py : type-check all Python scripts with Pyright (#8341)

* py : type-check all Python scripts with Pyright

* server-tests : use trailing slash in openai base_url

* server-tests : add more type annotations

* server-tests : strip "chat" from base_url in oai_chat_completions

* server-tests : model metadata is a dict

* ci : disable pip cache in type-check workflow

The cache is not shared between branches, and it's 250MB in size,
so it would become quite a big part of the 10GB cache limit of the repo.

* py : fix new type errors from master branch

* tests : fix test-tokenizer-random.py

Apparently, gcc applies optimisations even when pre-processing,
which confuses pycparser.

* ci : only show warnings and errors in python type-check

The "information" level otherwise has entries
from 'examples/pydantic_models_to_grammar.py',
which could be confusing for someone trying to figure out what failed,
considering that these messages can safely be ignored
even though they look like errors.
This commit is contained in:
compilade 2024-07-07 15:04:39 -04:00 committed by GitHub
parent a8db2a9ce6
commit 3fd62a6b1c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
33 changed files with 297 additions and 173 deletions

View File

@ -89,6 +89,22 @@ let
ps.tiktoken
ps.torchWithoutCuda
ps.transformers
# server bench
ps.matplotlib
# server tests
ps.openai
ps.behave
ps.prometheus-client
# for examples/pydantic-models-to-grammar-examples.py
ps.docstring-parser
ps.pydantic
# for scripts/compare-llama-bench.py
ps.gitpython
ps.tabulate
]
);

38
.github/workflows/python-type-check.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: Python Type-Check
on:
push:
paths:
- '.github/workflows/python-type-check.yml'
- '**.py'
- '**/requirements*.txt'
pull_request:
paths:
- '.github/workflows/python-type-check.yml'
- '**.py'
- '**/requirements*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
python-type-check:
runs-on: ubuntu-latest
name: pyright type-check
steps:
- name: Check out source repository
uses: actions/checkout@v4
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install Python dependencies
# TODO: use a venv
run: pip install -r requirements/requirements-all.txt
- name: Type-check with Pyright
uses: jakebailey/pyright-action@v2
with:
version: 1.1.370
level: warning
warnings: true

View File

@ -265,7 +265,7 @@ class Model:
break
for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
data: np.ndarray = data # type hint
data: np.ndarray # type hint
n_dims = len(data.shape)
data_dtype = data.dtype
data_qtype: gguf.GGMLQuantizationType | None = None
@ -599,10 +599,6 @@ class Model:
tokenizer_path = self.dir_model / 'tokenizer.model'
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
@ -2120,7 +2116,7 @@ class InternLM2Model(Model):
logger.error(f'Error: Missing {tokenizer_path}')
sys.exit(1)
sentencepiece_model = model.ModelProto()
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
@ -2972,7 +2968,7 @@ class T5Model(Model):
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
sentencepiece_model = model.ModelProto()
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
# some models like Pile-T5 family use BPE tokenizer instead of Unigram
@ -3152,7 +3148,7 @@ class JaisModel(Model):
# but Jais's PyTorch model simply precalculates the slope values and places them
# in relative_pes.slopes
n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
first_val = float(data_torch._data[0])
first_val = float(data_torch[0].item())
self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
return tensors
@ -3186,7 +3182,7 @@ class ChatGLMModel(Model):
def set_vocab_chatglm3(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytearray] = []
tokens: list[bytes] = []
toktypes: list[int] = []
scores: list[float] = []
@ -3335,7 +3331,7 @@ class ChatGLMModel(Model):
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.hparams.get("_name_or_path").split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_head_kv = self.hparams.get("multi_query_group_num", n_head)

View File

@ -354,7 +354,8 @@ class GGMLToGGUF:
def handle_metadata(cfg, hp):
import convert
import examples.convert_legacy_llama as convert
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
hf_config_path = cfg.model_metadata_dir / "config.json"
orig_config_path = cfg.model_metadata_dir / "params.json"

