mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
Add enum llama_ftype, sync ggml_type to model files (#709)
This commit is contained in:
parent
2663d2c678
commit
3e6e70d8e8
@ -5,15 +5,15 @@
|
|||||||
#include <string>
|
#include <string>
|
||||||
|
|
||||||
// usage:
|
// usage:
|
||||||
// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
||||||
//
|
//
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
ggml_time_init();
|
ggml_time_init();
|
||||||
|
|
||||||
if (argc != 4) {
|
if (argc != 4) {
|
||||||
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
||||||
fprintf(stderr, " type = 2 - q4_0\n");
|
fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0);
|
||||||
fprintf(stderr, " type = 3 - q4_1\n");
|
fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -27,7 +27,7 @@ int main(int argc, char ** argv) {
|
|||||||
const std::string fname_inp = argv[1];
|
const std::string fname_inp = argv[1];
|
||||||
const std::string fname_out = argv[2];
|
const std::string fname_out = argv[2];
|
||||||
|
|
||||||
const int itype = atoi(argv[3]);
|
const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]);
|
||||||
|
|
||||||
const int64_t t_main_start_us = ggml_time_us();
|
const int64_t t_main_start_us = ggml_time_us();
|
||||||
|
|
||||||
@ -37,7 +37,7 @@ int main(int argc, char ** argv) {
|
|||||||
{
|
{
|
||||||
const int64_t t_start_us = ggml_time_us();
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
|
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype)) {
|
||||||
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
35
ggml.c
35
ggml.c
@ -2560,29 +2560,26 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x
|
|||||||
//
|
//
|
||||||
|
|
||||||
static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
|
static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
|
||||||
QK,
|
[GGML_TYPE_F32] = 1,
|
||||||
QK,
|
[GGML_TYPE_F16] = 1,
|
||||||
1,
|
[GGML_TYPE_Q4_0] = QK,
|
||||||
1,
|
[GGML_TYPE_Q4_1] = QK,
|
||||||
1,
|
[GGML_TYPE_I8] = 1,
|
||||||
1,
|
[GGML_TYPE_I16] = 1,
|
||||||
1,
|
[GGML_TYPE_I32] = 1,
|
||||||
};
|
};
|
||||||
|
static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
|
||||||
static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
|
|
||||||
|
|
||||||
static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
|
static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
|
||||||
sizeof(block_q4_0),
|
[GGML_TYPE_F32] = sizeof(float),
|
||||||
sizeof(block_q4_1),
|
[GGML_TYPE_F16] = sizeof(ggml_fp16_t),
|
||||||
sizeof(int8_t ),
|
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
|
||||||
sizeof(int16_t),
|
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
|
||||||
sizeof(int32_t),
|
[GGML_TYPE_I8] = sizeof(int8_t),
|
||||||
sizeof(ggml_fp16_t),
|
[GGML_TYPE_I16] = sizeof(int16_t),
|
||||||
sizeof(float ),
|
[GGML_TYPE_I32] = sizeof(int32_t),
|
||||||
};
|
};
|
||||||
|
static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
|
||||||
// don't forget to update the array above when adding new types
|
|
||||||
static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
|
|
||||||
|
|
||||||
static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
||||||
"NONE",
|
"NONE",
|
||||||
|
9
ggml.h
9
ggml.h
@ -198,13 +198,14 @@ struct ggml_object;
|
|||||||
struct ggml_context;
|
struct ggml_context;
|
||||||
|
|
||||||
enum ggml_type {
|
enum ggml_type {
|
||||||
GGML_TYPE_Q4_0,
|
// explicitly numbered values are used in llama.cpp files
|
||||||
GGML_TYPE_Q4_1,
|
GGML_TYPE_F32 = 0,
|
||||||
|
GGML_TYPE_F16 = 1,
|
||||||
|
GGML_TYPE_Q4_0 = 2,
|
||||||
|
GGML_TYPE_Q4_1 = 3,
|
||||||
GGML_TYPE_I8,
|
GGML_TYPE_I8,
|
||||||
GGML_TYPE_I16,
|
GGML_TYPE_I16,
|
||||||
GGML_TYPE_I32,
|
GGML_TYPE_I32,
|
||||||
GGML_TYPE_F16,
|
|
||||||
GGML_TYPE_F32,
|
|
||||||
GGML_TYPE_COUNT,
|
GGML_TYPE_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
67
llama.cpp
67
llama.cpp
@ -82,7 +82,7 @@ struct llama_hparams {
|
|||||||
uint32_t n_head = 32;
|
uint32_t n_head = 32;
|
||||||
uint32_t n_layer = 32;
|
uint32_t n_layer = 32;
|
||||||
uint32_t n_rot = 64;
|
uint32_t n_rot = 64;
|
||||||
uint32_t f16 = 1;
|
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
||||||
|
|
||||||
bool operator!=(const llama_hparams & other) const {
|
bool operator!=(const llama_hparams & other) const {
|
||||||
return memcmp(this, &other, sizeof(llama_hparams));
|
return memcmp(this, &other, sizeof(llama_hparams));
|
||||||
@ -432,7 +432,7 @@ struct llama_file_loader {
|
|||||||
hparams.n_head = file.read_u32();
|
hparams.n_head = file.read_u32();
|
||||||
hparams.n_layer = file.read_u32();
|
hparams.n_layer = file.read_u32();
