mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 02:14:35 +00:00
Add support for sqrt on CUDA (#7953)
* cuda sqrt support * enable cuda in pca * fix comments in pca * add test * add sqrt to ggml_backend_cuda_supports_op * fix test * new line * Use F32 sqrtf instead of F64 sqrt Co-authored-by: Johannes Gäßler <johannesg@5d6.de> --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
parent
19b7a836f6
commit
43b35e38ba
@ -64,15 +64,15 @@ struct pca_model {
|
||||
struct ggml_tensor * dev_eigenvector;
|
||||
|
||||
pca_model(struct ggml_tensor * t_input) {
|
||||
// TODO: enable GPU support when support for GGML_OP_SQRT is added
|
||||
// #ifdef GGML_USE_CUDA
|
||||
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
// backend = ggml_backend_cuda_init(0); // init device 0
|
||||
// if (!backend) {
|
||||
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
// }
|
||||
// #endif
|
||||
#ifdef GGML_USE_CUDA
|
||||
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
backend = ggml_backend_cuda_init(0); // init device 0
|
||||
if (!backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
// TODO: enable Metal support when support for GGML_OP_SQRT is added
|
||||
// #ifdef GGML_USE_METAL
|
||||
// fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
// backend = ggml_backend_metal_init();
|
||||
|
@ -2267,6 +2267,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_SQR:
|
||||
ggml_cuda_op_sqr(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQRT:
|
||||
ggml_cuda_op_sqrt(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
ggml_cuda_op_clamp(ctx, dst);
|
||||
break;
|
||||
@ -2830,6 +2833,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
|
@ -92,6 +92,15 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
||||
dst[i] = x[i] * x[i];
|
||||
}
|
||||
|
||||
static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = sqrtf(x[i]);
|
||||
}
|
||||
|
||||
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
||||
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
@ -142,6 +151,11 @@ static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
|
||||
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
|
||||
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
@ -284,3 +298,17 @@ void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
@ -8,6 +8,7 @@
|
||||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
#define CUDA_SQRT_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@ -28,3 +29,5 @@ void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -1063,6 +1063,33 @@ struct test_sqr : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SQRT
|
||||
struct test_sqrt : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR2(type, ne);
|
||||
}
|
||||
|
||||
test_sqrt(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10})
|
||||
: type(type), ne(ne) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * out = ggml_sqrt(ctx, a);
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
// fill with positive values
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
init_tensor_uniform(t, 0.0f, 100.0f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_CLAMP
|
||||
struct test_clamp : public test_case {
|
||||
const ggml_type type;
|
||||
@ -2200,6 +2227,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_sqr());
|
||||
test_cases.emplace_back(new test_sqrt());
|
||||
test_cases.emplace_back(new test_clamp());
|
||||
|
||||
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
|
||||
|
Loading…
Reference in New Issue
Block a user