View File

@ -353,7 +353,7 @@ class Metadata:
version: Optional[str] = None
url: Optional[str] = None
description: Optional[str] = None
licence: Optional[str] = None
license: Optional[str] = None
source_url: Optional[str] = None
source_hf_repo: Optional[str] = None
@ -492,12 +492,13 @@ class LazyTensor:
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none']
@dataclass
class ModelPlus:
model: LazyModel
paths: list[Path] # Where this was read from.
format: Literal['ggml', 'torch', 'safetensors', 'none']
format: ModelFormat
vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
@ -536,7 +537,7 @@ def merge_sharded(models: list[LazyModel]) -> LazyModel:
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
formats = set(mp.format for mp in models_plus)
formats: set[ModelFormat] = set(mp.format for mp in models_plus)
assert len(formats) == 1, "different formats?"
format = formats.pop()
paths = [path for mp in models_plus for path in mp.paths]
@ -555,7 +556,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
else:
model = merge_sharded([mp.model for mp in models_plus])
return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types
return ModelPlus(model, paths, format, vocab)
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
@ -805,7 +806,7 @@ class OutputFile:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_model(self, params: Params, metadata: Metadata) -> None:
def add_meta_model(self, params: Params, metadata: Metadata | None) -> None:
# Metadata About The Model And Its Provenence
name = "LLaMA"
if metadata is not None and metadata.name is not None:
@ -827,8 +828,8 @@ class OutputFile:
self.gguf.add_url(metadata.url)
if metadata.description is not None:
self.gguf.add_description(metadata.description)
if metadata.licence is not None:
self.gguf.add_licence(metadata.licence)
if metadata.license is not None:
self.gguf.add_licence(metadata.license)
if metadata.source_url is not None:
self.gguf.add_source_url(metadata.source_url)
if metadata.source_hf_repo is not None:
@ -943,7 +944,7 @@ class OutputFile:
@staticmethod
def write_vocab_only(
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata | None = None,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
@ -977,7 +978,7 @@ class OutputFile:
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
metadata: Metadata = None,
metadata: Metadata | None = None,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
@ -1396,6 +1397,8 @@ def main(args_in: list[str] | None = None) -> None:
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
vocab = model_plus.vocab
assert params is not None
logger.info(f"Vocab info: {vocab}")
logger.info(f"Special vocab info: {special_vocab}")
model = model_plus.model

View File

@ -74,7 +74,7 @@ class Tensor:
if len(self.ne) == 0:
self.nbytes = 0
else:
self.nbytes = int(np.product(self.ne)) * 4
self.nbytes = int(np.prod(self.ne)) * 4
else:
raise ValueError(f"Unhandled data type '{self.dtype}'")

View File

@ -3,7 +3,7 @@
#! pip install pydantic
#! python json_schema_pydantic_example.py
from pydantic import BaseModel, Extra, TypeAdapter
from pydantic import BaseModel, Field, TypeAdapter
from annotated_types import MinLen
from typing import Annotated, List, Optional
import json, requests
@ -17,6 +17,9 @@ if True:
The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
'''
response_format = None
type_adapter = None
if response_model:
type_adapter = TypeAdapter(response_model)
schema = type_adapter.json_schema()

View File

@ -1,4 +1,6 @@
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import itertools
import json
@ -188,7 +190,7 @@ def _generate_min_max_int(min_value: Optional[int], max_value: Optional[int], ou
raise RuntimeError("At least one of min_value or max_value must be set")
class BuiltinRule:
def __init__(self, content: str, deps: list = None):
def __init__(self, content: str, deps: list | None = None):
self.content = content
self.deps = deps or []
@ -248,7 +250,7 @@ class SchemaConverter:
def _format_literal(self, literal):
escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub(
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), literal
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)) or m.group(0), literal
)
return f'"{escaped}"'
@ -403,11 +405,11 @@ class SchemaConverter:
i = 0
length = len(pattern)
def to_rule(s: Tuple[str, bool]) -> str:
def to_rule(s: tuple[str, bool]) -> str:
(txt, is_literal) = s
return "\"" + txt + "\"" if is_literal else txt
def transform() -> Tuple[str, bool]:
def transform() -> tuple[str, bool]:
'''
Parse a unit at index i (advancing it), and return its string representation + whether it's a literal.
'''
@ -420,7 +422,7 @@ class SchemaConverter:
# We only need a flat structure here to apply repetition operators to the last item, and
# to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
# (GBNF's syntax is luckily very close to regular expressions!)
seq: list[Tuple[str, bool]] = []
seq: list[tuple[str, bool]] = []
def get_dot():
if self._dotall:

View File

@ -185,6 +185,8 @@ else:
fout.add_description("two-tower CLIP model")
if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
@ -259,8 +261,8 @@ if has_vision_encoder:
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue]
else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
@ -272,7 +274,7 @@ fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
model.vision_model.encoder.layers.pop(-1)
model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue]
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
@ -286,7 +288,7 @@ if has_llava_projector:
print("Projector tensors added\n")
state_dict = model.state_dict()
state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue]
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
# we don't need this

View File

@ -2,7 +2,9 @@ import argparse
import glob
import os
import torch
from safetensors.torch import load as safe_load, save as safe_save, safe_open, save_file
from safetensors import safe_open
from safetensors.torch import save_file
from typing import Any, ContextManager, cast
# Function to determine if file is a SafeTensor file
def is_safetensor_file(file_path):
@ -13,7 +15,7 @@ def is_safetensor_file(file_path):
def load_model(file_path):
if is_safetensor_file(file_path):
tensors = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f:
for key in f.keys():
tensors[key] = f.get_tensor(key).clone()
# output shape
@ -134,7 +136,7 @@ if len(mm_tensors) == 0:
if last_checkpoint is not None:
for k, v in last_checkpoint.items():
print(k)
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint)} tensors.")
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.")
print("No tensors found. Is this a LLaVA model?")
exit()
@ -143,8 +145,10 @@ print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
# projector = {name: checkpoint.[name].float() for name in mm_tensors}
projector = {}
for name in mm_tensors:
assert last_checkpoint is not None
projector[name] = last_checkpoint[name].float()
for name in first_mm_tensors:
assert first_checkpoint is not None
projector[name] = first_checkpoint[name].float()
if len(projector) > 0:

View File

@ -6,10 +6,10 @@ import re
from copy import copy
from enum import Enum
from inspect import getdoc, isclass
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin, get_type_hints
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin
from docstring_parser import parse
from pydantic import BaseModel, Field, create_model
from pydantic import BaseModel, create_model
if TYPE_CHECKING:
from types import GenericAlias
@ -17,6 +17,9 @@ else:
# python 3.8 compat
from typing import _GenericAlias as GenericAlias
# TODO: fix this
# pyright: reportAttributeAccessIssue=information
class PydanticDataType(Enum):
"""
@ -234,8 +237,9 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None
# Define the integer part rule
integer_part_rule = (
"integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + (
f"-min{min_digit}" if min_digit is not None else "")
"integer-part"
+ (f"-max{max_digit}" if max_digit is not None else "")
+ (f"-min{min_digit}" if min_digit is not None else "")
)
# Define the fractional part rule based on precision constraints
@ -458,7 +462,7 @@ def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[Bas
if not issubclass(model, BaseModel):
# For non-Pydantic classes, generate model_fields from __annotations__ or __init__
if hasattr(model, "__annotations__") and model.__annotations__:
model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()}
model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} # pyright: ignore[reportGeneralTypeIssues]
else:
init_signature = inspect.signature(model.__init__)
parameters = init_signature.parameters
@ -680,7 +684,7 @@ def generate_markdown_documentation(
str: Generated text documentation.
"""
documentation = ""
pyd_models = [(model, True) for model in pydantic_models]
pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models]
for model, add_prefix in pyd_models:
if add_prefix:
documentation += f"{model_prefix}: {model.__name__}\n"
@ -700,7 +704,7 @@ def generate_markdown_documentation(
# Indenting the fields section
documentation += f" {fields_prefix}:\n"
else:
documentation += f" Fields:\n"
documentation += f" Fields:\n" # noqa: F541
if isclass(model) and issubclass(model, BaseModel):
for name, field_type in model.__annotations__.items():
# if name == "markdown_code_block":
@ -778,7 +782,7 @@ def generate_field_markdown(
return field_text
if field_description != "":
field_text += f" Description: " + field_description + "\n"
field_text += f" Description: {field_description}\n"
# Check for and include field-specific examples if available
if hasattr(model, "Config") and hasattr(model.Config,
@ -833,7 +837,7 @@ def generate_text_documentation(
str: Generated text documentation.
"""
documentation = ""
pyd_models = [(model, True) for model in pydantic_models]
pyd_models: list[tuple[type[BaseModel], bool]] = [(model, True) for model in pydantic_models]
for model, add_prefix in pyd_models:
if add_prefix:
documentation += f"{model_prefix}: {model.__name__}\n"
@ -1164,7 +1168,7 @@ def create_dynamic_model_from_function(func: Callable[..., Any]):
dynamic_fields[param.name] = (
param.annotation if param.annotation != inspect.Parameter.empty else str, default_value)
# Creating the dynamic model
dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) # type: ignore[call-overload]
dynamic_model = create_model(f"{func.__name__}", **dynamic_fields)
for name, param_doc in param_docs:
dynamic_model.model_fields[name].description = param_doc.description
@ -1228,9 +1232,6 @@ def map_grammar_names_to_pydantic_model_class(pydantic_model_list):
return output
from enum import Enum
def json_schema_to_python_types(schema):
type_map = {
"any": Any,
@ -1275,7 +1276,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name:
if items != {}:
array = {"properties": items}
array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items")
fields[field_name] = (List[array_type], ...) # type: ignore[valid-type]
fields[field_name] = (List[array_type], ...)
else:
fields[field_name] = (list, ...)
elif field_type == "object":
@ -1285,7 +1286,8 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name:
required = field_data.get("enum", [])
for key, field in fields.items():
if key not in required:
fields[key] = (Optional[fields[key][0]], ...)
optional_type = fields[key][0]
fields[key] = (Optional[optional_type], ...)
else:
field_type = json_schema_to_python_types(field_type)
fields[field_name] = (field_type, ...)
@ -1305,6 +1307,7 @@ def convert_dictionary_to_pydantic_model(dictionary: dict[str, Any], model_name:
required = dictionary.get("required", [])
for key, field in fields.items():
if key not in required:
fields[key] = (Optional[fields[key][0]], ...)
optional_type = fields[key][0]
fields[key] = (Optional[optional_type], ...)
custom_model = create_model(model_name, **fields)
return custom_model

View File

@ -1,6 +1,7 @@
# Function calling example using pydantic models.
from __future__ import annotations
import datetime
import importlib
import json
from enum import Enum
from typing import Optional, Union
@ -215,9 +216,9 @@ for call in json_data:
if call["function"] == "Calculator":
print(Calculator(**call["params"]).run())
elif call["function"] == "get_current_datetime":
print(current_datetime_model(**call["params"]).run())
print(current_datetime_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue]
elif call["function"] == "get_current_weather":
print(current_weather_tool_model(**call["params"]).run())
print(current_weather_tool_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue]
# Should output something like this:
# 2024-01-14 13:36:06
# {"location": "London", "temperature": "42", "unit": "celsius"}

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import argparse
import json
import os
@ -59,10 +61,11 @@ def main(args_in: list[str] | None = None) -> None:
sys.exit(1)
# start the benchmark
iterations = 0
data = {}
try:
start_benchmark(args)
iterations = 0
with open("results.github.env", 'w') as github_env:
# parse output
with open('k6-results.json', 'r') as bench_results:
@ -129,7 +132,7 @@ def main(args_in: list[str] | None = None) -> None:
timestamps, metric_values = zip(*values)
metric_values = [float(value) for value in metric_values]
prometheus_metrics[metric] = metric_values
timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps]
plt.figure(figsize=(16, 10), dpi=80)
plt.plot(timestamps_dt, metric_values, label=metric)
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
@ -156,7 +159,7 @@ def main(args_in: list[str] | None = None) -> None:
plt.close()
# Mermaid format in case images upload failed
with (open(f"{metric}.mermaid", 'w') as mermaid_f):
with open(f"{metric}.mermaid", 'w') as mermaid_f:
mermaid = (
f"""---
config:
@ -278,7 +281,7 @@ def start_server_background(args):
}
server_process = subprocess.Popen(
args,
**pkwargs)
**pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b''):

