id][cur_backend_id];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1369,30 +1341,30 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
// sanity check: all sources should have the same backend as the node
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr == NULL) {
|
||||
ggml_backend_t tensor_backend = tensor_backend(node);
|
||||
if (tensor_backend == NULL) {
|
||||
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
|
||||
}
|
||||
if (node->view_src != NULL && node_allocr != node_allocr(node->view_src)) {
|
||||
if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
|
||||
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
|
||||
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
|
||||
node->view_src->name, node_allocr(node->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(node->view_src))) : "NULL");
|
||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
||||
node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
|
||||
ggml_backend_t src_backend = tensor_backend(src);
|
||||
if (src_backend != tensor_backend /* && src_backend != NULL */) {
|
||||
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
||||
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
|
||||
j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
|
||||
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
|
||||
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
|
||||
}
|
||||
if (src->view_src != NULL && src_allocr != node_allocr(src->view_src)) {
|
||||
if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
|
||||
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
|
||||
src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL",
|
||||
src->view_src->name, node_allocr(src->view_src) ? ggml_backend_name(get_allocr_backend(sched, node_allocr(src->view_src))) : "NULL");
|
||||
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
|
||||
src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1406,32 +1378,45 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||
|
||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
|
||||
|
||||
// add a dependency to the input source so that it is not freed before the copy is done
|
||||
GGML_ASSERT(input_cpy->src[0] == NULL || input_cpy->src[0] == input);
|
||||
input_cpy->src[0] = input;
|
||||
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
||||
|
||||
// add a dependency to the input copy so that it is allocated at the start of the split
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
|
||||
}
|
||||
|
||||
for (int j = split->i_start; j < split->i_end; j++) {
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
||||
}
|
||||
}
|
||||
sched->graph = graph_copy;
|
||||
}
|
||||
|
||||
static void sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
ggml_gallocr_alloc_graph_n(
|
||||
sched->galloc,
|
||||
sched->graph,
|
||||
sched->hash_set,
|
||||
sched->node_talloc);
|
||||
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
// ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
|
||||
#endif
|
||||
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
|
||||
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
|
||||
|
||||
@ -1439,20 +1424,18 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
|
||||
int split_backend_id = sched_backend_prio(sched, split_backend);
|
||||
int split_backend_id = split->backend_id;
|
||||
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
||||
|
||||
// copy the input tensors to the split backend
|
||||
uint64_t copy_start_us = ggml_time_us();
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][split_backend_id];
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
|
||||
|
||||
GGML_ASSERT(input->buffer != NULL);
|
||||
GGML_ASSERT(input_cpy->buffer != NULL);
|
||||
|
||||
// TODO: avoid this copy if it was already copied in a previous split, and the input didn't change
|
||||
// this is important to avoid copying constants such as KQ_mask and inp_pos multiple times
|
||||
ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
|
||||
}
|
||||
//ggml_backend_synchronize(split_backend); // necessary to measure copy time
|
||||
@ -1468,7 +1451,9 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
|
||||
uint64_t compute_start_us = ggml_time_us();
|
||||
if (!sched->callback_eval) {
|
||||
ggml_backend_graph_compute(split_backend, &split->graph);
|
||||
if (!ggml_backend_graph_compute(split_backend, &split->graph)) {
|
||||
return false;
|
||||
}
|
||||
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
|
||||
} else {
|
||||
// similar to ggml_backend_compare_graph_backend
|
||||
@ -1488,7 +1473,9 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
|
||||
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
||||
|
||||
ggml_backend_graph_compute(split_backend, &gv);
|
||||
if (!ggml_backend_graph_compute(split_backend, &gv)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
|
||||
break;
|
||||
@ -1510,19 +1497,8 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void sched_reset(ggml_backend_sched_t sched) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_tallocr_reset(sched->tallocs[i]);
|
||||
}
|
||||
// reset state for the next run
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
|
||||
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
|
||||
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
|
||||
|
||||
sched->is_reset = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
|
||||
@ -1532,9 +1508,10 @@ ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_back
|
||||
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
sched->node_talloc = calloc(sizeof(sched->node_talloc[0]) * sched->hash_set.size, 1);
|
||||
sched->node_copies = calloc(sizeof(sched->node_copies[0]) * sched->hash_set.size, 1);
|
||||
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
|
||||
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
|
||||
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
for (int i = 0; i < n_backends; i++) {
|
||||
@ -1542,14 +1519,9 @@ ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_back
|
||||
sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
|
||||
}
|
||||
|
||||
sched->galloc = ggml_gallocr_new();
|
||||
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
|
||||
|
||||
// init measure allocs for each backend
|
||||
for (int i = 0; i < n_backends; i++) {
|
||||
sched->tallocs[i] = ggml_tallocr_new_measure_from_buft(sched->bufts[i]);
|
||||
}
|
||||
|
||||
sched_reset(sched);
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
return sched;
|
||||
}
|
||||
@ -1558,49 +1530,54 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
if (sched == NULL) {
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_tallocr_free(sched->tallocs[i]);
|
||||
}
|
||||
ggml_gallocr_free(sched->galloc);
|
||||
ggml_free(sched->ctx);
|
||||
free(sched->hash_set.keys);
|
||||
free(sched->node_talloc);
|
||||
free(sched->node_copies);
|
||||
free(sched->tensor_backend_id);
|
||||
free(sched->tensor_copies);
|
||||
free(sched->node_backend_ids);
|
||||
free(sched);
|
||||
}
|
||||
|
||||
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
GGML_ASSERT(ggml_tallocr_is_measure(sched->tallocs[0])); // can only be initialized once
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
// reset state for the next run
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
||||
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
||||
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
||||
|
||||
sched_split_graph(sched, measure_graph);
|
||||
sched_alloc_splits(sched);
|
||||
|
||||
// allocate buffers and reset allocators
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
|
||||
ggml_tallocr_free(sched->tallocs[i]);
|
||||
sched->tallocs[i] = ggml_tallocr_new_from_buft(sched->bufts[i], size);
|
||||
}
|
||||
|
||||
sched_reset(sched);
|
||||
sched->is_reset = true;
|
||||
}
|
||||
|
||||
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
|
||||
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
|
||||
if (!sched->is_reset) {
|
||||
sched_reset(sched);
|
||||
ggml_backend_sched_reset(sched);
|
||||
}
|
||||
|
||||
sched_split_graph(sched, graph);
|
||||
sched_alloc_splits(sched);
|
||||
sched_compute_splits(sched);
|
||||
}
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
if (!ggml_backend_sched_alloc_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
sched_reset(sched);
|
||||
}
|
||||
if (!ggml_backend_sched_compute_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||
sched->callback_eval = callback;
|
||||
@ -1611,37 +1588,30 @@ int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
||||
return sched->n_splits;
|
||||
}
|
||||
|
||||
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
return sched->tallocs[backend_index];
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
|
||||
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
node_allocr(node) = sched->tallocs[backend_index];
|
||||
tensor_backend_id(node) = backend_index;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
ggml_tallocr_t allocr = node_allocr(node);
|
||||
if (allocr == NULL) {
|
||||
int backend_index = tensor_backend_id(node);
|
||||
if (backend_index == -1) {
|
||||
return NULL;
|
||||
}
|
||||
return get_allocr_backend(sched, allocr);
|
||||
return sched->backends[backend_index];
|
||||
}
|
||||
|
||||
// utils
|
||||
|
||||
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
//GGML_ASSERT(tensor->data == NULL); // views of pre-allocated tensors may have the data set in ggml_new_tensor, but still need to be initialized by the backend
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
GGML_ASSERT(tensor->view_src->data != NULL);
|
||||
@ -1665,7 +1635,7 @@ void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor
|
||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
}
|
||||
|
||||
static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
||||
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
||||
struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
|
||||
|
||||
GGML_ASSERT(src != NULL);
