diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index b72cbb918..031b2043c 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -6317,8 +6317,8 @@ kernel void kernel_mul_mm(device const uchar * src0, const uint im = tgpig.z; // if this block is of 64x32 shape or smaller - short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; - short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; + short n_rows = (ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M; + short n_cols = (ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N; // a thread shouldn't load data outside of the matrix short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; @@ -6326,9 +6326,10 @@ kernel void kernel_mul_mm(device const uchar * src0, simdgroup_T8x8 ma[4]; simdgroup_float8x8 mb[2]; - simdgroup_float8x8 c_res[8]; - for (int i = 0; i < 8; i++){ - c_res[i] = make_filled_simdgroup_matrix(0.f); + simdgroup_float8x8 mc[8]; + + for (short i = 0; i < 8; i++){ + mc[i] = make_filled_simdgroup_matrix(0.f); } short il = (tiitg % THREAD_PER_ROW); @@ -6339,7 +6340,7 @@ kernel void kernel_mul_mm(device const uchar * src0, uint offset0 = (i12/r2)*nb02 + (i13/r3)*nb03; ushort offset1 = il/nl; - device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; + device const block_q * x = (device const block_q *)(src0 + (r0*BLOCK_SIZE_M + thread_row)*nb01 + offset0) + offset1; device const float * y = (device const float *)(src1 + nb13 * i13 + nb12 * i12 @@ -6353,13 +6354,13 @@ kernel void kernel_mul_mm(device const uchar * src0, threadgroup_barrier(mem_flags::mem_threadgroup); #pragma unroll(16) - for (int i = 0; i < 16; i++) { - *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ - + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ - + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + for (short i = 0; i < 16; i++) { + *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \ + + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \ + + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4]; } - *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL)*8*32 + 8*(tiitg/THREAD_PER_COL)) = *((device float2x4 *) y); il = (il + 2 < nl) ? il + 2 : il % 2; x = (il < 2) ? x + (2+nl-1)/nl : x; @@ -6368,27 +6369,27 @@ kernel void kernel_mul_mm(device const uchar * src0, threadgroup_barrier(mem_flags::mem_threadgroup); // load matrices from threadgroup memory and conduct outer products - threadgroup T * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); - threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); + threadgroup T * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2)); + threadgroup float * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2)); #pragma unroll(4) - for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { + for (short ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { #pragma unroll(4) - for (int i = 0; i < 4; i++) { - simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i); + for (short i = 0; i < 4; i++) { + simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); } simdgroup_barrier(mem_flags::mem_none); #pragma unroll(2) - for (int i = 0; i < 2; i++) { - simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i); + for (short i = 0; i < 2; i++) { + simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); } - lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; - lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; + lsma += BLOCK_SIZE_M/SG_MAT_ROW * SG_MAT_SIZE; + lsmb += BLOCK_SIZE_N/SG_MAT_ROW * SG_MAT_SIZE; #pragma unroll(8) - for (int i = 0; i < 8; i++){ - simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); + for (short i = 0; i < 8; i++){ + simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); } } } @@ -6396,16 +6397,16 @@ kernel void kernel_mul_mm(device const uchar * src0, if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) { device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \ + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0; - for (int i = 0; i < 8; i++) { - simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0); + for (short i = 0; i < 8; i++) { + simdgroup_store(mc[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0); } } else { // block is smaller than 64x32, we should avoid writing data outside of the matrix threadgroup_barrier(mem_flags::mem_threadgroup); - threadgroup float * temp_str = ((threadgroup float *)shared_memory) \ - + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; - for (int i = 0; i < 8; i++) { - simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); + threadgroup float * temp_str = ((threadgroup float *) shared_memory) \ + + 32 * (sgitg&1) + (16 * (sgitg>>1))*BLOCK_SIZE_M; + for (short i = 0; i < 8; i++) { + simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M); } threadgroup_barrier(mem_flags::mem_threadgroup);