View File

@ -1,5 +1,4 @@
import asyncio
import collections
import json
import os
import re
@ -8,19 +7,23 @@ import subprocess
import sys
import threading
import time
from collections.abc import Sequence
from contextlib import closing
from re import RegexFlag
from typing import Any, Literal, cast
import aiohttp
import numpy as np
import openai
from behave import step
from openai.types.chat import ChatCompletionChunk
from behave import step # pyright: ignore[reportAttributeAccessIssue]
from behave.api.async_step import async_run_until_complete
from prometheus_client import parser
# pyright: reportRedeclaration=false
@step("a server listening on {server_fqdn}:{server_port}")
def step_server_config(context, server_fqdn, server_port):
def step_server_config(context, server_fqdn: str, server_port: str):
context.server_fqdn = server_fqdn
context.server_port = int(server_port)
context.n_threads = None
@ -74,34 +77,34 @@ def step_server_config(context, server_fqdn, server_port):
@step('a model file {hf_file} from HF repo {hf_repo}')
def step_download_hf_model(context, hf_file, hf_repo):
def step_download_hf_model(context, hf_file: str, hf_repo: str):
context.model_hf_repo = hf_repo
context.model_hf_file = hf_file
context.model_file = os.path.basename(hf_file)
@step('a model file {model_file}')
def step_model_file(context, model_file):
def step_model_file(context, model_file: str):
context.model_file = model_file
@step('a model url {model_url}')
def step_model_url(context, model_url):
def step_model_url(context, model_url: str):
context.model_url = model_url
@step('a model alias {model_alias}')
def step_model_alias(context, model_alias):
def step_model_alias(context, model_alias: str):
context.model_alias = model_alias
@step('{seed:d} as server seed')
def step_seed(context, seed):
def step_seed(context, seed: int):
context.server_seed = seed
@step('{ngl:d} GPU offloaded layers')
def step_n_gpu_layer(context, ngl):
def step_n_gpu_layer(context, ngl: int):
if 'N_GPU_LAYERS' in os.environ:
new_ngl = int(os.environ['N_GPU_LAYERS'])
if context.debug:
@ -111,37 +114,37 @@ def step_n_gpu_layer(context, ngl):
@step('{n_threads:d} threads')
def step_n_threads(context, n_threads):
def step_n_threads(context, n_threads: int):
context.n_thread = n_threads
@step('{draft:d} as draft')
def step_draft(context, draft):
def step_draft(context, draft: int):
context.draft = draft
@step('{n_ctx:d} KV cache size')
def step_n_ctx(context, n_ctx):
def step_n_ctx(context, n_ctx: int):
context.n_ctx = n_ctx
@step('{n_slots:d} slots')
def step_n_slots(context, n_slots):
def step_n_slots(context, n_slots: int):
context.n_slots = n_slots
@step('{n_predict:d} server max tokens to predict')
def step_server_n_predict(context, n_predict):
def step_server_n_predict(context, n_predict: int):
context.n_server_predict = n_predict
@step('{slot_save_path} as slot save path')
def step_slot_save_path(context, slot_save_path):
def step_slot_save_path(context, slot_save_path: str):
context.slot_save_path = slot_save_path
@step('using slot id {id_slot:d}')
def step_id_slot(context, id_slot):
def step_id_slot(context, id_slot: int):
context.id_slot = id_slot
@ -191,7 +194,7 @@ def step_start_server(context):
@step("the server is {expecting_status}")
@async_run_until_complete
async def step_wait_for_the_server_to_be_started(context, expecting_status):
async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
match expecting_status:
case 'healthy':
await wait_for_health_status(context, context.base_url, 200, 'ok',
@ -221,7 +224,7 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
@step('all slots are {expected_slot_status_string}')
@async_run_until_complete
async def step_all_slots_status(context, expected_slot_status_string):
async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
match expected_slot_status_string:
case 'idle':
expected_slot_status = 0
@ -237,7 +240,7 @@ async def step_all_slots_status(context, expected_slot_status_string):
@step('a completion request with {api_error} api error')
@async_run_until_complete
async def step_request_completion(context, api_error):
async def step_request_completion(context, api_error: Literal['raised'] | str):
expect_api_error = api_error == 'raised'
seeds = await completions_seed(context, num_seeds=1)
completion = await request_completion(context.prompts.pop(),
@ -777,8 +780,8 @@ def step_assert_metric_value(context, metric_name, metric_value):
def step_available_models(context):
# openai client always expects an api_key
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
openai.api_base = f'{context.base_url}/v1'
context.models = openai.Model.list().data
openai.base_url = f'{context.base_url}/v1/'
context.models = openai.models.list().data
@step('{n_model:d} models are supported')
@ -789,7 +792,7 @@ def step_supported_models(context, n_model):
@step('model {i_model:d} is {param} {preposition} {param_value}')
def step_supported_models(context, i_model, param, preposition, param_value):
def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
assert i_model < len(context.models)
model = context.models[i_model]
@ -798,7 +801,7 @@ def step_supported_models(context, i_model, param, preposition, param_value):
case 'identified':
value = model.id
case 'trained':
value = str(model.meta.n_ctx_train)
value = str(model.meta["n_ctx_train"])
case _:
assert False, "param {param} not supported"
assert param_value == value, f"model param {param} {value} != {param_value}"
@ -810,6 +813,7 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
print(f"starting {context.n_prompts} concurrent completion requests...")
assert context.n_prompts > 0
seeds = await completions_seed(context)
assert seeds is not None
for prompt_no in range(context.n_prompts):
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
@ -861,7 +865,7 @@ async def request_completion(prompt,
id_slot=None,
expect_api_error=None,
user_api_key=None,
temperature=None):
temperature=None) -> int | dict[str, Any]:
if debug:
print(f"Sending completion request: {prompt}")
origin = "my.super.domain"
@ -899,8 +903,8 @@ async def request_completion(prompt,
async def oai_chat_completions(user_prompt,
seed,
system_prompt,
base_url,
base_path,
base_url: str,
base_path: str,
async_client,
debug=False,
temperature=None,
@ -909,7 +913,7 @@ async def oai_chat_completions(user_prompt,
enable_streaming=None,
response_format=None,
user_api_key=None,
expect_api_error=None):
expect_api_error=None) -> int | dict[str, Any]:
if debug:
print(f"Sending OAI Chat completions request: {user_prompt}")
# openai client always expects an api key
@ -989,32 +993,35 @@ async def oai_chat_completions(user_prompt,
else:
try:
openai.api_key = user_api_key
openai.api_base = f'{base_url}{base_path}'
chat_completion = openai.Completion.create(
openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
assert model is not None
chat_completion = openai.chat.completions.create(
messages=payload['messages'],
model=model,
max_tokens=n_predict,
stream=enable_streaming,
response_format=payload.get('response_format'),
response_format=payload.get('response_format') or openai.NOT_GIVEN,
seed=seed,
temperature=payload['temperature']
)
except openai.error.AuthenticationError as e:
except openai.AuthenticationError as e:
if expect_api_error is not None and expect_api_error:
return 401
else:
assert False, f'error raised: {e}'
if enable_streaming:
chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
for chunk in chat_completion:
assert len(chunk.choices) == 1
delta = chunk.choices[0].delta
if 'content' in delta:
completion_response['content'] += delta['content']
if delta.content is not None:
completion_response['content'] += delta.content
completion_response['timings']['predicted_n'] += 1
completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
else:
assert len(chat_completion.choices) == 1
assert chat_completion.usage is not None
completion_response = {
'content': chat_completion.choices[0].message.content,
'timings': {
@ -1028,7 +1035,7 @@ async def oai_chat_completions(user_prompt,
return completion_response
async def request_embedding(content, seed, base_url=None):
async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/embedding',
json={
@ -1041,7 +1048,7 @@ async def request_embedding(content, seed, base_url=None):
async def request_oai_embeddings(input, seed,
base_url=None, user_api_key=None,
model=None, async_client=False):
model=None, async_client=False) -> list[list[float]]:
# openai client always expects an api_key
user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client:
@ -1063,7 +1070,7 @@ async def request_oai_embeddings(input, seed,
response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list'
if isinstance(input, collections.abc.Sequence):
if isinstance(input, Sequence):
embeddings = []
for an_oai_embeddings in response_json['data']:
embeddings.append(an_oai_embeddings['embedding'])
@ -1072,19 +1079,14 @@ async def request_oai_embeddings(input, seed,
return embeddings
else:
openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1'
oai_embeddings = openai.Embedding.create(
openai.base_url = f'{base_url}/v1/'
assert model is not None
oai_embeddings = openai.embeddings.create(
model=model,
input=input,
)
if isinstance(input, collections.abc.Sequence):
embeddings = []
for an_oai_embeddings in oai_embeddings.data:
embeddings.append(an_oai_embeddings.embedding)
else:
embeddings = [oai_embeddings.data.embedding]
return embeddings
return [e.embedding for e in oai_embeddings.data]
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
@ -1343,7 +1345,7 @@ def start_server_background(context):
}
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],
**pkwargs)
**pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b''):

