From 3f460a2b723c8b936ac29ecfd02f244b3adeba55 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 25 Aug 2023 11:55:59 +0300 Subject: [PATCH] cuda : add RoPE kernel for mode == 2 (NeoX) (#2760) * cuda : add RoPE kernel for mode == 2 (NeoX) * falcon : do not offload the embeddings layer --- ggml-cuda.cu | 58 ++++++++++++++++++++++++++++++---------------------- llama.cpp | 22 +++++++++++++++++++- 2 files changed, 54 insertions(+), 26 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 868b7a7b9..3bd1caf23 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -3907,28 +3907,27 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c dst[i + 1] = x0*sin_theta + x1*cos_theta; } -// TODO: this implementation is wrong! -//static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0, -// const float p_delta, const int p_delta_rows, const float theta_scale) { -// const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); -// -// if (col >= ncols) { -// return; -// } -// -// const int row = blockDim.x*blockIdx.x + threadIdx.x; -// const int i = row*ncols + col/2; -// -// const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); -// const float sin_theta = sinf(theta); -// const float cos_theta = cosf(theta); -// -// const float x0 = x[i + 0]; -// const float x1 = x[i + ncols/2]; -// -// dst[i + 0] = x0*cos_theta - x1*sin_theta; -// dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; -//} +static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0, + const float p_delta, const int p_delta_rows, const float theta_scale) { + const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); + + if (col >= ncols) { + return; + } + + const int row = blockDim.x*blockIdx.x + threadIdx.x; + const int i = row*ncols + col/2; + + const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); + const float sin_theta = sinf(theta); + const float cos_theta = cosf(theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + ncols/2]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; +} static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) { const int col = blockDim.x*blockIdx.x + threadIdx.x; @@ -4799,13 +4798,21 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { - GGML_ASSERT(nrows % 2 == 0); + GGML_ASSERT(nrows % 2 == 0); // GG: is this assert really needed? I don't see why const dim3 block_dims(1, 2*CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); rope_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); } +static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, + const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { + const dim3 block_dims(1, 2*CUDA_ROPE_BLOCK_SIZE, 1); + const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(nrows, num_blocks_x, 1); + rope_neox_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); +} + static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(nrows % 4 == 0); const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1); @@ -5548,8 +5555,9 @@ inline void ggml_cuda_op_rope( const float block_p = max(p - (n_ctx - 2.f), 0.f); rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main); } else if (is_neox) { - GGML_ASSERT(false && "RoPE NeoX not implemented yet"); -#pragma message("TODO: implement RoPE NeoX for CUDA") + GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"); + const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; + rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); } else { const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); diff --git a/llama.cpp b/llama.cpp index 67319396e..52ba31d79 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1958,6 +1958,14 @@ static void llm_load_tensors( model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + vram_weights += ggml_nbytes(model.output_norm_b); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } } const uint32_t n_ff = hparams.n_ff; @@ -1967,7 +1975,7 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -1978,6 +1986,11 @@ static void llm_load_tensors( if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) { layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend); layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(layer.attn_norm_2); + vram_weights += ggml_nbytes(layer.attn_norm_2_b); + } } layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); @@ -1985,6 +1998,13 @@ static void llm_load_tensors( layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) + + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); + } } } break; default: