From 44c117f41ee01c5ac8fb86bba041f08d8b87b46d Mon Sep 17 00:00:00 2001 From: xaedes Date: Mon, 28 Aug 2023 21:51:47 +0200 Subject: [PATCH] train : mem usage and other improvements (#2439) * fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add missing lctx argument to get_example_targets_batch * implement llama model file saving using gguf checkpoint loading and saving disabled, to be replaced by loading and saving via gguf * implement loading/saving of checkpointing files using GGUF * bug fixes * add checkpoint file version for future compatibility * update readme with gguf filenames * save & load opt->just_initialized value * add first draft for checkpoint conversion script * add gguf arch and ftype * save opt parameter counter as uint64 * add gguf key and tensor names for optimizer and training * add layer_norm_rms_eps to checkpoint convert script * use same GGUF_GET_KEY macro as in llama.cpp * use norm_rms_eps, and rope parameters and command line options to set them * fix memory corruption bug in gguf ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free. to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function. so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying and freeing the old data. * add gguf example cmake file * bug fixes in tokenize_file * bug fixes in load_llama_model_gguf * bug fix: init model when no checkpoint was loaded * bug fix in read_tensor_by_name * bug fix in load_opt_context_gguf * avoid printing lots of spaced on the unusual case that loss gets nan * set name of tensors with empty name from what was read from gguf * remove trailing whitespace * print data checksums before saving and after loading to verify correctness * bug fixes for convert-train-checkpoint-to-gguf * temporarily add code to write old checkpoint files used to verify that old checkpoint files are correctly converted to gguf * bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0 * remove code used to verify correctness of checkpoint file conversion * remove trailing whitespace * remove prediction related code use main for prediction, it is better optimized * update train-text-from-scratch README.md * fix non-windows GGML_ALIGNED_REALLOC * add missing blank line at end of file * remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos * train : fix compile warnings --------- Co-authored-by: Georgi Gerganov --- common/common.cpp | 5 +- .../convert-llama2c-to-ggml.cpp | 1 - examples/gguf/CMakeLists.txt | 5 + examples/train-text-from-scratch/README.md | 14 +- .../convert-train-checkpoint-to-gguf.py | 492 +++ .../train-text-from-scratch.cpp | 3502 ++++++----------- ggml-alloc.c | 4 + ggml.c | 335 +- ggml.h | 29 +- llama.cpp | 9 +- tests/test-grad0.cpp | 52 +- 11 files changed, 1940 insertions(+), 2508 deletions(-) create mode 100644 examples/gguf/CMakeLists.txt create mode 100644 examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py diff --git a/common/common.cpp b/common/common.cpp index 4a0d43c13..90fe2e84e 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -15,6 +15,7 @@ #include #include #include +#include #if defined(__APPLE__) && defined(__MACH__) #include @@ -938,8 +939,8 @@ std::string get_sortable_timestamp() { const int64_t ns = std::chrono::duration_cast( current_time.time_since_epoch() % 1000000000).count(); - char timestamp_ns[10]; - snprintf(timestamp_ns, 11, "%09ld", ns); + char timestamp_ns[11]; + snprintf(timestamp_ns, 11, "%09" PRId64, ns); return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } diff --git a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp index 51d90ea6a..e9e070b1f 100644 --- a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +++ b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp @@ -681,7 +681,6 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod // for rms-att-weight int row_length = model->hparams.n_embd; - const auto & hparams = model->hparams; int n_ff = model->hparams.n_ff; for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ diff --git a/examples/gguf/CMakeLists.txt b/examples/gguf/CMakeLists.txt new file mode 100644 index 000000000..7d1806af3 --- /dev/null +++ b/examples/gguf/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET gguf) +add_executable(${TARGET} gguf.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md index 726ec47c0..f4ffcd987 100644 --- a/examples/train-text-from-scratch/README.md +++ b/examples/train-text-from-scratch/README.md @@ -8,15 +8,15 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s # train ./bin/train-text-from-scratch \ - --vocab-model ../models/ggml-vocab.bin \ + --vocab-model ../models/ggml-vocab-llama.gguf \ --ctx 64 --embd 256 --head 8 --layer 16 \ - --checkpoint-in chk-shakespeare-256x16.bin \ - --checkpoint-out chk-shakespeare-256x16.bin \ - --model-out ggml-shakespeare-256x16-f32.bin \ + --checkpoint-in chk-shakespeare-256x16.gguf \ + --checkpoint-out chk-shakespeare-256x16.gguf \ + --model-out ggml-shakespeare-256x16-f32.gguf \ --train-data "shakespeare.txt" \ - -t 6 -b 16 -n 32 --seed 1 --adam-iter 16 \ - --print-details-interval 0 --predict 16 --use-flash + -t 6 -b 16 --seed 1 --adam-iter 256 \ + --no-checkpointing # predict -./bin/main -m ggml-shakespeare-256x16-f32.bin +./bin/main -m ggml-shakespeare-256x16-f32.gguf ``` diff --git a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py new file mode 100644 index 000000000..01b3ee92a --- /dev/null +++ b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py @@ -0,0 +1,492 @@ +#!/usr/bin/env python3 +# train-text-from-scratch checkpoint --> gguf conversion + +import argparse +import gguf +import os +import struct +import sys +import numpy as np +from pathlib import Path + +# gguf constants +LLM_KV_OPTIMIZER_TYPE = "optimizer.type" +LLM_KV_OPTIMIZER_TYPE_ADAM = "adam" +LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs" +LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version" +LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count" +LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count" +LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count" +LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized" +LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss" +LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss" +LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count" +LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count" +LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end" +LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count" + +LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments" +LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments" +LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values" + +LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters" +LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters" +LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients" +LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients" +LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction" +LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y" + +LLM_KV_TRAINING_FILE_VERSION = "training.file_version" +LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" +LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" +LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" + +class Tensor: + def __init__(self, dtype='f', ne=None): + if ne is None: + ne = [] + self.dtype = dtype + self.ne = ne + self.nbytes = 0 + if self.dtype == 'f': + if len(self.ne) == 0: + self.nbytes = 0 + else: + self.nbytes = int(np.product(self.ne)) * 4 + else: + raise ValueError(f"Unhandled data type '{self.dtype}'") + + def load(self, data, offset): + nd = struct.unpack(' 0 else []) + + self.lbfgs_x = Tensor('f', [self.nx]) + self.lbfgs_xp = Tensor('f', [self.nx]) + self.lbfgs_g = Tensor('f', [self.nx]) + self.lbfgs_gp = Tensor('f', [self.nx]) + self.lbfgs_d = Tensor('f', [self.nx]) + self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else []) + self.lbfgs_lmal = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lmys = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m]) + self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m]) + + if self.type == 0: + # these tensors are stored, but we don't need their data + x = Tensor('f', [self.nx]) + g = Tensor('f', [self.nx]) + g2 = Tensor('f', [self.nx]) + mh = Tensor('f', [self.nx]) + vh = Tensor('f', [self.nx]) + + offset = x.load(data, offset) + offset = g.load(data, offset) + offset = g2.load(data, offset) + offset = self.adam_m.load(data, offset) + offset = self.adam_v.load(data, offset) + offset = mh.load(data, offset) + offset = vh.load(data, offset) + offset = self.adam_pf.load(data, offset) + + self.adam_fx_best = struct.unpack(' 0 else []) + + self.lbfgs_x = Tensor('f', [self.nx]) + self.lbfgs_xp = Tensor('f', [self.nx]) + self.lbfgs_g = Tensor('f', [self.nx]) + self.lbfgs_gp = Tensor('f', [self.nx]) + self.lbfgs_d = Tensor('f', [self.nx]) + self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else []) + self.lbfgs_lmal = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lmys = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m]) + self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m]) + + # forgot to save type in version 1: + # guess self.type from number of remaining bytes + size_type_0 = 12 + sum([t.max_storage_size() for t in + [self.adam_m, self.adam_v] + +([self.adam_pf] if (self.past > 0) else [])]) + size_type_1 = 24 + sum([t.max_storage_size() for t in + [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g, + self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf, + self.lbfgs_lmal, self.lbfgs_lmys, + self.lbfgs_lms, self.lbfgs_lmy] + +([self.lbfgs_pf] if (self.past > 0) else [])]) + # due to alignment padding the size might not by exact + # but the difference in size for both types is significant, + # so we can just use whichever is closest + remaining = len(data) - offset + if abs(remaining - size_type_0) < abs(remaining - size_type_1): + self.type = 0 + else: + self.type = 1 + + if self.type == 0: + offset = self.adam_m.load(data, offset) + offset = self.adam_v.load(data, offset) + offset = self.adam_pf.load(data,offset) + + self.adam_fx_best = struct.unpack(' 0: + self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES) + + elif self.type == 1: + gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS) + gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m) + gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best) + gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end) + gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement) + + self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS) + self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS) + self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS) + self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS) + self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION) + if self.past > 0: + self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES) + self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA) + self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS) + self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S) + self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y) + else: + raise ValueError('Unknown optimizer type') + +class ModelParams: + def __init__(self): + pass + + def load(self, data, offset): + self.n_vocab = struct.unpack(' @@ -17,8 +18,6 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -static const float rms_norm_eps = 1e-5f; - struct random_normal_distribution { std::mt19937 gen; std::normal_distribution rd; @@ -63,17 +62,6 @@ float frand_uniform(struct random_uniform_distribution * rnd) { return rnd->rd(rnd->gen); } -void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { - struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); - - if (plan.work_size > 0) { - buf.resize(plan.work_size); - plan.work_data = buf.data(); - } - - ggml_graph_compute(graph, &plan); -} - struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { float scale = 1.0f; // xavier switch (tensor->n_dims) { @@ -167,29 +155,20 @@ struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struc return tensor; } -struct llama_vocab { - using id = int32_t; - using token = std::string; - using ttype = llama_token_type; - - struct token_data { - token text; - float score; - ttype type; - }; - - std::unordered_map token_to_id; - std::vector id_to_token; -}; - struct my_llama_hparams { uint32_t n_vocab = 32000; - uint32_t n_ctx = 512; // this is provided as user input? + uint32_t n_ctx = 512; uint32_t n_embd = 4096; - uint32_t n_mult = 4; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; + uint32_t n_ff = 11008; + + // float f_norm_eps = 1e-5; // falcon + float f_norm_rms_eps = 1e-5; // llama + + float rope_freq_base = 10000.0f; + float rope_freq_scale = 1.0f; bool operator!