View File

@ -1,6 +1,6 @@
aiohttp~=3.9.3
behave~=1.2.6
huggingface_hub~=0.20.3
numpy~=1.24.4
openai~=0.25.0
numpy~=1.26.4
openai~=1.30.3
prometheus-client~=0.20.0

View File

@ -1,13 +1,15 @@
import asyncio
import asyncio.threads
import requests
import numpy as np
n = 8
result = []
async def requests_post_async(*args, **kwargs):
return await asyncio.to_thread(requests.post, *args, **kwargs)
return await asyncio.threads.to_thread(requests.post, *args, **kwargs)
async def main():
model_url = "http://127.0.0.1:6900"

View File

@ -66,7 +66,7 @@ class Tensor:
if len(self.ne) == 0:
self.nbytes = 0
else:
self.nbytes = int(np.product(self.ne)) * 4
self.nbytes = int(np.prod(self.ne)) * 4
else:
raise ValueError(f"Unhandled data type '{self.dtype}'")

View File

@ -99,6 +99,8 @@ async def main():
tasks = []
base_dict = {"FLOAT_TYPE": "float"}
for fp16 in (False, True):
# MUL_MAT
matmul_shaders(tasks, fp16, False)
@ -106,8 +108,6 @@ async def main():
matmul_shaders(tasks, fp16, True)
for tname in type_names:
base_dict = {"FLOAT_TYPE": "float"}
# mul mat vec
data_a_key = f"DATA_A_{tname.upper()}"
shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp"

View File

@ -67,7 +67,7 @@ class ReaderTensor(NamedTuple):
class GGUFReader:
# I - same as host, S - swapped
byte_order: Literal['I'] | Literal['S'] = 'I'
byte_order: Literal['I', 'S'] = 'I'
alignment: int = GGUF_DEFAULT_ALIGNMENT
data_offset: int
@ -86,7 +86,7 @@ class GGUFReader:
GGUFValueType.BOOL: np.bool_,
}
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'):
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'):
self.data = np.memmap(path, mode = mode)
offs = 0
@ -140,7 +140,7 @@ class GGUFReader:
return self.tensors[idx]
def _get(
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None,
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None,
) -> npt.NDArray[Any]:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)