|
||||
@ -1678,7 +1648,7 @@ static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, stru
|
||||
|
||||
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
|
||||
if (src->view_src != NULL) {
|
||||
dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
|
||||
dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
|
||||
dst->view_offs = src->view_offs;
|
||||
}
|
||||
dst->op = src->op;
|
||||
@ -1691,14 +1661,14 @@ static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, stru
|
||||
if (s == NULL) {
|
||||
break;
|
||||
}
|
||||
dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
|
||||
dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
|
||||
}
|
||||
|
||||
node_copies[id] = dst;
|
||||
return dst;
|
||||
}
|
||||
|
||||
static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
||||
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
||||
size_t id = ggml_hash_find(hash_set, src);
|
||||
if (node_init[id]) {
|
||||
return;
|
||||
@ -1707,7 +1677,7 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor
|
||||
|
||||
struct ggml_tensor * dst = node_copies[id];
|
||||
if (dst->view_src != NULL) {
|
||||
graph_init_tensor(hash_set, node_copies, node_init, src->view_src);
|
||||
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
|
||||
ggml_backend_view_init(dst->view_src->buffer, dst);
|
||||
}
|
||||
else {
|
||||
@ -1720,17 +1690,17 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor
|
||||
if (s == NULL) {
|
||||
break;
|
||||
}
|
||||
graph_init_tensor(hash_set, node_copies, node_init, s);
|
||||
graph_copy_init_tensor(hash_set, node_copies, node_init, s);
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_hash_set hash_set = {
|
||||
/* .size = */ graph->visited_hash_table.size,
|
||||
/* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
|
||||
/* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
|
||||
};
|
||||
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
|
||||
bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
|
||||
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
|
||||
bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
|
||||
@ -1759,7 +1729,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
// dup nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
|
||||
graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
|
||||
}
|
||||
|
||||
// allocate nodes
|
||||
@ -1784,7 +1754,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
// copy data and init views
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
graph_init_tensor(hash_set, node_copies, node_init, node);
|
||||
graph_copy_init_tensor(hash_set, node_copies, node_init, node);
|
||||
}
|
||||
|
||||
// build graph copy
|
||||
|
@ -130,11 +130,7 @@ extern "C" {
|
||||
|
||||
// in build_graph:
|
||||
build_graph(...) {
|
||||
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
|
||||
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
|
||||
ggml_allocr_alloc(alloc_cpu, tensor);
|
||||
|
||||
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
|
||||
// manually assign nodes to a backend (optional, should not be needed in most cases)
|
||||
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
||||
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
|
||||
}
|
||||
@ -164,20 +160,19 @@ extern "C" {
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
// Initialize backend buffers from a measure graph
|
||||
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
|
||||
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
||||
// Reset all assignments and allocators - must be called before changing the node backends
|
||||
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
||||
|
||||
// Set a callback to be called for each resulting node during graph compute
|
||||
|
28
ggml.c
28
ggml.c
@ -2649,7 +2649,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
/*.nb =*/ { 0, 0, 0, 0 },
|
||||
/*.op =*/ GGML_OP_NONE,
|
||||
/*.op_params =*/ { 0 },
|
||||
/*.is_param =*/ false,
|
||||
/*.flags =*/ 0,
|
||||
/*.grad =*/ NULL,
|
||||
/*.src =*/ { NULL },
|
||||
/*.perf_runs =*/ 0,
|
||||
@ -6551,7 +6551,7 @@ struct ggml_tensor * ggml_cross_entropy_loss_back(
|
||||
void ggml_set_param(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor) {
|
||||
tensor->is_param = true;
|
||||
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
|
||||
|
||||
GGML_ASSERT(tensor->grad == NULL);
|
||||
tensor->grad = ggml_dup_tensor(ctx, tensor);
|
||||
@ -15367,7 +15367,7 @@ static struct ggml_tensor * ggml_recompute_graph_node(
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (node->is_param) {
|
||||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
return node;
|
||||
}
|
||||
|
||||
@ -15401,7 +15401,7 @@ static struct ggml_tensor * ggml_recompute_graph_node(
|
||||
|
||||
clone->op = node->op;
|
||||
clone->grad = node->grad;
|
||||
clone->is_param = node->is_param;
|
||||
clone->flags = node->flags;
|
||||
clone->extra = node->extra;
|
||||
for (int k = 0; k < GGML_MAX_DIMS; ++k) {
|
||||