=(const my_llama_hparams& other) const { return memcmp(this, &other, sizeof(my_llama_hparams)); @@ -215,17 +194,6 @@ struct my_llama_layer { struct ggml_tensor * w3; }; -struct my_llama_kv_cache { - struct ggml_context * ctx = NULL; - - struct ggml_tensor * k; - struct ggml_tensor * v; - - // llama_ctx_buffer buf; - - int n; // number of tokens currently in the cache -}; - struct my_llama_model { struct ggml_context * ctx = NULL; @@ -243,18 +211,91 @@ struct my_llama_model { uint32_t train_tokens = 0; }; -uint32_t get_n_ff(const struct my_llama_hparams* hparams) { - const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; - return n_ff; -} +// gguf constants +const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; +const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; +const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; +const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; +const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; +const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; +const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; +const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; +const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; +const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; +const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; +const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; +const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; +const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; +const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; +const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; +const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; +const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; + +const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; +const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; +const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; + +const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; +const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; + +const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; +const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; +const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; +const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; + +// gguf constants (sync with gguf.py) + +const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; +const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; + +const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; +const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; +const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; +const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; +const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; +const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; +const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; +const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp +const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; + +const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; +const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; +const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; +const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; +const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; +const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; +const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; +const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; +const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; +const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; + +const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; +const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; +const char * LLM_TENSOR_OUTPUT = "output"; +const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; +const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; +const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; +const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; +const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; +const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; +const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; +const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; +const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); - printf("%s: n_mult: %d\n", __func__, params->n_mult); printf("%s: n_head: %d\n", __func__, params->n_head); - printf("%s: n_ff: %d\n", __func__, get_n_ff(params)); + printf("%s: n_ff: %d\n", __func__, params->n_ff); printf("%s: n_layer: %d\n", __func__, params->n_layer); printf("%s: n_rot: %d\n", __func__, params->n_rot); } @@ -265,8 +306,7 @@ void init_model(struct my_llama_model * model) { const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; - - const uint32_t n_ff = get_n_ff(&hparams); + const uint32_t n_ff = hparams.n_ff; struct ggml_context * ctx = model->ctx; @@ -274,20 +314,31 @@ void init_model(struct my_llama_model * model) { model->train_samples = 0; model->train_tokens = 0; + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + auto tn = [&tn_buf](const char * key) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); + return tn_buf.data(); + }; + auto tni = [&tn_buf](const char * key, int bid) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); + return tn_buf.data(); + }; + model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); - ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); - ggml_set_name(model->norm, "norm.weight"); - ggml_set_name(model->output, "output.weight"); + ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD)); + ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM)); + ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT)); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - std::string layers_i = "layers." + std::to_string(i); - layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); @@ -301,18 +352,18 @@ void init_model(struct my_llama_model * model) { layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); - ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); + ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i)); - ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); - ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); - ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); - ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); + ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i)); + ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i)); + ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i)); + ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i)); - ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); + ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i)); - ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); - ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); - ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); + ggml_set_name(layer.w1, tni(LLM_TENSOR_FFN_GATE, i)); + ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i)); + ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i)); } } @@ -371,267 +422,6 @@ void randomize_model(struct my_llama_model * model, int seed, float mean, float } } -bool init_kv_cache(struct my_llama_kv_cache* cache, struct my_llama_model * model, int n_batch) { - const auto & hparams = model->hparams; - - const uint32_t n_ctx = hparams.n_ctx; - const uint32_t n_embd = hparams.n_embd; - const uint32_t n_layer = hparams.n_layer; - - const int64_t n_mem = n_layer*n_ctx*n_batch; - const int64_t n_elements = n_embd*n_mem; - - // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); - - // struct ggml_init_params params; - // params.mem_size = cache.buf.size; - // params.mem_buffer = cache.buf.addr; - // params.no_alloc = false; - if (!cache->ctx) { - struct ggml_init_params params; - params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; - params.mem_buffer = NULL; - params.no_alloc = false; - - cache->ctx = ggml_init(params); - - if (!cache->ctx) { - fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); - return false; - } - } - - cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); - cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); - - return true; -} - -struct ggml_tensor * forward( - struct my_llama_model * model, - struct my_llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past) { - - const int N = n_tokens; - - struct my_llama_kv_cache& kv_self = *cache; - const auto & hparams = model->hparams; - const int n_ctx = hparams.n_ctx; - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_head = hparams.n_head; - const int n_rot = hparams.n_rot; - - struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); - memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); - - struct ggml_tensor * kc = kv_self.k; - struct ggml_tensor * vc = kv_self.v; - - // inpL shape [n_embd,N,1,1] - struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - struct ggml_tensor * cur; - - // lctx.use_buf(ctx0, 0); - - // norm - { - // cur shape [n_embd,N,1,1] - cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - - // cur = attention_norm*cur - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].attention_norm, cur), - cur); - } - - // self-attention - { - // compute Q and K and RoPE them - // wq shape [n_embd, n_embd, 1, 1] - // wk shape [n_embd, n_embd, 1, 1] - // Qcur shape [n_embd/n_head, n_head, N, 1] - // Kcur shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); - - // store key and value to memory - { - // compute the transposed [N, n_embd] V matrix - // wv shape [n_embd, n_embd, 1, 1] - // Vcur shape [n_embd, N, 1, 1] - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N))); - - // kv_self.k shape [n_embd * n_ctx * n_layer, 1] - // kv_self.v shape [n_embd * n_ctx * n_layer, 1] - // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] - // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] - - /* { - struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, - ( n_ctx)*ggml_element_size(kv_self.v), - (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); - - // important: storing RoPE-ed version of K in the KV cache! - ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); - ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); - } //*/ - - kc = ggml_set_1d_inplace(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); - vc = ggml_set_2d_inplace(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), - (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); - } - - // Qcur shape [n_embd/n_head, n_head, N, 1] - // Q shape [n_embd/n_head, N, n_head, 1] - struct ggml_tensor * Q = - ggml_permute(ctx0, - Qcur, - 0, 2, 1, 3); - - // kv_self.k shape [n_embd * n_ctx * n_layer, 1] - // K shape [n_embd/n_head, n_past + N, n_head, 1] - struct ggml_tensor * K = - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), - n_embd/n_head, n_head, n_past + N), - 0, 2, 1, 3); - - // K * Q - // KQ shape [n_past + N, N, n_head, 1] - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - - // KQ_scaled = KQ / sqrt(n_embd/n_head) - // KQ_scaled shape [n_past + N, N, n_head, 1] - struct ggml_tensor * KQ_scaled = - ggml_scale(ctx0, - KQ, - ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); - - // KQ_masked = mask_past(KQ_scaled) - // KQ_masked shape [n_past + N, N, n_head, 1] - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); - - // KQ = soft_max(KQ_masked) - // KQ_soft_max shape [n_past + N, N, n_head, 1] - struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); - - // split cached V into n_head heads - //// V shape [n_past + N, n_embd/n_head, n_head, 1] - // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] - struct ggml_tensor * V = - ggml_view_3d(ctx0, vc, - n_past + N, n_embd/n_head, n_head, - n_ctx*ggml_element_size(vc), - n_ctx*ggml_element_size(vc)*n_embd/n_head, - il*n_ctx*ggml_element_size(vc)*n_embd); - - // KQV shape [n_embd/n_head, N, n_head, 1] - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - // KQV_merged shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - // KQV_merged