View File

@ -16,16 +16,16 @@ logger = logging.getLogger(__name__)
class LazyMeta(ABCMeta):
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
def __getattr__(self, __name: str) -> Any:
meta_attr = getattr(self._meta, __name)
def __getattr__(self, name: str) -> Any:
meta_attr = getattr(self._meta, name)
if callable(meta_attr):
return type(self)._wrap_fn(
(lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)),
(lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
use_self=self,
)
elif isinstance(meta_attr, self._tensor_type):
# e.g. self.T with torch.Tensor should still be wrapped
return type(self)._wrap_fn(lambda s: getattr(s, __name))(self)
return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
else:
# no need to wrap non-tensor properties,
# and they likely don't depend on the actual contents of the tensor
@ -141,19 +141,21 @@ class LazyBase(ABC, metaclass=LazyMeta):
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type):
def collect_replace(t: LazyBase):
if collect_replace.shared_lazy is None:
collect_replace.shared_lazy = t._lazy
else:
collect_replace.shared_lazy.extend(t._lazy)
t._lazy = collect_replace.shared_lazy
class CollectSharedLazy:
# emulating a static variable
collect_replace.shared_lazy = None
shared_lazy: None | deque[LazyBase] = None
LazyBase._recurse_apply(args, collect_replace)
@staticmethod
def collect_replace(t: LazyBase):
if CollectSharedLazy.shared_lazy is None:
CollectSharedLazy.shared_lazy = t._lazy
else:
CollectSharedLazy.shared_lazy.extend(t._lazy)
t._lazy = CollectSharedLazy.shared_lazy
shared_lazy = collect_replace.shared_lazy
LazyBase._recurse_apply(args, CollectSharedLazy.collect_replace)
shared_lazy = CollectSharedLazy.shared_lazy
return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs))
else:
@ -184,6 +186,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
lt._data = lt._func(lt._args)
# sanity check
assert lt._data is not None
assert lt._data.dtype == lt._meta.dtype
assert lt._data.shape == lt._meta.shape

View File

@ -1,3 +1,5 @@
# pyright: reportUnusedImport=false
from .gguf_convert_endian import main as gguf_convert_endian_entrypoint
from .gguf_dump import main as gguf_dump_entrypoint
from .gguf_set_metadata import main as gguf_set_metadata_entrypoint

View File

@ -63,9 +63,9 @@ def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar) -> None:
bar.update(sum_weights_in_tensor)
sha1_layer = hashlib.sha1()
sha1_layer.update(tensor.data)
sha1.update(tensor.data)
uuidv5_sha1.update(tensor.data)
sha1_layer.update(tensor.data.data)
sha1.update(tensor.data.data)
uuidv5_sha1.update(tensor.data.data)
print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100
# Flush Hash Progress Bar

View File

@ -1,4 +1,6 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os

View File

@ -1,4 +1,4 @@
import gguf # noqa: F401
import gguf # noqa: F401 # pyright: ignore[reportUnusedImport]
# TODO: add tests

View File

@ -1,3 +1,21 @@
{
"extraPaths": ["gguf-py"],
}
"pythonVersion": "3.9",
"pythonPlatform": "All",
"reportUnusedImport": "warning",
"reportDuplicateImport": "error",
"reportDeprecated": "warning",
"reportUnnecessaryTypeIgnoreComment": "warning",
"executionEnvironments": [
{
// TODO: make this version override work correctly
"root": "gguf-py",
"pythonVersion": "3.8",
},
{
// uses match expressions in steps.py
"root": "examples/server/tests",
"pythonVersion": "3.10",
},
],
}

View File

@ -0,0 +1,12 @@
-r ../examples/llava/requirements.txt
-r ../examples/server/bench/requirements.txt
-r ../examples/server/tests/requirements.txt
-r ./requirements-compare-llama-bench.txt
-r ./requirements-pydantic.txt
-r ./requirements-test-tokenizer-random.txt
-r ./requirements-convert_hf_to_gguf.txt
-r ./requirements-convert_hf_to_gguf_update.txt
-r ./requirements-convert_legacy_llama.txt
-r ./requirements-convert_llama_ggml_to_gguf.txt

View File

@ -0,0 +1,2 @@
tabulate~=0.9.0
GitPython~=3.1.43

View File

@ -0,0 +1,2 @@
docstring_parser~=0.15
pydantic~=2.6.3

View File

@ -0,0 +1 @@
cffi~=1.16.0

View File

@ -108,6 +108,11 @@ check_convert_script() {
fatal "$py missing requirements. Expected: $reqs"
fi
# Check that all sub-requirements are added to top-level requirements.txt
if ! grep -qF "$reqs" requirements.txt; then
fatal "$reqs needs to be added to requirements.txt"
fi
local venv="$workdir/$pyname-venv"
python3 -m venv "$venv"
@ -134,12 +139,7 @@ EOF
readonly ignore_eq_eq='check_requirements: ignore "=="'
for req in "$reqs_dir"/*; do
# Check that all sub-requirements are added to top-level requirements.txt
if ! grep -qF "$req" requirements.txt; then
fatal "$req needs to be added to requirements.txt"
fi
for req in */**/requirements*.txt; do
# Make sure exact release versions aren't being pinned in the requirements
# Filters out the ignore string
if grep -vF "$ignore_eq_eq" "$req" | grep -q '=='; then

View File

@ -123,13 +123,13 @@ builds = cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
try:
repo = git.Repo(".", search_parent_directories=True)
except git.exc.InvalidGitRepositoryError:
except git.InvalidGitRepositoryError:
repo = None
def find_parent_in_data(commit):
def find_parent_in_data(commit: git.Commit):
"""Helper function to find the most recent parent measured in number of commits for which there is data."""
heap = [(0, commit)]
heap: list[tuple[int, git.Commit]] = [(0, commit)]
seen_hexsha8 = set()
while heap:
depth, current_commit = heapq.heappop(heap)
@ -144,7 +144,7 @@ def find_parent_in_data(commit):
return None
def get_all_parent_hexsha8s(commit):
def get_all_parent_hexsha8s(commit: git.Commit):
"""Helper function to recursively get hexsha8 values for all parents of a commit."""
unvisited = [commit]
visited = []

