mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
llama : add option to render special/control tokens (#6807)
* make : fix common dep on llama.h * llama : add option to render special tokens * readme : add API change notice ggml-ci * swift : fix build
This commit is contained in:
parent
b9cc76d87e
commit
40f74e4d73
2
Makefile
2
Makefile
@ -699,7 +699,7 @@ OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
|
||||
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h llama.h
|
||||
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o json-schema-to-grammar.o
|
||||
|
||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||
|
@ -10,6 +10,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
### Recent API changes
|
||||
|
||||
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
||||
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
|
||||
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
|
||||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
|
@ -2328,10 +2328,10 @@ std::vector<llama_token> llama_tokenize(
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
@ -229,7 +229,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||
var result = [CChar](repeating: 0, count: 8)
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false)
|
||||
if nTokens < 0 {
|
||||
let actualTokensCount = -Int(nTokens)
|
||||
result = .init(repeating: 0, count: actualTokensCount)
|
||||
@ -237,7 +237,8 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
|
||||
model,
|
||||
token,
|
||||
&result,
|
||||
Int32(result.count)
|
||||
Int32(result.count),
|
||||
false
|
||||
)
|
||||
assert(check == actualTokensCount)
|
||||
} else {
|
||||
|
@ -322,7 +322,7 @@ actor LlamaContext {
|
||||
defer {
|
||||
result.deallocate()
|
||||
}
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8)
|
||||
let nTokens = llama_token_to_piece(model, token, result, 8, false)
|
||||
|
||||
if nTokens < 0 {
|
||||
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
|
||||
@ -330,7 +330,7 @@ actor LlamaContext {
|
||||
defer {
|
||||
newResult.deallocate()
|
||||
}
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
|
||||
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, false)
|
||||
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
|
||||
return Array(bufferPointer)
|
||||
} else {
|
||||
|
25
llama.cpp
25
llama.cpp
@ -1600,12 +1600,12 @@ struct llama_mlock {
|
||||
};
|
||||
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
|
||||
|
||||
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
}
|
||||
else {
|
||||
@ -13312,7 +13312,8 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
|
||||
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
const llama_token id = candidates->data[i].id;
|
||||
const std::string piece = llama_token_to_piece(ctx, id);
|
||||
const std::string piece = llama_token_to_piece(ctx, id, false);
|
||||
|
||||
if (llama_token_is_eog(&ctx->model, id)) {
|
||||
if (!allow_eog) {
|
||||
candidates->data[i].logit = -INFINITY;
|
||||
@ -13512,7 +13513,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const std::string piece = llama_token_to_piece(ctx, token);
|
||||
const std::string piece = llama_token_to_piece(ctx, token, false);
|
||||
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
|
||||
@ -16991,7 +16992,7 @@ static std::string llama_decode_text(const std::string & text) {
|
||||
}
|
||||
|
||||
// does not write null-terminator to buf
|
||||
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
|
||||
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
|
||||
if (0 <= token && token < llama_n_vocab(model)) {
|
||||
switch (llama_vocab_get_type(model->vocab)) {
|
||||
case LLAMA_VOCAB_TYPE_WPM:
|
||||
@ -17006,7 +17007,9 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
||||
}
|
||||
memcpy(buf, result.c_str(), result.length());
|
||||
return result.length();
|
||||
} else if (llama_is_user_defined_token(model->vocab, token)) {
|
||||
} else if (
|
||||
(llama_is_user_defined_token(model->vocab, token)) ||
|
||||
(llama_is_control_token (model->vocab, token) && special)) {
|
||||
std::string result = model->vocab.id_to_token[token].text;
|
||||
if (length < (int) result.length()) {
|
||||
return -(int) result.length();
|
||||
@ -17019,8 +17022,6 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
||||
}
|
||||
memcpy(buf, "\xe2\x96\x85", 3);
|
||||
return 3;
|
||||
} else if (llama_is_control_token(model->vocab, token)) {
|
||||
;
|
||||
} else if (llama_is_byte_token(model->vocab, token)) {
|
||||
if (length < 1) {
|
||||
return -1;
|
||||
@ -17041,15 +17042,15 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
||||
}
|
||||
memcpy(buf, result.c_str(), result.length());
|
||||
return result.length();
|
||||
} else if (llama_is_user_defined_token(model->vocab, token)) {
|
||||
} else if (
|
||||
(llama_is_user_defined_token(model->vocab, token)) ||
|
||||
(llama_is_control_token (model->vocab, token) && special)) {
|
||||
std::string result = model->vocab.id_to_token[token].text;
|
||||
if (length < (int) result.length()) {
|
||||
return -(int) result.length();
|
||||
}
|
||||
memcpy(buf, result.c_str(), result.length());
|
||||
return result.length();
|
||||
} else if (llama_is_control_token(model->vocab, token)) {
|
||||
;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
4
llama.h
4
llama.h
@ -828,11 +828,13 @@ extern "C" {
|
||||
// Uses the vocabulary in the provided context.
|
||||
// Does not write null terminator to the buffer.
|
||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||
// @param special If true, special tokens are rendered in the output.
|
||||
LLAMA_API int32_t llama_token_to_piece(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int32_t length);
|
||||
int32_t length,
|
||||
bool special);
|
||||
|
||||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||||
|
Loading…
Reference in New Issue
Block a user