shape - - // cur = KQV_merged.contiguous().view(n_embd, N) - // cur shape [n_embd,N,1,1] - cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); - // cur = ggml_cpy(ctx0, - // KQV_merged, - // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); - - // projection (no bias) - // cur shape [n_embd,N,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].wo, - cur); - } - - // lctx.use_buf(ctx0, 1); - - // inpFF shape [n_embd,N,1,1] - struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); - - // feed-forward network - { - // norm - { - // cur shape [n_embd,N,1,1] - cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); - - // cur = ffn_norm*cur - // cur shape [n_embd,N,1,1] - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), - cur); - } - - // tmp shape [n_ff,N,1,1] - struct ggml_tensor * tmp = ggml_mul_mat(ctx0, - model->layers[il].w3, - cur); - - // cur shape [n_ff,N,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].w1, - cur); - - // SILU activation - // cur shape [n_ff,N,1,1] - cur = ggml_silu(ctx0, cur); - - // cur shape [n_ff,N,1,1] - cur = ggml_mul(ctx0, cur, tmp); - - // cur shape [n_embd,N,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].w2, - cur); - } - - // cur shape [n_embd,N,1,1] - cur = ggml_add(ctx0, cur, inpFF); - - // input for next layer - // inpL shape [n_embd,N,1,1] - inpL = cur; - } - - // norm - { - - // inpL shape [n_embd,N,1,1] - inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - - // inpL = norm*inpL - // inpL shape [n_embd,N,1,1] - inpL = ggml_mul(ctx0, - ggml_repeat(ctx0, model->norm, inpL), - inpL); - - //embeddings = inpL; - } - - // lm_head - // inpL shape [n_vocab,N,1,1] - inpL = ggml_mul_mat(ctx0, model->output, inpL); - - // run the computation - ggml_build_forward_expand(gf, inpL); - - return inpL; -} - void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { GGML_ASSERT(tensor->n_dims == 1); GGML_ASSERT(tensor->ne[0] == ne0); @@ -658,786 +448,222 @@ void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int6 GGML_ASSERT(tensor->ne[3] == ne3); } -struct ggml_tensor * forward_batch( - struct my_llama_model * model, - struct my_llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past, - const int n_batch) { - - const int N = n_tokens; - - struct my_llama_kv_cache& kv_self = *cache; - const auto & hparams = model->hparams; - const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_head = hparams.n_head; - const int n_rot = hparams.n_rot; - const int n_ff = get_n_ff(&hparams); - - struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); - memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); - - struct ggml_tensor * kc = kv_self.k; - struct ggml_tensor * vc = kv_self.v; - - // inpL shape [n_embd,N*n_batch,1] - struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); - assert_shape_2d(inpL, n_embd, N*n_batch); - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - struct ggml_tensor * cur; - - // lctx.use_buf(ctx0, 0); - - // norm - { - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - assert_shape_2d(cur, n_embd, N*n_batch); - - // cur = attention_norm*cur - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].attention_norm, cur), - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // self-attention - { - // compute Q and K and RoPE them - // wq shape [n_embd, n_embd, 1, 1] - // wk shape [n_embd, n_embd, 1, 1] - // Qcur shape [n_embd/n_head, n_head, N, n_batch] - // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); - assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); - - // store key and value to memory - { - // compute the transposed [N, n_embd] V matrix - // wv shape [n_embd, n_embd, 1, 1] - // Vcur shape [N, n_embd, n_batch, 1] - struct ggml_tensor * Vcur = ggml_cont(ctx0, - ggml_permute(ctx0, - ggml_reshape_3d(ctx0, - ggml_mul_mat(ctx0, - model->layers[il].wv, - cur), - n_embd, N, n_batch), - 1, 0, 2, 3)); - assert_shape_3d(Vcur, N, n_embd, n_batch); - - // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] - // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] - // k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il] - // v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il] - - /* { - struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); - struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, - ( n_ctx)*ggml_element_size(kv_self.v), - (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); - - // important: storing RoPE-ed version of K in the KV cache! - ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); - ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); - } //*/ - - kc = ggml_set_2d_inplace(ctx0, kc, - ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch), - ggml_element_size(kc)*n_embd*n_ctx, - (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past)); - vc = ggml_set_2d_inplace(ctx0, vc, - ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch), - ggml_element_size(vc)*n_ctx*n_embd, - ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx)); - - assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer); - assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer); - } - - // Qcur shape [n_embd/n_head, n_head, N, n_batch] - // Q shape [n_embd/n_head, N, n_head, n_batch] - struct ggml_tensor * Q = - ggml_permute(ctx0, - Qcur, - 0, 2, 1, 3); - assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); - - // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] - // K shape [n_embd/n_head, n_past + N, n_head, n_batch] - struct ggml_tensor * K = - ggml_permute(ctx0, - ggml_reshape_4d(ctx0, - ggml_view_3d(ctx0, - kc, - n_embd, - (n_past + N), - n_batch, - n_embd*ggml_element_size(kc), - n_ctx*n_embd*ggml_element_size(kc), - il*n_batch*n_ctx*n_embd*ggml_element_size(kc)), - n_embd/n_head, n_head, n_past + N, n_batch), - 0, 2, 1, 3); - assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch); - - // K * Q - // KQ shape [n_past + N, N, n_head, n_batch] - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - assert_shape_4d(KQ, n_past + N, N, n_head, n_batch); - - // KQ_scaled = KQ / sqrt(n_embd/n_head) - // KQ_scaled shape [n_past + N, N, n_head, n_batch] - struct ggml_tensor * KQ_scaled = - ggml_scale_inplace(ctx0, - KQ, - ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); - assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch); - - // KQ_masked = mask_past(KQ_scaled) - // KQ_masked shape [n_past + N, N, n_head, n_batch] - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); - assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch); - - // KQ = soft_max(KQ_masked) - // KQ_soft_max shape [n_past + N, N, n_head, n_batch] - struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); - assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch); - - // split cached V into n_head heads - // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] - // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il] - struct ggml_tensor * V = - ggml_view_4d(ctx0, vc, - n_past + N, n_embd/n_head, n_head, n_batch, - ggml_element_size(vc)*n_ctx, - ggml_element_size(vc)*n_ctx*n_embd/n_head, - ggml_element_size(vc)*n_ctx*n_embd, - il*n_batch*n_ctx*n_embd*ggml_element_size(vc)); - assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch); - - // KQV shape [n_embd/n_head, N, n_head, n_batch] - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); - assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); - // KQV_merged shape - - // cur = KQV_merged.contiguous().view(n_embd, N) - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); - assert_shape_2d(cur, n_embd, N*n_batch); - // cur = ggml_cpy(ctx0, - // KQV_merged, - // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); - - // projection (no bias) - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].wo, - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // lctx.use_buf(ctx0, 1); - - // inpFF shape [n_embd,N*n_batch,1,1] - struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); - assert_shape_2d(inpFF, n_embd, N*n_batch); - - // feed-forward network - { - // norm - { - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); - assert_shape_2d(cur, n_embd, N*n_batch); - - // cur = ffn_norm*cur - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // tmp shape [n_ff,N*n_batch,1,1] - struct ggml_tensor * tmp = ggml_mul_mat(ctx0, - model->layers[il].w3, - cur); - assert_shape_2d(tmp, n_ff, N*n_batch); - - // cur shape [n_ff,N*n_batch,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].w1, - cur); - assert_shape_2d(cur, n_ff, N*n_batch); - - // SILU activation - // cur shape [n_ff,N*n_batch,1,1] - cur = ggml_silu(ctx0, cur); - assert_shape_2d(cur, n_ff, N*n_batch); - - // cur shape [n_ff,N*n_batch,1,1] - cur = ggml_mul(ctx0, cur, tmp); - assert_shape_2d(cur, n_ff, N*n_batch); - - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].w2, - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_add_inplace(ctx0, cur, inpFF); - assert_shape_2d(cur, n_embd, N*n_batch); - - // input for next layer - // inpL shape [n_embd,N*n_batch,1,1] - inpL = cur; - assert_shape_2d(inpL, n_embd, N*n_batch); - } - - // norm - { - - // inpL shape [n_embd,N*n_batch,1,1] - inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - assert_shape_2d(inpL, n_embd, N*n_batch); - - // inpL = norm*inpL - // inpL shape [n_embd,N*n_batch,1,1] - inpL = ggml_mul(ctx0, - ggml_repeat(ctx0, model->norm, inpL), - inpL); - - assert_shape_2d(inpL, n_embd, N*n_batch); - - //embeddings = inpL; - } - - // lm_head - // inpL shape [n_vocab,N*n_batch,1,1] - inpL = ggml_mul_mat(ctx0, model->output, inpL); - assert_shape_2d(inpL, n_vocab, N*n_batch); - - { - // inpL shape [n_vocab,N,n_batch,1] - inpL = ggml_reshape_3d(ctx0, - inpL, - n_vocab, N, n_batch); - assert_shape_3d(inpL, n_vocab, N, n_batch); - } - - // run the computation - ggml_build_forward_expand(gf, inpL); - - return inpL; +static size_t hash(void * p) { + return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; } -struct ggml_tensor * forward_batch_wo_cache( - struct my_llama_model * model, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_batch) { +static size_t hash_find(void * hash_table[], void * p) { + size_t h = hash(p); - const int n_past = 0; - const int N = n_tokens; - - const auto & hparams = model->hparams; - //const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_head = hparams.n_head; - const int n_rot = hparams.n_rot; - const int n_ff = get_n_ff(&hparams); - - struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); - memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); - - // inpL shape [n_embd,N*n_batch,1] - struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); - assert_shape_2d(inpL, n_embd, N*n_batch); - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - struct ggml_tensor * cur; - - // lctx.use_buf(ctx0, 0); - - // norm - { - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - assert_shape_2d(cur, n_embd, N*n_batch); - - // cur = attention_norm*cur - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].attention_norm, cur), - cur); - assert_shape_2d(cur, n_embd, N*n_batch); + // linear probing + size_t i = h; + while (hash_table[i] != NULL && hash_table[i] != p) { + i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; + if (i == h) { + // visited all hash table entries -> not found + return GGML_GRAPH_HASHTABLE_SIZE; } - - // self-attention - { - // compute Q and K and RoPE them - // wq shape [n_embd, n_embd, 1, 1] - // wk shape [n_embd, n_embd, 1, 1] - // Qcur shape [n_embd/n_head, n_head, N, n_batch] - // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); - assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); - - // Vcur shape [N, n_batch, n_embd/n_head, n_head] - struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); - assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); - - // Qcur shape [n_embd/n_head, n_head, N, n_batch] - // Q shape [n_embd/n_head, N, n_head, n_batch] - struct ggml_tensor * Q = - ggml_permute(ctx0, - Qcur, - 0, 2, 1, 3); - assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); - - // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] - // K shape [n_embd/n_head, N, n_head, n_batch] - struct ggml_tensor * K = - ggml_permute(ctx0, - Kcur, - 0, 2, 1, 3); - assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); - - // K * Q - // KQ shape [N, N, n_head, n_batch] - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - assert_shape_4d(KQ, N, N, n_head, n_batch); - - // KQ_scaled = KQ / sqrt(n_embd/n_head) - // KQ_scaled shape [N, N, n_head, n_batch] - struct ggml_tensor * KQ_scaled = - ggml_scale_inplace(ctx0, - KQ, - ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); - assert_shape_4d(KQ_scaled, N, N, n_head, n_batch); - - // KQ_masked = mask_past(KQ_scaled) - // KQ_masked shape [N, N, n_head, n_batch] - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); - assert_shape_4d(KQ_masked, N, N, n_head, n_batch); - - // KQ = soft_max(KQ_masked) - // KQ_soft_max shape [N, N, n_head, n_batch] - struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); - assert_shape_4d(KQ_soft_max, N, N, n_head, n_batch); - - // Vcur shape [N, n_batch, n_embd/n_head, n_head] - // V shape [N, n_embd/n_head, n_head, n_batch] - struct ggml_tensor * V = - ggml_permute(ctx0, - Vcur, - 0, 3, 1, 2); - assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); - - // KQV shape [n_embd/n_head, N, n_head, n_batch] - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); - assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); - - // KQV_merged = KQV.permute(0, 2, 1, 3) - // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); - // KQV_merged shape - - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); - assert_shape_2d(cur, n_embd, N*n_batch); - - // projection (no bias) - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].wo, - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // lctx.use_buf(ctx0, 1); - - // inpFF shape [n_embd,N*n_batch,1,1] - struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); - assert_shape_2d(inpFF, n_embd, N*n_batch); - - // feed-forward network - { - // norm - { - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); - assert_shape_2d(cur, n_embd, N*n_batch); - - // cur = ffn_norm*cur - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // tmp shape [n_ff,N*n_batch,1,1] - struct ggml_tensor * tmp = ggml_mul_mat(ctx0, - model->layers[il].w3, - cur); - assert_shape_2d(tmp, n_ff, N*n_batch); - - // cur shape [n_ff,N*n_batch,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].w1, - cur); - assert_shape_2d(cur, n_ff, N*n_batch); - - // SILU activation - // cur shape [n_ff,N*n_batch,1,1] - cur = ggml_silu(ctx0, cur); - assert_shape_2d(cur, n_ff, N*n_batch); - - // cur shape [n_ff,N*n_batch,1,1] - cur = ggml_mul(ctx0, cur, tmp); - assert_shape_2d(cur, n_ff, N*n_batch); - - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_mul_mat(ctx0, - model->layers[il].w2, - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // cur shape [n_embd,N*n_batch,1,1] - cur = ggml_add_inplace(ctx0, cur, inpFF); - assert_shape_2d(cur, n_embd, N*n_batch); - - // input for next layer - // inpL shape [n_embd,N*n_batch,1,1] - inpL = cur; - assert_shape_2d(inpL, n_embd, N*n_batch); } - - // norm - { - - // inpL shape [n_embd,N*n_batch,1,1] - inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - assert_shape_2d(inpL, n_embd, N*n_batch); - - // inpL = norm*inpL - // inpL shape [n_embd,N*n_batch,1,1] - inpL = ggml_mul(ctx0, - ggml_repeat(ctx0, model->norm, inpL), - inpL); - - assert_shape_2d(inpL, n_embd, N*n_batch); - - //embeddings = inpL; - } - - // lm_head - // inpL shape [n_vocab,N*n_batch,1,1] - inpL = ggml_mul_mat(ctx0, model->output, inpL); - assert_shape_2d(inpL, n_vocab, N*n_batch); - - { - // inpL shape [n_vocab,N,n_batch,1] - inpL = ggml_reshape_3d(ctx0, - inpL, - n_vocab, N, n_batch); - assert_shape_3d(inpL, n_vocab, N, n_batch); - } - - // run the computation - ggml_build_forward_expand(gf, inpL); - - return inpL; + return i; } -struct ggml_tensor * forward_batch_wo_cache_flash_attn( - struct my_llama_model * model, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_batch) { +static bool hash_insert(void * hash_table[], void * p) { + //size_t h = hash(p); + size_t i = hash_find(hash_table, p); - const int n_past = 0; - const int N = n_tokens; + GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - const auto & hparams = model->hparams; - //const int n_ctx = hparams.n_ctx; - const int n_vocab = hparams.n_vocab; - const int n_embd = hparams.n_embd; - const int n_layer = hparams.n_layer; - const int n_head = hparams.n_head; - const int n_rot = hparams.n_rot; - const int n_ff = get_n_ff(&hparams); - - struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); - memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); - - struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); - assert_shape_2d(inpL, n_embd, N*n_batch); - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - struct ggml_tensor * cur; - - // norm - { - cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - assert_shape_2d(cur, n_embd, N*n_batch); - - // cur = attention_norm*cur - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].attention_norm, cur), - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - // self-attention - { - // compute Q and K and RoPE them - // wq shape [n_embd, n_embd, 1, 1] - // wk shape [n_embd, n_embd, 1, 1] - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); - assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); - - struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head); - assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head); - - struct ggml_tensor * Q = - ggml_permute(ctx0, - Qcur, - 0, 2, 1, 3); - assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); - - struct ggml_tensor * K = - ggml_permute(ctx0, - Kcur, - 0, 2, 1, 3); - assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch); - - struct ggml_tensor * V = - ggml_permute(ctx0, - Vcur, - 0, 3, 1, 2); - assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch); - - bool masked = true; - struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, masked); - assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); - - struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); - cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); - assert_shape_2d(cur, n_embd, N*n_batch); - - // projection (no bias) - cur = ggml_mul_mat(ctx0, - model->layers[il].wo, - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA); - assert_shape_2d(inpFF, n_embd, N*n_batch); - - // feed-forward network - { - // norm - { - cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); - assert_shape_2d(cur, n_embd, N*n_batch); - - // cur = ffn_norm*cur - cur = ggml_mul(ctx0, - ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - struct ggml_tensor * tmp = ggml_mul_mat(ctx0, - model->layers[il].w3, - cur); - assert_shape_2d(tmp, n_ff, N*n_batch); - - cur = ggml_mul_mat(ctx0, - model->layers[il].w1, - cur); - assert_shape_2d(cur, n_ff, N*n_batch); - - // SILU activation - cur = ggml_silu(ctx0, cur); - assert_shape_2d(cur, n_ff, N*n_batch); - - cur = ggml_mul(ctx0, cur, tmp); - assert_shape_2d(cur, n_ff, N*n_batch); - - cur = ggml_mul_mat(ctx0, - model->layers[il].w2, - cur); - assert_shape_2d(cur, n_embd, N*n_batch); - } - - cur = ggml_add_inplace(ctx0, cur, inpFF); - assert_shape_2d(cur, n_embd, N*n_batch); - - // input for next layer - inpL = cur; - assert_shape_2d(inpL, n_embd, N*n_batch); + if (hash_table[i] == p) { + return true; } - // norm - { - - inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); - assert_shape_2d(inpL, n_embd, N*n_batch); - - // inpL = norm*inpL - inpL = ggml_mul(ctx0, - ggml_repeat(ctx0, model->norm, inpL), - inpL); - - assert_shape_2d(inpL, n_embd, N*n_batch); - } - - // lm_head - inpL = ggml_mul_mat(ctx0, model->output, inpL); - assert_shape_2d(inpL, n_vocab, N*n_batch); - - { - inpL = ggml_reshape_3d(ctx0, - inpL, - n_vocab, N, n_batch); - assert_shape_3d(inpL, n_vocab, N, n_batch); - } - - // run the computation - ggml_build_forward_expand(gf, inpL); - - return inpL; + // insert + GGML_ASSERT(hash_table[i] == NULL); + hash_table[i] = p; + return false; } -// expand the graph nodes without creating leafs. -struct ggml_tensor * expand(struct ggml_cgraph * g, struct ggml_tensor * t) { - // check if already visited - for (int i = 0; i < g->n_nodes; i++) { - if (g->nodes[i] == t) { - return t; - } - } - - for (int i = 0; i < g->n_leafs; i++) { - if (g->leafs[i] == t) { - return t; - } - } - - for (int i = 0; i < GGML_MAX_SRC; ++i) { - if (t->src[i]) { - expand(g, t->src[i]); - } - } - - GGML_ASSERT(g->n_nodes < GGML_MAX_NODES); - - if (strlen(t->name) == 0) { - snprintf(t->name, sizeof(t->name), "node_%d", g->n_nodes); - } - - g->nodes[g->n_nodes] = t; - g->grads[g->n_nodes] = t->grad; - g->n_nodes++; - return t; +static bool hash_contains(void * hash_table[], void * p) { + size_t i = hash_find(hash_table, p); + return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); } -void graph_set_leafs_grads(struct ggml_cgraph * g) { - // moves leaf nodes to g->leafs. - // i.e. g->n_nodes might change. - int n_nodes = 0; - for (int i = 0; i < g->n_nodes; ++i) { - struct ggml_tensor * node = g->nodes[i]; - const bool is_leaf = node->op == GGML_OP_NONE && node->grad == NULL; - if (is_leaf) { - GGML_ASSERT(g->n_leafs < GGML_MAX_NODES); +struct hash_map { + void * keys[GGML_GRAPH_HASHTABLE_SIZE]; + void * vals[GGML_GRAPH_HASHTABLE_SIZE]; +}; +//static const size_t HASH_MAP_SIZE = sizeof(struct hash_map); - if (strlen(node->name) == 0) { - snprintf(node->name, sizeof(node->name), "leaf_%d", g->n_leafs); - } - - g->leafs[g->n_leafs] = node; - g->n_leafs++; - } else { - GGML_ASSERT(n_nodes < GGML_MAX_NODES); - - if (strlen(node->name) == 0) { - snprintf(node->name, sizeof(node->name), "node_%d", n_nodes); - } - - g->nodes[n_nodes] = node; - g->grads[n_nodes] = node->grad; - n_nodes++; - } +struct hash_map * new_hash_map() { + struct hash_map * result = new struct hash_map; + for (int i=0; ikeys[i] = NULL; + result->vals[i] = NULL; } - for (int i=n_nodes; i < g->n_nodes; ++i) { - g->nodes[n_nodes] = NULL; - g->grads[n_nodes] = NULL; - } - g->n_nodes = n_nodes; + return result; +}; + +void free_hash_map(struct hash_map * map) { + delete map; } -struct ggml_tensor * forward_batch_wo_cache_flash_attn_train( - struct my_llama_model * model, - struct ggml_context * ctx0, +static bool ggml_is_view(struct ggml_tensor * t) { + return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || + t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; +} + +static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { + switch (t->op) { + case GGML_OP_PERMUTE: + case GGML_OP_RESHAPE: + case GGML_OP_TRANSPOSE: + case GGML_OP_VIEW: + return t->src[0]; + case GGML_OP_CPY: + return t->src[1]; + default: + return NULL; + } +} + +static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { + struct ggml_tensor * parent = t; + do { + parent = get_view_parent(parent); + } while (ggml_is_view(parent)); + return parent; +} + +struct ggml_tensor * ggml_recompute_graph_node( + struct ggml_context * ctx, + struct ggml_cgraph * graph, + struct hash_map * replacements, + struct ggml_tensor * node) { + + if (node == NULL) { + return NULL; + } + + if (node->is_param) { + return node; + } + + if (!hash_contains(graph->visited_hash_table, node)) { + return node; + } + + int count_children = 0; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + if (node->src[k]) { + ++count_children; + } + } + + if (count_children == 0) { + return node; + } + + size_t i = hash_find(replacements->keys, node); + GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + if (replacements->keys[i] == node) { + return (struct ggml_tensor *) replacements->vals[i]; + } + + struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); + + // insert clone into replacements + GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite + replacements->keys[i] = node; + replacements->vals[i] = clone; + + clone->op = node->op; + clone->grad = node->grad; + clone->is_param = node->is_param; + clone->extra = node->extra; + for (int k = 0; k < GGML_MAX_DIMS; ++k) { + clone->nb[k] = node->nb[k]; + } + for (int k = 0; k < GGML_MAX_SRC; ++k) { + clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); + } + if (ggml_is_view(clone)) { + struct ggml_tensor * source = get_view_source(clone); + GGML_ASSERT(source != NULL); + clone->data = source->data; + } + + GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); + GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); + memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); + ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); + + return clone; +}; + +void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints) { + *gb_tmp = *gf; + ggml_build_backward_expand(ctx, gf, gb_tmp, true); + + if (n_checkpoints <= 0) { + *gb = *gb_tmp; + return; + } + + struct hash_map * replacements = new_hash_map(); + + // insert checkpoints in replacements + for (int i = 0; i < n_checkpoints; ++i) { + size_t k = hash_find(replacements->keys, checkpoints[i]); + GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite + replacements->keys[k] = checkpoints[i]; + replacements->vals[k] = checkpoints[i]; + } + + *gb = *gf; + // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], + // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), + // by recomputing them from checkpoints + for (int i = gf->n_nodes; in_nodes; ++i) { + struct ggml_tensor * node = gb_tmp->nodes[i]; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + // insert new tensors recomputing src, reusing already made replacements, + // remember replacements: remember new tensors with mapping from corresponding gf nodes + // recurse for input tensors, + // unless (i.e. terminating when) input tensors are checkpoints + node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); + } + // insert rewritten backward node with replacements made into resulting backward graph gb + ggml_build_forward_expand(gb, node); + } + + free_hash_map(replacements); +} + +struct ggml_tensor * llama_build_train_graphs( + struct my_llama_model * model, + struct ggml_allocr * alloc, + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, struct ggml_tensor * * logits, struct ggml_tensor * tokens_input, struct ggml_tensor * targets, - void * compute_buf_0, - void * compute_buf_1, - size_t size_buf_0, - size_t size_buf_1, const int n_tokens, - const int n_batch) { - - ggml_set_scratch(ctx0, { 0, 0, nullptr, }); + const int n_batch, + const bool enable_flash_attn, + const bool enable_checkpointing) { + ggml_set_scratch(ctx, { 0, 0, nullptr, }); const int n_past = 0; const int N = n_tokens; - - gf->n_nodes = 0; - gf->n_leafs = 0; - gf->perf_runs = 0; - gf->perf_cycles = 0; - gf->perf_time_us = 0; - const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; @@ -1445,476 +671,162 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train( const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; - const int n_ff = get_n_ff(&hparams); - const int rope_mode = 0; + const int n_ff = hparams.n_ff; + const float f_norm_rms_eps = hparams.f_norm_rms_eps; + const float rope_freq_base = hparams.rope_freq_base; + const float rope_freq_scale = hparams.rope_freq_scale; - int last_buf = -1; - size_t buf_offs[2] = { 0, 0 }; - size_t buf_size[2] = { size_buf_0, - size_buf_1 }; - void * buf_data[2] = { compute_buf_0, - compute_buf_1 }; - auto use_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data] (int buf) { - size_t last_offs = 0; - last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, }); - if (last_buf >= 0) { - buf_offs[last_buf] = last_offs; - } - if (buf >= 0) { - size_t offs = buf_offs[buf]; - size_t size = buf_size[buf]; - void * data = buf_data[buf]; - ggml_set_scratch(ctx0, { offs, size, data, }); - } - last_buf = buf; - }; - - bool track_max_mem = false; - size_t buf_maxs[2] = { 0, 0 }; - - auto clr_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data, &buf_maxs, track_max_mem] (int buf) { - if (buf < 0) return; - if (track_max_mem) { - size_t last_offs = 0; - last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, }); - if (last_buf >= 0) { - buf_offs[last_buf] = last_offs; - buf_maxs[last_buf] = std::max(buf_maxs[last_buf], buf_offs[last_buf]); - } - } - buf_offs[buf] = 0; - if (track_max_mem && last_buf >= 0) { - size_t offs = buf_offs[last_buf]; - size_t size = buf_size[last_buf]; - void * data = buf_data[last_buf]; - ggml_set_scratch(ctx0, { offs, size, data, }); + auto set_name = [](struct ggml_tensor * t, const char * n) { + ggml_set_name(t, n); + if (t->grad) { + ggml_format_name(t->grad, "%s->grad", n); } }; + // rope has so much parameters that we make a custom function for it + auto rope = [ctx, n_rot, n_ctx, rope_freq_base, rope_freq_scale] + (struct ggml_tensor * t) -> struct ggml_tensor * { + // not capturing these, to silcence warnings + const int n_past = 0; + const int rope_mode = 0; - auto view__q = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { - int64_t ne0 = n_embd/n_head; - int64_t ne1 = N; - int64_t ne2 = n_head; - int64_t ne3 = n_batch; - size_t nb0 = ggml_element_size(t); - size_t nb1 = nb0*ne0; - size_t nb2 = nb1*ne1; - size_t nb3 = nb2*ne2; - size_t offset = 0; - return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); + return ggml_rope_custom(ctx, + t, n_past, n_rot, rope_mode, n_ctx, + rope_freq_base, rope_freq_scale); }; - auto view__k = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { - int64_t ne0 = n_embd/n_head; - int64_t ne1 = N; - int64_t ne2 = n_head; - int64_t ne3 = n_batch; - size_t nb0 = ggml_element_size(t); - size_t nb1 = nb0*ne0; - size_t nb2 = nb1*ne1; - size_t nb3 = nb2*ne2; - size_t offset = nb3*ne3; - return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); - }; + set_name(tokens_input, "tokens_input"); + set_name(targets, "targets"); - auto view__v = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * { - int64_t ne0 = N; - int64_t ne1 = n_embd/n_head; - int64_t ne2 = n_head; - int64_t ne3 = n_batch; - size_t nb0 = ggml_element_size(t); - size_t nb1 = nb0*ne0; - size_t nb2 = nb1*ne1; - size_t nb3 = nb2*ne2; - size_t offset = 2*nb3*ne3; - return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset); - }; - - auto add_or_set = [ctx0] (struct ggml_tensor * a, struct ggml_tensor * b) -> struct ggml_tensor * { - if (a == NULL) { - return b; - } else { - return ggml_add_inplace(ctx0, a, b); - } - }; - - use_buf(-1); - - model->tok_embeddings->grad = NULL; - model->norm->grad = NULL; - model->output->grad = NULL; - - for (int il = 0; il < n_layer; ++il) { - struct my_llama_layer & layer = model->layers[il]; - layer.attention_norm->grad = NULL; - layer.wq->grad = NULL; - layer.wk->grad = NULL; - layer.wv->grad = NULL; - layer.wo->grad = NULL; - layer.ffn_norm->grad = NULL; - layer.w1->grad = NULL; - layer.w2->grad = NULL; - layer.w3->grad = NULL; - } - - clr_buf(0); - clr_buf(1); - - use_buf(-1); - - struct ggml_tensor * t00 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); assert_shape_1d(t00, N*n_batch); - memcpy(t00->data, tokens_input->data, ggml_element_size(t00)*N*n_batch); - - use_buf(-1); - - struct ggml_tensor * t01 = expand(gf, ggml_get_rows(ctx0, model->tok_embeddings, t00)); assert_shape_2d(t01, n_embd, N*n_batch); - - // need to remember these for the backward pass - std::vector t02L; t02L.resize(n_layer, NULL); - std::vector t03L; t03L.resize(n_layer, NULL); - std::vector t04L; t04L.resize(n_layer, NULL); - std::vector t05L; t05L.resize(n_layer, NULL); - std::vector t06L; t06L.resize(n_layer, NULL); - std::vector t07L; t07L.resize(n_layer, NULL); - std::vector t08L; t08L.resize(n_layer, NULL); - std::vector t09L; t09L.resize(n_layer, NULL); - std::vector t10L; t10L.resize(n_layer, NULL); - std::vector t11L; t11L.resize(n_layer, NULL); - std::vector t12L; t12L.resize(n_layer, NULL); - std::vector t13L; t13L.resize(n_layer, NULL); - std::vector t14L; t14L.resize(n_layer, NULL); - std::vector t15L; t15L.resize(n_layer, NULL); - std::vector t16L; t16L.resize(n_layer, NULL); - std::vector t17L; t17L.resize(n_layer, NULL); - std::vector t18L; t18L.resize(n_layer, NULL); - std::vector t19L; t19L.resize(n_layer, NULL); - std::vector t20L; t20L.resize(n_layer, NULL); - std::vector t21L; t21L.resize(n_layer, NULL); - std::vector t22L; t22L.resize(n_layer, NULL); - std::vector t23L; t23L.resize(n_layer, NULL); - std::vector t24L; t24L.resize(n_layer, NULL); - std::vector t25L; t25L.resize(n_layer, NULL); - std::vector t26L; t26L.resize(n_layer, NULL); - std::vector t27L; t27L.resize(n_layer, NULL); - std::vector t28L; t28L.resize(n_layer, NULL); - std::vector t29L; t29L.resize(n_layer, NULL); - std::vector t30L; t30L.resize(n_layer, NULL); + GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); + struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); + struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); struct ggml_tensor * cur = t01; + std::vector checkpoints; + checkpoints.push_back(tokens_input); + checkpoints.push_back(targets); + checkpoints.push_back(t00); + checkpoints.push_back(t01); + + struct ggml_tensor * kv_scale; + if (!enable_flash_attn) { + kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); + } + for (int il = 0; il < n_layer; ++il) { - clr_buf(0); struct my_llama_layer & layer = model->layers[il]; - // tensors with values necessary for backward pass are in persistent buf(-1) - // other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed. - use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t02, n_embd, N*n_batch); - use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t06 = expand(gf, ggml_reshape_4d (ctx0, t05, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t07 = expand(gf, ggml_rope_inplace (ctx0, t06, n_past, n_rot, rope_mode, 0)); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t08 = expand(gf, ggml_mul_mat (ctx0, layer.wk, t04)); assert_shape_2d(t08, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t09 = expand(gf, ggml_reshape_4d (ctx0, t08, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t10 = expand(gf, ggml_rope_inplace (ctx0, t09, n_past, n_rot, rope_mode, 0)); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t11 = expand(gf, ggml_mul_mat (ctx0, t04, layer.wv)); assert_shape_2d(t11, N*n_batch, n_embd); - use_buf(-1); struct ggml_tensor * t12 = expand(gf, ggml_reshape_4d (ctx0, t11, N, n_batch, n_embd/n_head, n_head)); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); - use_buf(-1); struct ggml_tensor * t13 = expand(gf, ggml_permute (ctx0, t07, 0, 2, 1, 3)); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); - use_buf(-1); struct ggml_tensor * t14 = expand(gf, ggml_permute (ctx0, t10, 0, 2, 1, 3)); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch); - use_buf(-1); struct ggml_tensor * t15 = expand(gf, ggml_permute (ctx0, t12, 0, 3, 1, 2)); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); - use_buf(-1); struct ggml_tensor * t16 = expand(gf, ggml_flash_attn (ctx0, t13, t14, t15, true)); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); - use_buf( 0); struct ggml_tensor * t17 = expand(gf, ggml_permute (ctx0, t16, 0, 2, 1, 3)); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t18 = expand(gf, ggml_cont (ctx0, t17)); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch); - use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch); - use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21, rms_norm_eps)); assert_shape_2d(t22, n_embd, N*n_batch); - use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch); - use_buf(-1); struct ggml_tensor * t26 = expand(gf, ggml_mul_mat (ctx0, layer.w1, t24)); assert_shape_2d(t26, n_ff, N*n_batch); - use_buf(-1); struct ggml_tensor * t27 = expand(gf, ggml_silu (ctx0, t26)); assert_shape_2d(t27, n_ff, N*n_batch); - use_buf(-1); struct ggml_tensor * t28 = expand(gf, ggml_mul (ctx0, t27, t25)); assert_shape_2d(t28, n_ff, N*n_batch); - use_buf( 0); struct ggml_tensor * t29 = expand(gf, ggml_mul_mat (ctx0, layer.w2, t28)); assert_shape_2d(t29, n_embd, N*n_batch); - use_buf(-1); struct ggml_tensor * t30 = expand(gf, ggml_add (ctx0, t21, t29)); assert_shape_2d(t30, n_embd, N*n_batch); - t02L[il] = t02; - t03L[il] = t03; - t04L[il] = t04; - t05L[il] = t05; - t06L[il] = t06; - t07L[il] = t07; - t08L[il] = t08; - t09L[il] = t09; - t10L[il] = t10; - t11L[il] = t11; - t12L[il] = t12; - t13L[il] = t13; - t14L[il] = t14; - t15L[il] = t15; - t16L[il] = t16; - t17L[il] = t17; - t18L[il] = t18; - t19L[il] = t19; - t20L[il] = t20; - t21L[il] = t21; - t22L[il] = t22; - t23L[il] = t23; - t24L[il] = t24; - t25L[il] = t25; - t26L[il] = t26; - t27L[il] = t27; - t28L[il] = t28; - t29L[il] = t29; - t30L[il] = t30; - - cur = t30; - } - clr_buf(0); - use_buf(0); - struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t31, n_embd, N*n_batch); - struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch); - struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch); - use_buf(-1); - struct ggml_tensor * t34 = expand(gf, ggml_mul_mat (ctx0, model->output, t33)); assert_shape_2d(t34, n_vocab, N*n_batch); - struct ggml_tensor * t35 = expand(gf, ggml_reshape_3d(ctx0, t34, n_vocab, N, n_batch)); assert_shape_3d(t35, n_vocab, N, n_batch); - struct ggml_tensor * t36 = expand(gf, ggml_cross_entropy_loss(ctx0, t35, targets)); assert_shape_1d(t36, 