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import array
import unicodedata
import requests
@ -133,7 +135,7 @@ table_nfd.sort()
# group ranges with same flags
ranges_flags = [(0, codepoint_flags[0])] # start, flags
ranges_flags: list[tuple[int, int]] = [(0, codepoint_flags[0])] # start, flags
for codepoint, flags in enumerate(codepoint_flags):
if flags != ranges_flags[-1][1]:
ranges_flags.append((codepoint, flags))
@ -141,11 +143,11 @@ ranges_flags.append((MAX_CODEPOINTS, 0x0000))
# group ranges with same nfd
ranges_nfd = [(0, 0, 0)] # start, last, nfd
ranges_nfd: list[tuple[int, int, int]] = [(0, 0, 0)] # start, last, nfd
for codepoint, norm in table_nfd:
start = ranges_nfd[-1][0]
if ranges_nfd[-1] != (start, codepoint - 1, norm):
ranges_nfd.append(None)
ranges_nfd.append(None) # type: ignore[arg-type] # dummy, will be replaced below
start = codepoint
ranges_nfd[-1] = (start, codepoint, norm)
@ -179,13 +181,13 @@ for codepoint in table_whitespace:
out("};\n")
out("const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {")
for tuple in table_lowercase:
out("{0x%06X, 0x%06X}," % tuple)
for tuple_lw in table_lowercase:
out("{0x%06X, 0x%06X}," % tuple_lw)
out("};\n")
out("const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase = {")
for tuple in table_uppercase:
out("{0x%06X, 0x%06X}," % tuple)
for tuple_up in table_uppercase:
out("{0x%06X, 0x%06X}," % tuple_up)
out("};\n")
out("const std::vector<range_nfd> unicode_ranges_nfd = { // start, last, nfd")

View File

@ -6,6 +6,8 @@
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#
from __future__ import annotations
import time
import logging
import argparse
@ -13,7 +15,9 @@ import subprocess
import random
import unicodedata
from typing import Iterator
from pathlib import Path
from typing import Any, Iterator, cast
from typing_extensions import Buffer
import cffi
from transformers import AutoTokenizer
@ -28,15 +32,15 @@ class LibLlama:
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str = None, path_includes: list[str] = [], path_libllama: str = None):
def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str):
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
@ -68,7 +72,7 @@ class LibLlama:
class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
self.lib = libllama.lib
self.lib: Any = libllama.lib
self.ffi = libllama.ffi
if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams)
@ -94,11 +98,11 @@ class LibLlamaModel:
self.lib = None
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
text = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
encoded_text: bytes = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
while num < 0 and len(self.token_ids) < (16 << 20):
self.token_ids = self.ffi.new("llama_token[]", -2 * num)
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num])
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
@ -110,7 +114,7 @@ class LibLlamaModel:
while num < 0 and len(self.text_buff) < (16 << 20):
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
class Tokenizer:
@ -152,7 +156,7 @@ class TokenizerGroundtruth (Tokenizer):
class TokenizerLlamaCpp (Tokenizer):
libllama: LibLlama = None
libllama: LibLlama | None = None
def __init__(self, vocab_file: str):
if not self.libllama:
@ -404,7 +408,7 @@ def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]):
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
@ -433,7 +437,7 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
decode_errors = 0
MAX_ERRORS = 10
logger.info("%s: %s" % (generator.__name__, "ini"))
logger.info("%s: %s" % (generator.__qualname__, "ini"))
for text in generator:
# print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode())
@ -472,13 +476,13 @@ def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLl
break
t_total = time.perf_counter() - t_start
logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] = None):
def main(argv: list[str] | None = None):
parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(argv)
@ -520,7 +524,7 @@ if __name__ == "__main__":
format = "%(levelname)s %(message)s",
)
path_tokenizers = "./models/tokenizers/"
path_tokenizers = Path("./models/tokenizers/")
path_vocab_format = "./models/ggml-vocab-%s.gguf"
tokenizers = [
@ -556,6 +560,6 @@ if __name__ == "__main__":
for tokenizer in tokenizers:
logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = path_vocab_format % tokenizer
dir_tokenizer = path_tokenizers + "/" + tokenizer
main([vocab_file, dir_tokenizer, "--verbose"])
vocab_file = Path(path_vocab_format % tokenizer)
dir_tokenizer = path_tokenizers / tokenizer
main([str(vocab_file), str(dir_tokenizer), "--verbose"])