|
||||||
hparams.n_rot = file.read_u32();
|
hparams.n_rot = file.read_u32();
|
||||||
hparams.f16 = file.read_u32();
|
hparams.ftype = (enum llama_ftype) file.read_u32();
|
||||||
}
|
}
|
||||||
void read_vocab() {
|
void read_vocab() {
|
||||||
vocab.id_to_token.resize(hparams.n_vocab);
|
vocab.id_to_token.resize(hparams.n_vocab);
|
||||||
@ -458,20 +458,21 @@ struct llama_file_loader {
|
|||||||
llama_load_tensor_shard shard;
|
llama_load_tensor_shard shard;
|
||||||
uint32_t n_dims = file.read_u32();
|
uint32_t n_dims = file.read_u32();
|
||||||
uint32_t name_len = file.read_u32();
|
uint32_t name_len = file.read_u32();
|
||||||
uint32_t ftype = file.read_u32();
|
shard.type = (enum ggml_type) file.read_u32();
|
||||||
shard.ne.resize(n_dims);
|
shard.ne.resize(n_dims);
|
||||||
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
|
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
|
||||||
std::string name = file.read_string(name_len);
|
std::string name = file.read_string(name_len);
|
||||||
if (n_dims < 1 || n_dims > 2) {
|
if (n_dims < 1 || n_dims > 2) {
|
||||||
throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
|
throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
|
||||||
}
|
}
|
||||||
switch (ftype) {
|
switch (shard.type) {
|
||||||
case 0: shard.type = GGML_TYPE_F32; break;
|
case GGML_TYPE_F32:
|
||||||
case 1: shard.type = GGML_TYPE_F16; break;
|
case GGML_TYPE_F16:
|
||||||
case 2: shard.type = GGML_TYPE_Q4_0; break;
|
case GGML_TYPE_Q4_0:
|
||||||
case 3: shard.type = GGML_TYPE_Q4_1; break;
|
case GGML_TYPE_Q4_1:
|
||||||
|
break;
|
||||||
default: {
|
default: {
|
||||||
throw format("unrecognized ftype %u\n", ftype);
|
throw format("unrecognized tensor type %u\n", shard.type);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -502,18 +503,18 @@ struct llama_file_loader {
|
|||||||
struct llama_file_saver {
|
struct llama_file_saver {
|
||||||
llama_file file;
|
llama_file file;
|
||||||
llama_file_loader * any_file_loader;
|
llama_file_loader * any_file_loader;
|
||||||
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16)
|
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
|
||||||
: file(fname, "wb"), any_file_loader(any_file_loader) {
|
: file(fname, "wb"), any_file_loader(any_file_loader) {
|
||||||
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
|
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
|
||||||
write_magic();
|
write_magic();
|
||||||
write_hparams(new_f16);
|
write_hparams(new_ftype);
|
||||||
write_vocab();
|
write_vocab();
|
||||||
}
|
}
|
||||||
void write_magic() {
|
void write_magic() {
|
||||||
file.write_u32('ggjt'); // magic
|
file.write_u32('ggjt'); // magic
|
||||||
file.write_u32(1); // version
|
file.write_u32(1); // version
|
||||||
}
|
}
|
||||||
void write_hparams(uint32_t new_f16) {
|
void write_hparams(enum llama_ftype new_ftype) {
|
||||||
const llama_hparams & hparams = any_file_loader->hparams;
|
const llama_hparams & hparams = any_file_loader->hparams;
|
||||||
file.write_u32(hparams.n_vocab);
|
file.write_u32(hparams.n_vocab);
|
||||||
file.write_u32(hparams.n_embd);
|
file.write_u32(hparams.n_embd);
|
||||||
@ -521,7 +522,7 @@ struct llama_file_saver {
|
|||||||
file.write_u32(hparams.n_head);
|
file.write_u32(hparams.n_head);
|
||||||
file.write_u32(hparams.n_layer);
|
file.write_u32(hparams.n_layer);
|
||||||
file.write_u32(hparams.n_rot);
|
file.write_u32(hparams.n_rot);
|
||||||
file.write_u32(new_f16);
|
file.write_u32(new_ftype);
|
||||||
}
|
}
|
||||||
void write_vocab() {
|
void write_vocab() {
|
||||||
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
|
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
|
||||||
@ -536,17 +537,17 @@ struct llama_file_saver {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
|
void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
|
||||||
uint32_t ftype;
|
|
||||||
switch (new_type) {
|
switch (new_type) {
|
||||||
case GGML_TYPE_F32: ftype = 0; break;
|
case GGML_TYPE_F32:
|
||||||
case GGML_TYPE_F16: ftype = 1; break;
|
case GGML_TYPE_F16:
|
||||||
case GGML_TYPE_Q4_0: ftype = 2; break;
|
case GGML_TYPE_Q4_0:
|
||||||
case GGML_TYPE_Q4_1: ftype = 3; break;
|
case GGML_TYPE_Q4_1:
|
||||||
|
break;
|
||||||
default: LLAMA_ASSERT(false);
|
default: LLAMA_ASSERT(false);
|
||||||
}
|
}
|
||||||
file.write_u32((uint32_t) tensor.ne.size());
|
file.write_u32((uint32_t) tensor.ne.size());
|
||||||
file.write_u32((uint32_t) tensor.name.size());
|
file.write_u32((uint32_t) tensor.name.size());
|
||||||
file.write_u32(ftype);
|
file.write_u32(new_type);
|
||||||
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