clone->nb[k] = node->nb[k];
|
||||
@ -16433,7 +16433,7 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph *
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (node->is_param) {
|
||||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
|
||||
ggml_build_forward_expand(gb, node->grad);
|
||||
}
|
||||
@ -17918,7 +17918,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
||||
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
||||
i,
|
||||
node->ne[0], node->ne[1], node->ne[2],
|
||||
ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
||||
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
||||
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
|
||||
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
|
||||
(double) node->perf_time_us / 1000.0,
|
||||
@ -18011,7 +18011,7 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->is_param) {
|
||||
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
snprintf(color, sizeof(color), "yellow");
|
||||
} else if (node->grad) {
|
||||
if (ggml_graph_find(gf, node)) {
|
||||
@ -18185,7 +18185,7 @@ static enum ggml_opt_result ggml_opt_adam(
|
||||
int np = 0;
|
||||
int64_t nx = 0;
|
||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||||
if (gf->nodes[i]->is_param) {
|
||||
if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
|
||||
|
||||
GGML_ASSERT(np < GGML_MAX_PARAMS);
|
||||
@ -18548,7 +18548,7 @@ static enum ggml_opt_result ggml_opt_lbfgs(
|
||||
int np = 0;
|
||||
int nx = 0;
|
||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||||
if (gf->nodes[i]->is_param) {
|
||||
if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
|
||||
|
||||
GGML_ASSERT(np < GGML_MAX_PARAMS);
|
||||
@ -19023,6 +19023,16 @@ enum ggml_opt_result ggml_opt_resume_g(
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void ggml_set_input(struct ggml_tensor * tensor) {
|
||||
tensor->flags |= GGML_TENSOR_FLAG_INPUT;
|
||||
}
|
||||
|
||||
void ggml_set_output(struct ggml_tensor * tensor) {
|
||||
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void ggml_quantize_init(enum ggml_type type) {
|
||||
ggml_critical_section_start();
|
||||
|
||||
|
18
ggml.h
18
ggml.h
@ -505,11 +505,17 @@ extern "C" {
|
||||
|
||||
enum ggml_log_level {
|
||||
GGML_LOG_LEVEL_ERROR = 2,
|
||||
GGML_LOG_LEVEL_WARN = 3,
|
||||
GGML_LOG_LEVEL_INFO = 4,
|
||||
GGML_LOG_LEVEL_WARN = 3,
|
||||
GGML_LOG_LEVEL_INFO = 4,
|
||||
GGML_LOG_LEVEL_DEBUG = 5
|
||||
};
|
||||
|
||||
enum ggml_tensor_flag {
|
||||
GGML_TENSOR_FLAG_INPUT = 1,
|
||||
GGML_TENSOR_FLAG_OUTPUT = 2,
|
||||
GGML_TENSOR_FLAG_PARAM = 4,
|
||||
};
|
||||
|
||||
// ggml object
|
||||
struct ggml_object {
|
||||
size_t offs;
|
||||
@ -543,7 +549,7 @@ extern "C" {
|
||||
// op params - allocated as int32_t for alignment
|
||||
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
||||
|
||||
bool is_param;
|
||||
int32_t flags;
|
||||
|
||||
struct ggml_tensor * grad;
|
||||
struct ggml_tensor * src[GGML_MAX_SRC];
|
||||
@ -2092,6 +2098,12 @@ extern "C" {
|
||||
ggml_opt_callback callback,
|
||||
void * callback_data);
|
||||
|
||||
//
|
||||
// tensor flags
|
||||
//
|
||||
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
// quantization
|
||||
//
|
||||
|
181
llama.cpp
181
llama.cpp
@ -1872,8 +1872,6 @@ struct llama_context {
|
||||
// memory buffers used to evaluate the model
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
ggml_backend_sched_t sched = nullptr;
|
||||
// allocator for the input tensors
|
||||
ggml_tallocr * alloc = nullptr;
|
||||
|
||||
// input tensors
|
||||
ggml_backend_buffer_t buf_input = nullptr;
|
||||
@ -7199,12 +7197,10 @@ struct llm_build_context {
|
||||
|
||||
static struct ggml_cgraph * llama_build_graph(
|
||||
llama_context & lctx,
|
||||
const llama_batch & batch) {
|
||||
const llama_batch & batch,
|
||||
bool worst_case) {
|
||||
const auto & model = lctx.model;
|
||||
|
||||
// check if we should build the worst-case graph (for memory measurement)
|
||||
const bool worst_case = ggml_tallocr_is_measure(lctx.alloc);
|
||||
|
||||
// this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
|
||||
llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
|
||||
if (il >= 0) {
|
||||
@ -7225,77 +7221,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
struct llm_build_context llm(lctx, batch, cb, worst_case);
|
||||
|
||||
//
|
||||
// set input data
|
||||
//
|
||||
|
||||
if (!ggml_tallocr_is_measure(lctx.alloc)) {
|
||||
if (batch.token) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
|
||||
}
|
||||
|
||||
if (batch.embd) {
|
||||
const int64_t n_embd = llm.n_embd;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
}
|
||||
|
||||
if (batch.pos) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||||
}
|
||||
|
||||
{
|
||||
const int64_t n_kv = llm.n_kv;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
|
||||
float * data = (float *) lctx.inp_KQ_mask->data;
|
||||
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
float f;
|
||||
if (!lctx.kv_self.cells[i].has_seq_id(seq_id) ||
|
||||
