10+% performance improvement of ggml_vec_dot_q4_0 on AVX2 (#654)

* Performance improvement of AVX2 code
* Fixed problem with MSVC compiler
* Reviewer comments: removed double semicolon, deleted empty line 1962
This commit is contained in:
SebastianApel 2023-04-03 09:52:28 +02:00 committed by GitHub
parent cd7fa95690
commit 437e77855a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

81
ggml.c
View File

@ -1962,41 +1962,70 @@ static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * rest
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
/* Prepare the constants we will need during execution */
const __m256i lowMask = _mm256_set1_epi8( 0xF );
const __m256i offset_8 = _mm256_set1_epi16( 8 );
#define UNROLL_COUNT 8
// make sure we only unroll multiples of the block count
assert(nb % UNROLL_COUNT == 0);
// Main loop
// TODO: figure a way to do this in a portable way
#ifdef __GNUC__
#pragma GCC unroll 16
#endif
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
for (int i = 0; i < nb; i+=UNROLL_COUNT) {
// Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
__m256i bx = bytesFromNibbles( x[i].qs );
__m256i by = bytesFromNibbles( y[i].qs );
// This loop will be unrolled by the compiler
for (int u=0;u<UNROLL_COUNT;u++) {
/* Compute combined scale for the block */
const __m256 scale = _mm256_mul_ps(
_mm256_broadcast_ss( &x[i+u].d ),
_mm256_broadcast_ss( &y[i+u].d ) );
// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
const __m256i off = _mm256_set1_epi8( 8 );
bx = _mm256_sub_epi8( bx, off );
by = _mm256_sub_epi8( by, off );
/* get input from x
Input: 32 Nibbles (16 bytes) at *x[i+u]
Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
// Get absolute values of x vectors
const __m256i ax = _mm256_sign_epi8(bx, bx);
/* Load 16 bytes from memory */
const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
/* Expand bytes into uint16_t values */
const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
/* Unpack values into individual bytes */
__m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
__m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
/* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
// Sign the values of the y vectors
const __m256i sy = _mm256_sign_epi8(by, bx);
/* get input from y
Input: 32 Nibbles (16 bytes) at *y[i+u]
Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
// Perform multiplication and create 16-bit values
const __m256i dot = _mm256_maddubs_epi16(ax, sy);
/* Load 16 bytes from memory */
const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
/* Expand bytes into uint16_t values */
const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
/* Unpack values into individual bytes */
const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
__m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
__m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
/* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
const __m256i ones = _mm256_set1_epi16(1);
const __m256i i32 = _mm256_madd_epi16(ones, dot);
/* Compute products of int16_t integers, add pairwise, store as int32_t */
__m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
__m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
// Convert int32_t to float
const __m256 p = _mm256_cvtepi32_ps( i32 );
/* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
__m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
/* Convert to vectore of 8 int32_t to 8 floats */
__m256 q = _mm256_cvtepi32_ps( xy_q );
/* Multiply q with scale and accumulate */
acc = _mm256_fmadd_ps( scale, q, acc );
}
// Apply the scale, and accumulate
acc = _mm256_fmadd_ps( d, p, acc );
}
// Return horizontal sum of the acc vector