|
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
|
||||||
file.write_raw(tensor.name.data(), tensor.name.size());
|
file.write_raw(tensor.name.data(), tensor.name.size());
|
||||||
file.seek(-file.tell() & 31, SEEK_CUR);
|
file.seek(-file.tell() & 31, SEEK_CUR);
|
||||||
@ -820,6 +821,16 @@ static const char *llama_file_version_name(llama_file_version version) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static const char *llama_ftype_name(enum llama_ftype ftype) {
|
||||||
|
switch (ftype) {
|
||||||
|
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
||||||
|
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
|
||||||
|
case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
|
||||||
|
case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
|
||||||
|
default: LLAMA_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static const char *llama_model_type_name(e_model type) {
|
static const char *llama_model_type_name(e_model type) {
|
||||||
switch (type) {
|
switch (type) {
|
||||||
case MODEL_7B: return "7B";
|
case MODEL_7B: return "7B";
|
||||||
@ -872,7 +883,7 @@ static void llama_model_load_internal(
|
|||||||
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
||||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||||||
fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16);
|
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
||||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
||||||
fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
|
fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
|
||||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||||
@ -1544,17 +1555,17 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
|||||||
// quantization
|
// quantization
|
||||||
//
|
//
|
||||||
|
|
||||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
|
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) {
|
||||||
ggml_type quantized_type;
|
ggml_type quantized_type;
|
||||||
switch (itype) {
|
switch (ftype) {
|
||||||
case 2: quantized_type = GGML_TYPE_Q4_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
|
||||||
case 3: quantized_type = GGML_TYPE_Q4_1; break;
|
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
|
||||||
default: throw format("invalid quantization type %d\n", itype);
|
default: throw format("invalid output file type %d\n", ftype);
|
||||||
};
|
};
|
||||||
|
|
||||||
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
|
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
|
||||||
/*vocab_only*/ false));
|
/*vocab_only*/ false));
|
||||||
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype);
|
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
|
||||||
|
|
||||||
size_t total_size_org = 0;
|
size_t total_size_org = 0;
|
||||||
size_t total_size_new = 0;
|
size_t total_size_new = 0;
|
||||||
@ -1745,9 +1756,9 @@ void llama_free(struct llama_context * ctx) {
|
|||||||
int llama_model_quantize(
|
int llama_model_quantize(
|
||||||
const char * fname_inp,
|
const char * fname_inp,
|
||||||
const char * fname_out,
|
const char * fname_out,
|
||||||
int itype) {
|
enum llama_ftype ftype) {
|
||||||
try {
|
try {
|
||||||
llama_model_quantize_internal(fname_inp, fname_out, itype);
|
llama_model_quantize_internal(fname_inp, fname_out, ftype);
|
||||||
return 0;
|
return 0;
|
||||||
} catch (const std::string & err) {
|
} catch (const std::string & err) {
|
||||||
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
|
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
|
||||||
|
10
llama.h
10
llama.h
@ -65,6 +65,14 @@ extern "C" {
|
|||||||
void * progress_callback_user_data;
|
void * progress_callback_user_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// model file types
|
||||||
|
enum llama_ftype {
|
||||||
|
LLAMA_FTYPE_ALL_F32 = 0,
|
||||||
|
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||||
|
};
|
||||||
|
|
||||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||||
|
|
||||||
LLAMA_API bool llama_mmap_supported();
|
LLAMA_API bool llama_mmap_supported();
|
||||||
@ -85,7 +93,7 @@ extern "C" {
|
|||||||
LLAMA_API int llama_model_quantize(
|
LLAMA_API int llama_model_quantize(
|
||||||
const char * fname_inp,
|
const char * fname_inp,
|
||||||
const char * fname_out,
|
const char * fname_out,
|
||||||
int itype);
|
enum llama_ftype ftype);
|
||||||
|
|
||||||
// Returns the KV cache that will contain the context for the
|
// Returns the KV cache that will contain the context for the
|
||||||
// ongoing prediction with the model.
|
// ongoing prediction with the model.
|
||||||
|
Loading…
Reference in New Issue
Block a user