(llm.causal_attn && lctx.kv_self.cells[i].pos > pos)) {
|
||||
f = -INFINITY;
|
||||
} else {
|
||||
f = 0;
|
||||
}
|
||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (llm.do_rope_shift) {
|
||||
const int64_t n_ctx = llm.n_ctx;
|
||||
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
|
||||
int32_t * data = (int32_t *) lctx.inp_K_shift->data;
|
||||
|
||||
for (int i = 0; i < n_ctx; ++i) {
|
||||
data[i] = lctx.kv_self.cells[i].delta;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_sum->buffer));
|
||||
float * data = (float *) lctx.inp_sum->data;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
data[i] = 1.0f/float(batch.n_tokens);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llm.init();
|
||||
|
||||
switch (model.arch) {
|
||||
@ -7384,6 +7309,83 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
return result;
|
||||
}
|
||||
|
||||
static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
||||
//
|
||||
// set input data
|
||||
//
|
||||
|
||||
const auto & hparams = lctx.model.hparams;
|
||||
const auto & cparams = lctx.cparams;
|
||||
const auto & kv_self = lctx.kv_self;
|
||||
|
||||
if (batch.token) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
|
||||
}
|
||||
|
||||
if (batch.embd) {
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||||
}
|
||||
|
||||
if (batch.pos) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||||
}
|
||||
|
||||
{
|
||||
const int64_t n_kv = kv_self.n;
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
|
||||
|
||||
float * data = (float *) lctx.inp_KQ_mask->data;
|
||||
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
float f;
|
||||
if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
|
||||
f = -INFINITY;
|
||||
} else {
|
||||
f = 0;
|
||||
}
|
||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
assert(ggml_backend_buffer_is_host(lctx.inp_sum->buffer));
|
||||
float * data = (float *) lctx.inp_sum->data;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
data[i] = 1.0f/float(batch.n_tokens);
|
||||
}
|
||||
}
|
||||
|
||||
if (kv_self.has_shift) {
|
||||
const int64_t n_ctx = cparams.n_ctx;
|
||||
|
||||
assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
|
||||
|
||||
int32_t * data = (int32_t *) lctx.inp_K_shift->data;
|
||||
|
||||
for (int i = 0; i < n_ctx; ++i) {
|
||||
data[i] = lctx.kv_self.cells[i].delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// decode a batch of tokens by evaluating the transformer
|
||||
//
|
||||
// - lctx: llama context
|
||||
@ -7482,7 +7484,7 @@ static int llama_decode_internal(
|
||||
ggml_backend_sched_reset(lctx.sched);
|
||||
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
||||
|
||||
ggml_cgraph * gf = llama_build_graph(lctx, batch);
|
||||
ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
|
||||
|
||||
// the output is always the last tensor in the graph
|
||||
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
||||
@ -7527,6 +7529,9 @@ static int llama_decode_internal(
|
||||
if (lctx.backend_cpu != nullptr) {
|
||||
ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
|
||||
}
|
||||
|
||||
llama_set_inputs(lctx, batch);
|
||||
|
||||
ggml_backend_sched_graph_compute(lctx.sched, gf);
|
||||
|
||||
// fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
|
||||
@ -11278,23 +11283,27 @@ struct llama_context * llama_new_context_with_model(
|
||||
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
|
||||
|
||||
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES);
|
||||
ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu);
|
||||
|
||||
// build worst-case graph
|
||||
int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
|
||||
int n_past = cparams.n_ctx - n_tokens;
|
||||
llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||
ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
|
||||
ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
|
||||
|
||||
// initialize scheduler with the worst-case graph
|
||||
ggml_backend_sched_init_measure(ctx->sched, gf);
|
||||
ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu);
|
||||
if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
for (ggml_backend_t backend : ctx->backends) {
|
||||
ggml_backend_buffer_t buf = ggml_backend_sched_get_buffer(ctx->sched, backend);
|
||||
for (size_t i = 0; i < ctx->backends.size(); i++) {
|
||||
ggml_backend_t backend = ctx->backends[i];
|
||||
ggml_backend_buffer_type_t buft = backend_buft[i];
|
||||
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
|
||||
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
|
||||
ggml_backend_buffer_name(buf),
|
||||
ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
|
||||
ggml_backend_buft_name(buft),
|
||||
size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
// note: the number of splits during measure is higher than during inference due to the kv shift
|
||||
|
@ -1 +1 @@
|
||||
2c7cf49810d523b9632da393a9e8270b60bf3b24
|
||||
5070f078a67c18c11736e78316ab715ca9afde16
|
||||
|
Loading…
Reference in New Issue
Block a user