1); - - { - /* - tok_embeddings | grad_tok_embeddings = ggml_get_rows_back(grad_t01, t00) - L0_att_norm | grad_L0_att_norm = ggml_repeat_back(grad_t03L0, L0_att_norm.shape) - L0_wq | grad_L0_wq = ggml_out_prod(t04L0, grad_t05L0) - L0_wk | grad_L0_wk = ggml_out_prod(t04L0, grad_t08L0) - L0_wv | grad_L0_wv = ggml_out_prod(t04L0, ggml_transpose(grad_t11L0)) - L0_wo | grad_L0_wo = ggml_out_prod(t19L0, grad_t20L0) - L0_ffn_norm | grad_L0_ffn_norm = ggml_repeat_back(grad_t23L0, L0_ffn_norm.shape) - L0_w1 | grad_L0_w1 = ggml_out_prod(t24L0, grad_t26L0) - L0_w2 | grad_L0_w2 = ggml_out_prod(t28L0, grad_t29L0) - L0_w3 | grad_L0_w3 = ggml_out_prod(t24L0, grad_t25L0) - L1_att_norm | grad_L1_att_norm = ggml_repeat_back(grad_t03L1, L1_att_norm.shape) - L1_wq | grad_L1_wq = ggml_out_prod(t04L1, grad_t05L1) - L1_wk | grad_L1_wk = ggml_out_prod(t04L1, grad_t08L1) - L1_wv | grad_L1_wv = ggml_out_prod(t04L1, ggml_transpose(grad_t11L1)) - L1_wo | grad_L1_wo = ggml_out_prod(t19L1, grad_t20L1) - L1_ffn_norm | grad_L1_ffn_norm = ggml_repeat_back(grad_t23L1, L1_ffn_norm.shape) - L1_w1 | grad_L1_w1 = ggml_out_prod(t24L1, grad_t26L1) - L1_w2 | grad_L1_w2 = ggml_out_prod(t28L1, grad_t29L1) - L1_w3 | grad_L1_w3 = ggml_out_prod(t24L1, grad_t25L1) - norm | grad_norm = ggml_repeat_back(grad_t32, norm.shape) - output | grad_output = ggml_out_prod(t33, grad_t34) - | - t01 = ggml_get_rows(tok_embeddings, t00) | grad_t01 = grad_t21L0 + ggml_rms_norm_back(t01, grad_t02L0) - for layer: | - t02L0*= ggml_rms_norm (t01) | grad_t02L0 = ggml_mul(grad_t04L0, t03L0) - t03L0 = ggml_repeat (L0_att_norm, t02L0_shape) | grad_t03L0 = ggml_mul(grad_t04L0, t02L0) - t04L0*= ggml_mul (t02L0, t03L0) | grad_t04L0 = ggml_out_prod(L0_wv, grad_t11L0) + ggml_out_prod(L0_wk, ggml_transpose(grad_t08L0)) + ggml_out_prod(L0_wq, ggml_transpose(grad_t05L0)) - t05L0 = ggml_mul_mat (L0_wq, t04L0) | grad_t05L0 = ggml_reshape(grad_t06L0, t05L0_shape) - t06L0 = ggml_reshape_4d (t05L0, n_embd/n_head, n_head, N, n_batch) | grad_t06L0 = ggml_rope_back(grad_t07L0) - t07L0 = ggml_rope_inplace (t06L0) | grad_t07L0 = ggml_permute_back(grad_t13L0, 0, 2, 1, 3) = ggml_permute(grad_t13L0, 0, 2, 1, 3) - t08L0 = ggml_mul_mat (L0_wk, t04L0) | grad_t08L0 = ggml_reshape(grad_t09L0, t08L0_shape) - t09L0 = ggml_reshape_4d (t08L0, n_embd/n_head, n_head, N, n_batch) | grad_t09L0 = ggml_rope_back(grad_t10L0) - t10L0 = ggml_rope_inplace (t09L0) | grad_t10L0 = ggml_permute_back(grad_t14L0, 0, 2, 1, 3) = ggml_permute(grad_t14L0, 0, 2, 1, 3) - t11L0 = ggml_mul_mat (t04L0, L0_wv) | grad_t11L0 = ggml_reshape(grad_t12L0, t11L0_shape) - t12L0 = ggml_reshape_4d (t11L0, N, n_batch, n_embd/n_head, n_head) | grad_t12L0 = ggml_permute_back(grad_t15L0, 0, 3, 1, 2) = ggml_permute(grad_t15L0, 0, 2, 3, 1) - t13L0*= ggml_permute (t07L0, 0, 2, 1, 3) | grad_t13L0 = view__q(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) - t14L0*= ggml_permute (t10L0, 0, 2, 1, 3) | grad_t14L0 = view__k(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) - t15L0*= ggml_permute (t12L0, 0, 3, 1, 2) | grad_t15L0 = view__v(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0)) - t16L0 = ggml_flash_attn (t13L0, t14L0, t15L0) | grad_t16L0 = ggml_permute_back(grad_t17L0, 0, 2, 1, 3) = ggml_permute(grad_t17L0, 0, 2, 1, 3) - t17L0 = ggml_permute (t16L0, 0, 2, 1, 3) | grad_t17L0 = grad_t18L0 - t18L0 = ggml_cont (t17L0) | grad_t18L0 = ggml_reshape(grad_t19L0, t18L0_shape) - t19L0*= ggml_reshape_2d (t18L0, n_embd, N*n_batch) | grad_t19L0 = ggml_out_prod(L0_wo, ggml_transpose(grad_t20L0)) - t20L0 = ggml_mul_mat (L0_wo, t19L0) | grad_t20L0 = grad_t21L0 - t21L0*= ggml_add (t20L0, t01) | grad_t21L0 = grad_t30L0 + ggml_rms_norm_back(t21L0, grad_t22L0) - t22L0*= ggml_rms_norm (t21L0) | grad_t22L0 = ggml_mul(grad_t24L0, t23L0) - t23L0 = ggml_repeat (L0_ffn_norm, t22L0_shape) | grad_t23L0 = ggml_mul(grad_t24L0, t22L0) - t24L0*= ggml_mul (t23L0, t22L0) | grad_t24L0 = ggml_out_prod(L0_w1, ggml_transpose(grad_t26L0)) + ggml_out_prod(L0_w3, ggml_transpose(grad_t25L0)) - t25L0*= ggml_mul_mat (L0_w3, t24L0) | grad_t25L0 = ggml_mul(grad_t28L0, t27L0) - t26L0*= ggml_mul_mat (L0_w1, t24L0) | grad_t26L0 = ggml_silu_back(t26L0, grad_t27L0) - t27L0*= ggml_silu (t26L0) | grad_t27L0 = ggml_mul(grad_t28L0, t25L0) - t28L0*= ggml_mul (t27L0, t25L0) | grad_t28L0 = ggml_out_prod(L0_w2, ggml_transpose(grad_t29L0)) - t29L0 = ggml_mul_mat (L0_w2, t28L0) | grad_t29L0 = grad_t30L0 - t30L0*= ggml_add (t21L0, t29L0) | grad_t30L0 = ggml_rms_norm_back(t30L0, grad_t02L1) + grad_t21L1 - ^ - t02L1*= ggml_rms_norm (t30L0) | grad_t02L1 = ggml_mul(grad_t04L1, t03L1) - t03L1 = ggml_repeat (L1_att_norm, t02L1_shape) | grad_t03L1 = ggml_mul(grad_t04L1, t02L1) - t04L1*= ggml_mul (t02L1, t03L1) | grad_t04L1 = ggml_out_prod(L1_wv, grad_t11L1) + ggml_out_prod(L1_wk, ggml_transpose(grad_t08L1)) + ggml_out_prod(L1_wq, ggml_transpose(grad_t05L1)) - t05L1 = ggml_mul_mat (L1_wq, t04L1) | grad_t05L1 = ggml_reshape(grad_t06L1, t05L1_shape) - t06L1 = ggml_reshape_4d (t05L1, n_embd/n_head, n_head, N, n_batch) | grad_t06L1 = ggml_rope_back(grad_t07L1) - t07L1 = ggml_rope_inplace (t06L1) | grad_t07L1 = ggml_permute_back(grad_t13L1, 0, 2, 1, 3) = ggml_permute(grad_t13L1, 0, 2, 1, 3) - t08L1 = ggml_mul_mat (L1_wk, t04L1) | grad_t08L1 = ggml_reshape(grad_t09L1, t08L1_shape) - t09L1 = ggml_reshape_4d (t08L1, n_embd/n_head, n_head, N, n_batch) | grad_t09L1 = ggml_rope_back(grad_t10L1) - t10L1 = ggml_rope_inplace (t09L1) | grad_t10L1 = ggml_permute_back(grad_t14L1, 0, 2, 1, 3) = ggml_permute(grad_t14L1, 0, 2, 1, 3) - t11L1 = ggml_mul_mat (t04L1, L1_wv) | grad_t11L1 = ggml_reshape(grad_t12L1, t11L1_shape) - t12L1 = ggml_reshape_4d (t11L1, N, n_batch, n_embd/n_head, n_head) | grad_t12L1 = ggml_permute_back(grad_t15L1, 0, 3, 1, 2) = ggml_permute(grad_t15L1, 0, 2, 3, 1) - t13L1*= ggml_permute (t07L1, 0, 2, 1, 3) | grad_t13L1 = view__q(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) - t14L1*= ggml_permute (t10L1, 0, 2, 1, 3) | grad_t14L1 = view__k(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) - t15L1*= ggml_permute (t12L1, 0, 3, 1, 2) | grad_t15L1 = view__v(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1)) - t16L1 = ggml_flash_attn (t13L1, t14L1, t15L1) | grad_t16L1 = ggml_permute_back(grad_t17L1, 0, 2, 1, 3) = ggml_permute(grad_t17L1, 0, 2, 1, 3) - t17L1 = ggml_permute (t16L1, 0, 2, 1, 3) | grad_t17L1 = grad_t18L1 - t18L1 = ggml_cont (t17L1) | grad_t18L1 = ggml_reshape(grad_t19L1, t18L1_shape) - t19L1*= ggml_reshape_2d (t18L1, n_embd, N*n_batch) | grad_t19L1 = ggml_out_prod(L1_wo, ggml_transpose(grad_t20L1)) - t20L1 = ggml_mul_mat (L1_wo, t19L1) | grad_t20L1 = grad_t21L1 - t21L1*= ggml_add (t20L1, t30L0) | grad_t21L1 = grad_t30L1 + ggml_rms_norm_back(t21L1, grad_t22L1) - t22L1*= ggml_rms_norm (t21L1) | grad_t22L1 = ggml_mul(grad_t24L1, t23L1) - t23L1 = ggml_repeat (L1_ffn_norm, t22L1_shape) | grad_t23L1 = ggml_mul(grad_t24L1, t22L1) - t24L1*= ggml_mul (t23L1, t22L1) | grad_t24L1 = ggml_out_prod(L1_w1, ggml_transpose(grad_t26L1)) + ggml_out_prod(L1_w3, ggml_transpose(grad_t25L1)) - t25L1*= ggml_mul_mat (L1_w3, t24L1) | grad_t25L1 = ggml_mul(grad_t28L1, t27L1) - t26L1*= ggml_mul_mat (L1_w1, t24L1) | grad_t26L1 = ggml_silu_back(t26L1, grad_t27L1) - t27L1*= ggml_silu (t26L1) | grad_t27L1 = ggml_mul(grad_t28L1, t25L1) - t28L1*= ggml_mul (t27L1, t25L1) | grad_t28L1 = ggml_out_prod(L1_w2, ggml_transpose(grad_t29L1)) - t29L1 = ggml_mul_mat (L1_w2, t28L1) | grad_t29L1 = grad_t30L1 - t30L1*= ggml_add (t21L1, t29L1) | grad_t30L1 = ggml_rms_norm_back(t30L1, grad_t31) - ^ - t31 = ggml_rms_norm (t30L1) | grad_t31 = ggml_mul(grad_t33, t32) - t32 = ggml_repeat (norm, t31.shape) | grad_t32 = ggml_mul(grad_t33, t31) - t33 = ggml_mul (t32, t31) | grad_t33 = ggml_out_prod(output, ggml_transpose(grad_t34)) - t34 = ggml_mul_mat (output, t33) | grad_t34 = ggml_reshape(grad_t35, t34.shape) - t35 = ggml_reshape_3d (t34, n_vocab, N, n_batch) | grad_t35 = ggml_cross_entropy_loss_back(t35, targets, grad_t36) - t36 = ggml_cross_entropy_loss(t35, targets) | grad_t36 = 1 (optimizer) - tensors marked with * need to be stored until grad computation - tensors during grad computation are all temporary - */ - } - - *gb = *gf; - - // t36->grad gets set to one by optimizer, so we need the tensor. - // initialize it with 1.0f to make sure. - use_buf(-1); - t36->grad = expand(gb, ggml_new_f32(ctx0, 1.0f)); - - use_buf(0); - t35->grad = expand(gb, ggml_cross_entropy_loss_back(ctx0, t35, targets, t36->grad)); assert_shape_3d(t35->grad, n_vocab, N, n_batch); - t34->grad = expand(gb, ggml_reshape_2d (ctx0, t35->grad, n_vocab, N*n_batch)); assert_shape_2d(t34->grad, n_vocab, N*n_batch); - t33->grad = expand(gb, ggml_out_prod (ctx0, model->output, ggml_transpose(ctx0, t34->grad))); assert_shape_2d(t33->grad, n_embd, N*n_batch); - t32->grad = expand(gb, ggml_mul (ctx0, t33->grad, t31)); assert_shape_2d(t32->grad, n_embd, N*n_batch); - - use_buf(-1); - - model->norm->grad = expand(gb, add_or_set(model->norm->grad, ggml_repeat_back(ctx0, t32->grad, model->norm))); assert_shape_1d(model->norm->grad, n_embd); - model->output->grad = expand(gb, add_or_set(model->output->grad, ggml_out_prod(ctx0, t33, t34->grad))); assert_shape_2d(model->output->grad, n_embd, n_vocab); - - clr_buf(1); - use_buf(1); - t31->grad = expand(gb, ggml_mul(ctx0, t33->grad, t32)); assert_shape_2d(t31->grad, n_embd, N*n_batch); - - struct ggml_tensor * back_layer_inp = t31; - struct ggml_tensor * grad_layer_inp = NULL; - - for (int k = 0; k < n_layer; ++k) { - int il = n_layer-1-k; - struct my_llama_layer & layer = model->layers[il]; - - struct ggml_tensor * t02 = t02L[il]; - struct ggml_tensor * t03 = t03L[il]; - struct ggml_tensor * t04 = t04L[il]; - struct ggml_tensor * t05 = t05L[il]; - struct ggml_tensor * t06 = t06L[il]; - struct ggml_tensor * t07 = t07L[il]; - struct ggml_tensor * t08 = t08L[il]; - struct ggml_tensor * t09 = t09L[il]; - struct ggml_tensor * t10 = t10L[il]; - struct ggml_tensor * t11 = t11L[il]; - struct ggml_tensor * t12 = t12L[il]; - struct ggml_tensor * t13 = t13L[il]; - struct ggml_tensor * t14 = t14L[il]; - struct ggml_tensor * t15 = t15L[il]; - struct ggml_tensor * t16 = t16L[il]; - struct ggml_tensor * t17 = t17L[il]; - struct ggml_tensor * t18 = t18L[il]; - struct ggml_tensor * t19 = t19L[il]; - struct ggml_tensor * t20 = t20L[il]; - struct ggml_tensor * t21 = t21L[il]; - struct ggml_tensor * t22 = t22L[il]; - struct ggml_tensor * t23 = t23L[il]; - struct ggml_tensor * t24 = t24L[il]; - struct ggml_tensor * t25 = t25L[il]; - struct ggml_tensor * t26 = t26L[il]; - struct ggml_tensor * t27 = t27L[il]; - struct ggml_tensor * t28 = t28L[il]; - struct ggml_tensor * t29 = t29L[il]; - struct ggml_tensor * t30 = t30L[il]; - - clr_buf(0); - use_buf(0); - t30->grad = expand(gb, ggml_rms_norm_back(ctx0, t30, back_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch); - if (grad_layer_inp) { - t30->grad = expand(gb, ggml_add(ctx0, t30->grad, grad_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch); + struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); + struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); + struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); + struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); + struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); + struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); + struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch); + struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); + struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); + struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd); + struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); + struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); + struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch); + struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); + struct ggml_tensor * t16; + if (enable_flash_attn) { + t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); + } else { + struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); + struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); + struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); + struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); + t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); } - clr_buf(1); - t29->grad = t30->grad; assert_shape_2d(t29->grad, n_embd, N*n_batch); - t28->grad = expand(gb, ggml_out_prod(ctx0, layer.w2, ggml_transpose(ctx0, t29->grad))); assert_shape_2d(t28->grad, n_ff, N*n_batch); - t27->grad = expand(gb, ggml_mul(ctx0, t28->grad, t25)); assert_shape_2d(t27->grad, n_ff, N*n_batch); - t26->grad = expand(gb, ggml_silu_back(ctx0, t26, t27->grad)); assert_shape_2d(t26->grad, n_ff, N*n_batch); - t25->grad = expand(gb, ggml_mul(ctx0, t28->grad, t27)); assert_shape_2d(t25->grad, n_ff, N*n_batch); - t24->grad = expand(gb, ggml_add_inplace(ctx0, - ggml_out_prod(ctx0, layer.w1, ggml_transpose(ctx0, t26->grad)), - ggml_out_prod(ctx0, layer.w3, ggml_transpose(ctx0, t25->grad)))); assert_shape_2d(t24->grad, n_embd, N*n_batch); - t23->grad = expand(gb, ggml_mul(ctx0, t24->grad, t22)); assert_shape_2d(t23->grad, n_embd, N*n_batch); - t22->grad = expand(gb, ggml_mul(ctx0, t24->grad, ggml_repeat(ctx0, layer.ffn_norm, t24->grad))); assert_shape_2d(t22->grad, n_embd, N*n_batch); - use_buf(1); - t21->grad = expand(gb, ggml_add(ctx0, t30->grad, ggml_rms_norm_back(ctx0, t21, t22->grad))); assert_shape_2d(t21->grad, n_embd, N*n_batch); - grad_layer_inp = t21; - use_buf(0); - t20->grad = t21->grad; assert_shape_2d(t20->grad, n_embd, N*n_batch); - t19->grad = expand(gb, ggml_out_prod(ctx0, layer.wo, ggml_transpose(ctx0, t20->grad))); assert_shape_2d(t19->grad, n_embd, N*n_batch); - t18->grad = expand(gb, ggml_reshape_4d(ctx0, t19->grad, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t18->grad, n_embd/n_head, n_head, N, n_batch); - t17->grad = t18->grad; assert_shape_4d(t17->grad, n_embd/n_head, n_head, N, n_batch); - t16->grad = expand(gb, ggml_permute(ctx0, t17->grad, 0, 2, 1, 3)); assert_shape_4d(t16->grad, n_embd/n_head, N, n_head, n_batch); - struct ggml_tensor * flash_attn = expand(gb, ggml_flash_attn_back(ctx0, t13, t14, t15, t16->grad, true)); assert_shape_4d(flash_attn, n_embd/n_head, N*3, n_head, n_batch); - t15->grad = expand(gb, view__v(flash_attn)); assert_shape_4d(t15->grad, N, n_embd/n_head, n_head, n_batch); - t14->grad = expand(gb, view__k(flash_attn)); assert_shape_4d(t14->grad, n_embd/n_head, N, n_head, n_batch); - t13->grad = expand(gb, view__q(flash_attn)); assert_shape_4d(t13->grad, n_embd/n_head, N, n_head, n_batch); - t12->grad = expand(gb, ggml_permute(ctx0, t15->grad, 0, 2, 3, 1)); assert_shape_4d(t12->grad, N, n_batch, n_embd/n_head, n_head); - t11->grad = expand(gb, ggml_reshape_2d(ctx0, ggml_cont(ctx0, t12->grad), N*n_batch, n_embd)); assert_shape_2d(t11->grad, N*n_batch, n_embd); - t10->grad = expand(gb, ggml_permute(ctx0, t14->grad, 0, 2, 1, 3)); assert_shape_4d(t10->grad, n_embd/n_head, n_head, N, n_batch); - t09->grad = expand(gb, ggml_rope_back(ctx0, t10->grad, n_past, n_rot, rope_mode, n_ctx, 10000.0f, 1.0f, 0.0f, false)); assert_shape_4d(t09->grad, n_embd/n_head, n_head, N, n_batch); - t08->grad = expand(gb, ggml_reshape_2d(ctx0, t09->grad, n_embd, N*n_batch)); assert_shape_2d(t08->grad, n_embd, N*n_batch); - t07->grad = expand(gb, ggml_permute(ctx0, t13->grad, 0, 2, 1, 3)); assert_shape_4d(t07->grad, n_embd/n_head, n_head, N, n_batch); - t06->grad = expand(gb, ggml_rope_back(ctx0, t07->grad, n_past, n_rot, rope_mode, n_ctx, 10000.0f, 1.0f, 0.0f, false)); assert_shape_4d(t06->grad, n_embd/n_head, n_head, N, n_batch); - t05->grad = expand(gb, ggml_reshape_2d(ctx0, t06->grad, n_embd, N*n_batch)); assert_shape_2d(t05->grad, n_embd, N*n_batch); - t04->grad = expand(gb, ggml_add_inplace(ctx0, - ggml_add_inplace(ctx0, - ggml_out_prod(ctx0, layer.wv, t11->grad), - ggml_out_prod(ctx0, layer.wk, ggml_transpose(ctx0, t08->grad))), - ggml_out_prod(ctx0, layer.wq, ggml_transpose(ctx0, t05->grad)))); assert_shape_2d(t04->grad, n_embd, N*n_batch); - t03->grad = expand(gb, ggml_mul(ctx0, t04->grad, t02)); assert_shape_2d(t04->grad, n_embd, N*n_batch); - use_buf(1); - t02->grad = expand(gb, ggml_mul(ctx0, t04->grad, ggml_repeat(ctx0, layer.attention_norm, t02))); assert_shape_2d(t02->grad, n_embd, N*n_batch); - back_layer_inp = t02; - // use_buf(0); - - use_buf(-1); - layer.attention_norm->grad = expand(gb, add_or_set(layer.attention_norm->grad, ggml_repeat_back(ctx0, t03->grad, layer.attention_norm))); assert_shape_1d(layer.attention_norm->grad, n_embd); - layer.wq->grad = expand(gb, add_or_set(layer.wq->grad, ggml_out_prod(ctx0, t04, t05->grad))); assert_shape_2d(layer.wq->grad, n_embd, n_embd); - layer.wk->grad = expand(gb, add_or_set(layer.wk->grad, ggml_out_prod(ctx0, t04, t08->grad))); assert_shape_2d(layer.wk->grad, n_embd, n_embd); - layer.wv->grad = expand(gb, add_or_set(layer.wv->grad, ggml_out_prod(ctx0, t04, ggml_transpose(ctx0, t11->grad)))); assert_shape_2d(layer.wv->grad, n_embd, n_embd); - layer.wo->grad = expand(gb, add_or_set(layer.wo->grad, ggml_out_prod(ctx0, t19, t20->grad))); assert_shape_2d(layer.wo->grad, n_embd, n_embd); - layer.ffn_norm->grad = expand(gb, add_or_set(layer.ffn_norm->grad, ggml_repeat_back(ctx0, t23->grad, layer.ffn_norm))); assert_shape_1d(layer.ffn_norm->grad, n_embd); - layer.w1->grad = expand(gb, add_or_set(layer.w1->grad, ggml_out_prod(ctx0, t24, t26->grad))); assert_shape_2d(layer.w1->grad, n_embd, n_ff); - layer.w2->grad = expand(gb, add_or_set(layer.w2->grad, ggml_out_prod(ctx0, t28, t29->grad))); assert_shape_2d(layer.w2->grad, n_ff, n_embd); - layer.w3->grad = expand(gb, add_or_set(layer.w3->grad, ggml_out_prod(ctx0, t24, t25->grad))); assert_shape_2d(layer.w3->grad, n_embd, n_ff); - // use_buf(0); + struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch); + struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch); + struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); + struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); + struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); + struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); + struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); + struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); + struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); + struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); + struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); + struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); + struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); + struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); + cur = t30; + checkpoints.push_back(cur); + } + struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); + struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); + struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); + struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); + struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); + struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); + + checkpoints.push_back(t31); + checkpoints.push_back(t32); + checkpoints.push_back(t33); + checkpoints.push_back(t34); + checkpoints.push_back(t35); + checkpoints.push_back(t36); + + ggml_build_forward_expand(gf, t36); + + if (enable_checkpointing) { + ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); + } else { + *gb = *gf; + ggml_build_backward_expand(ctx, gf, gb, true); + } + + if (alloc) { + // make sure some tensors are not reallocated by inserting new temporary nodes depending on them + int n_leafs_before = gb->n_leafs; + int n_nodes_before = gb->n_nodes; + struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f); + // output tensors + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); + // input gradient + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); + GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad)); + ggml_allocr_alloc(alloc, t36->grad); + // gradient tensors (will be set to zero by ggml_graph_reset) + // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632 + for (int i = 0; i < gf->n_nodes; ++i) { + if (!gf->grads[i]) continue; + if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) { + ggml_allocr_alloc(alloc, gf->grads[i]); + } + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one)); + } + // allocating checkpoints in one block to reduce memory fragmentation + // note: they will be freed in reverse order + for (int i = 0; i < (int) checkpoints.size(); ++i) { + if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) { + ggml_allocr_alloc(alloc, checkpoints[i]); + } + } + + //int n_leafs_after = gb->n_leafs; + //int n_nodes_after = gb->n_nodes; + + ggml_allocr_alloc_graph(alloc, gb); + + // remove the additional nodes and leafs + for (int i = n_leafs_before; i < gb->n_leafs; ++i) { + gb->leafs[i] = NULL; + } + for (int i = n_nodes_before; i < gb->n_nodes; ++i) { + gb->nodes[i] = NULL; + } + gb->n_leafs = n_leafs_before; + gb->n_nodes = n_nodes_before; } - clr_buf(0); - use_buf(0); - t01->grad = expand(gb, ggml_add_inplace(ctx0, grad_layer_inp->grad, ggml_rms_norm_back(ctx0, t01, back_layer_inp->grad))); assert_shape_2d(t01->grad, n_embd, N*n_batch); - use_buf(-1); - model->tok_embeddings->grad = expand(gb, ggml_get_rows_back(ctx0, t01->grad, t00, model->tok_embeddings)); assert_shape_2d(model->tok_embeddings->grad, n_embd, n_vocab); - // clr_buf(1); - // clr_buf(0); *logits = t35; - - if (track_max_mem) { - printf("%s: max size compute buf0: %zu\n", __func__, buf_maxs[0]); - printf("%s: max size compute buf1: %zu\n", __func__, buf_maxs[1]); - } - - // now that all grads are created, set the graph leafs and grads - graph_set_leafs_grads(gf); - graph_set_leafs_grads(gb); - return t36; } @@ -1962,42 +874,6 @@ void print_matrix(struct ggml_tensor * probs) { } } - -void print_token(struct llama_context * ctx, llama_token token) { - printf("%s", llama_token_to_piece(ctx, token).c_str()); -} - -void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) { - for (int i=0; ine[0]; ++i) { - int token = ggml_get_i32_1d(tokens, i); - print_token(ctx, token); - } -} - -void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens) { - for (int i1=0; i1ne[1]; ++i1) { - //int num_newline = 0; - for (int i0=0; i0ne[0]; ++i0) { - int token = get_i32_2d(tokens, i0, i1); - print_token(ctx, token); - // bool isnl = (token == llama_token_nl()); - // if (isnl) { - // ++num_newline; - // } - // if (isnl) { - // if (num_newline < 2) { - // print_token(ctx, token); - // } else { - // printf("\\n"); - // } - // } else { - // print_token(ctx, token); - // } - } - printf("\n--\n"); - } -} - void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { int n_tokens = tokens_input->ne[0]; int n_vocab = target_logits->ne[0]; @@ -2033,51 +909,27 @@ void get_example_targets_batch(struct llama_context * lctx, const int * train_sa ggml_set_f32(target_logits, -1.0f/n_vocab); ggml_set_f32(target_probs, 0.0f); + // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); for (int k=0; kne[0]; - int n_vocab = target_logits->ne[0]; - for (int i=0; i chars(len); - read_raw(chars.data(), len); - return std::string(chars.data(), len); - } - - void write_raw(const void * ptr, size_t size) { - if (size == 0) { - return; - } - errno = 0; - size_t ret = std::fwrite(ptr, size, 1, fp); - if (ret != 1) { - throw std::runtime_error(format("write error: %s", strerror(errno))); - } - } - - void write_u32(std::uint32_t val) { - write_raw(&val, sizeof(val)); - } - - ~llama_file() { - if (fp) { - std::fclose(fp); - } - } -}; - int tokenize_file(struct llama_context * lctx, const char * filename, std::vector& out) { - struct llama_file f(filename, "rb"); + FILE * fp = std::fopen(filename, "rb"); + if (fp == NULL) { + return 0; + } + +#ifdef _WIN32 + GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0); +#else + GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0); +#endif + + size_t size = 0; +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); + size = ret; +#else + long ret = std::ftell(fp); + size = ret; +#endif + +#ifdef _WIN32 + GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0); +#else + GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0); +#endif std::vector buf; - buf.resize(f.size+1); + buf.resize(size+1); + out.resize(size+1); - f.read_raw(buf.data(), f.size); - buf[f.size] = '\0'; + if (std::fread(buf.data(), size, 1, fp) != 1) { + throw std::runtime_error(std::string("unexpectedly reached end of file")); + } + if (ferror(fp)) { + throw std::runtime_error(format("read error: %s", strerror(errno))); + } + + buf[size] = '\0'; int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); if (n_tokens < 0) { out.resize(-n_tokens); - llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); + n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); } + GGML_ASSERT(n_tokens >= 0); + out.resize(n_tokens); bool verify = false; if (verify) { @@ -2238,438 +1040,466 @@ void shuffle_ints(int * begin, int * end) { }); } -struct my_llama_sampler_params { - float temp = 0.0f; // <= 0.0 disabled - int top_k = 20; // <= 0 to use vocab size - float top_p = 0.95f; // 1.0 = disabled - float tfs_z = 1.00f; // 1.0 = disabled - float typical_p = 1.00f; // 1.0 = disabled - int repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) - float repeat_penalty = 1.0f; // 1.0 = disabled - float alpha_presence = 0.0f; // 0.0 = disabled - float alpha_frequency = 0.0f; // 0.0 = disabled - int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 - float mirostat_tau = 5.00f; // target entropy - float mirostat_eta = 0.10f; // learning rate - bool penalize_nl = true; // consider newlines as a repeatable token -}; - -struct my_llama_sampler { - struct llama_context * ctx = NULL; - my_llama_sampler_params params; - - int n_vocab = 0; - int n_ctx = 0; - - float mirostat_mu; - - std::vector candidates; - llama_token_data_array candidates_p; - -}; - -void init_sampler(struct my_llama_sampler * sampler, struct llama_context * ctx) { - sampler->ctx = ctx; - sampler->n_vocab = llama_n_vocab(sampler->ctx); - sampler->n_ctx = llama_n_ctx(sampler->ctx); - sampler->mirostat_mu = 2.0f * sampler->params.mirostat_tau; +#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ +{ \ + const std::string skey(key); \ + const int kid = gguf_find_key(ctx, skey.c_str()); \ + if (kid >= 0) { \ + enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ + if (ktype != (type)) { \ + throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \ + } \ + (dst) = func(ctx, kid); \ + } else if (req) { \ + throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \ + } \ } -llama_token sample(struct my_llama_sampler * sampler, float * logits, const llama_token * last_tokens, int n_last_tokens) { - GGML_ASSERT(sampler->ctx != NULL); - struct llama_context * ctx = sampler->ctx; +bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { + GGML_ASSERT(a != NULL); + GGML_ASSERT(b != NULL); + GGML_ASSERT(a->type == b->type); + GGML_ASSERT(ggml_are_same_shape(a, b)); + GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); - sampler->candidates.resize(sampler->n_vocab); - for (llama_token token_id = 0; token_id < sampler->n_vocab; ++token_id) { - sampler->candidates[token_id].id = token_id; - sampler->candidates[token_id].logit = logits[token_id]; - sampler->candidates[token_id].p = 0.0; + return true; +} + +void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { + if (dst == NULL) { + return; } + struct ggml_tensor * t = ggml_get_tensor(ctx, name); + GGML_ASSERT(are_same_layout(dst, t)); + memcpy(dst->data, t->data, ggml_nbytes(t)); - llama_token_data_array * candidates_p = & sampler->candidates_p; - - candidates_p->data = sampler->candidates.data(); - candidates_p->size = sampler->candidates.size(); - candidates_p->sorted = false; - - const auto params = sampler->params; - - // Apply penalties - const float nl_logit = logits[llama_token_nl(ctx)]; - - const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx); - - llama_sample_repetition_penalty( - ctx, - candidates_p, - last_tokens + n_last_tokens - n_last, - n_last, - params.repeat_penalty); - llama_sample_frequency_and_presence_penalties( - ctx, - candidates_p, - last_tokens + n_last_tokens - n_last, - n_last, - params.alpha_frequency, - params.alpha_presence); - - if (!params.penalize_nl) { - logits[llama_token_nl(ctx)] = nl_logit; + if (strlen(ggml_get_name(dst)) == 0) { + ggml_set_name(dst, name); } +} - llama_token token = 0; - if (params.temp <= 0) { - // Greedy sampling - token = llama_sample_token_greedy(ctx, candidates_p); +void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); + GGML_ASSERT(file_version == 0); + + GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); + GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); + GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); + + uint64_t nx; + GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); + opt->nx = (size_t) nx; + + // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know + + std::string opt_type; + GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); + if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { + opt->params.type = GGML_OPT_ADAM; + + GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); + GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); + + GGML_ASSERT(opt->ctx != NULL); + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { + opt->params.type = GGML_OPT_LBFGS; + + GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); + GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); + GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); + GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); + GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); + GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); + + GGML_ASSERT(opt->ctx != NULL); + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + read_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + read_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + read_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + read_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + read_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + read_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); } else { - if (params.mirostat == 1) { - int mirostat_m = 100; - llama_sample_temperature(ctx, candidates_p, params.temp); - token = llama_sample_token_mirostat(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, mirostat_m, &sampler->mirostat_mu); - } else if (params.mirostat == 2) { - llama_sample_temperature(ctx, candidates_p, params.temp); - token = llama_sample_token_mirostat_v2(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, &sampler->mirostat_mu); - } else { - // Temperature sampling - llama_sample_top_k (ctx, candidates_p, params.top_k, 1); - llama_sample_tail_free (ctx, candidates_p, params.tfs_z, 1); - llama_sample_typical (ctx, candidates_p, params.typical_p, 1); - - llama_sample_top_p (ctx, candidates_p, params.top_p, 1); - llama_sample_temperature (ctx, candidates_p, params.temp); - token = llama_sample_token(ctx, candidates_p); - } - } - return token; -} - -void set_logits_masked(struct ggml_tensor * logits, std::vector& mask, float value) { - GGML_ASSERT(logits->ne[0] == (int64_t) mask.size()); - for (int i2 = 0; i2 < logits->ne[2]; ++i2) { - for (int i1 = 0; i1 < logits->ne[1]; ++i1) { - for (int i0 = 0; i0 < logits->ne[0]; ++i0) { - if (!mask[i0]) continue; - float * ptr = (float *) ((char *) logits->data + i2*logits->nb[2] + i1*logits->nb[1] + i0*logits->nb[0]); - *ptr = value; - } - } + throw std::runtime_error("unknown optimizer type\n"); } } -void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { - if (tensor == NULL) { - file->write_u32(0); - file->write_u32(0); - file->write_u32(GGML_TYPE_F32); - file->seek((0-file->tell()) & 31, SEEK_CUR); - return; - } - const char * name = ggml_get_name(tensor); - uint32_t name_len = strlen(name); - uint32_t nd = tensor->n_dims; - uint32_t ne[4] = { (uint32_t)tensor->ne[0], - (uint32_t)tensor->ne[1], - (uint32_t)tensor->ne[2], - (uint32_t)tensor->ne[3] }; - file->write_u32(nd); - file->write_u32(name_len); - file->write_u32(tensor->type); - file->write_raw(ne, sizeof(ne[0]) * nd); - file->write_raw(name, name_len); - file->seek((0-file->tell()) & 31, SEEK_CUR); - file->write_raw(tensor->data, ggml_nbytes(tensor)); -} - -void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) { - int32_t nd = file->read_u32(); - GGML_ASSERT(nd == tensor->n_dims); - - uint32_t name_len = file->read_u32(); - enum ggml_type type = (enum ggml_type) file->read_u32(); - GGML_ASSERT(type == tensor->type); - - uint32_t ne[4]; - file->read_raw(ne, sizeof(ne[0]) * nd); - for (int i=0; ine[i]); - } - - std::string name = file->read_string(name_len); - GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0); - - file->seek((0-file->tell()) & 31, SEEK_CUR); - file->read_raw(tensor->data, ggml_nbytes(tensor)); -} - -void write_opt_context(struct llama_file * file, struct ggml_opt_context * opt) { - const uint32_t version = 0; - GGML_ASSERT(opt->nx >= 0); - GGML_ASSERT(opt->iter >= 0); - file->write_u32(version); - file->write_raw(&opt->params, sizeof(opt->params)); - file->write_raw(&opt->nx, sizeof(opt->nx)); - file->write_raw(&opt->iter, sizeof(opt->iter)); - file->write_u32((uint32_t) opt->just_initialized); - switch (opt->params.type) { - case GGML_OPT_ADAM: - { - GGML_ASSERT(opt->adam.x != NULL); - write_tensor(file, opt->adam.x); - write_tensor(file, opt->adam.g1); - write_tensor(file, opt->adam.g2); - write_tensor(file, opt->adam.m); - write_tensor(file, opt->adam.v); - write_tensor(file, opt->adam.mh); - write_tensor(file, opt->adam.vh); - write_tensor(file, opt->adam.pf); - file->write_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); - file->write_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); - file->write_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); - } break; - case GGML_OPT_LBFGS: - { - GGML_ASSERT(opt->adam.x != NULL); - write_tensor(file, opt->lbfgs.x); - write_tensor(file, opt->lbfgs.xp); - write_tensor(file, opt->lbfgs.g); - write_tensor(file, opt->lbfgs.gp); - write_tensor(file, opt->lbfgs.d); - write_tensor(file, opt->lbfgs.pf); - write_tensor(file, opt->lbfgs.lmal); - write_tensor(file, opt->lbfgs.lmys); - write_tensor(file, opt->lbfgs.lms); - write_tensor(file, opt->lbfgs.lmy); - file->write_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); - file->write_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); - file->write_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); - file->write_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); - file->write_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); - file->write_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); - } break; - } -} - -void read_opt_context(struct llama_file * file, struct ggml_context * ctx, struct ggml_opt_context * opt) { - uint32_t version = file->read_u32(); - GGML_ASSERT(version == 0); - - file->read_raw(&opt->params, sizeof(opt->params)); - file->read_raw(&opt->nx, sizeof(opt->nx)); - ggml_opt_init(ctx, opt, opt->params, opt->nx); - - file->read_raw(&opt->iter, sizeof(opt->iter)); - opt->just_initialized = (bool) file->read_u32(); +void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); + gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); + gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); switch (opt->params.type) { case GGML_OPT_ADAM: { - read_tensor(file, opt->adam.x); - read_tensor(file, opt->adam.g1); - read_tensor(file, opt->adam.g2); - read_tensor(file, opt->adam.m); - read_tensor(file, opt->adam.v); - read_tensor(file, opt->adam.mh); - read_tensor(file, opt->adam.vh); - if (opt->adam.pf) { read_tensor(file, opt->adam.pf); } - file->read_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); - file->read_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); - file->read_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); + + ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + if (opt->adam.pf) { + ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } + + gguf_add_tensor(fctx, opt->adam.m); + gguf_add_tensor(fctx, opt->adam.v); + if (opt->adam.pf) { + gguf_add_tensor(fctx, opt->adam.pf); + } } break; case GGML_OPT_LBFGS: { - GGML_ASSERT(opt->adam.x != NULL); - read_tensor(file, opt->lbfgs.x); - read_tensor(file, opt->lbfgs.xp); - read_tensor(file, opt->lbfgs.g); - read_tensor(file, opt->lbfgs.gp); - read_tensor(file, opt->lbfgs.d); - if (opt->lbfgs.pf) { read_tensor(file, opt->lbfgs.pf); } - read_tensor(file, opt->lbfgs.lmal); - read_tensor(file, opt->lbfgs.lmys); - read_tensor(file, opt->lbfgs.lms); - read_tensor(file, opt->lbfgs.lmy); - file->read_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); - file->read_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); - file->read_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); - file->read_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); - file->read_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); - file->read_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); + + ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + if (opt->lbfgs.pf) { + ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + } + ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + + gguf_add_tensor(fctx, opt->lbfgs.x); + gguf_add_tensor(fctx, opt->lbfgs.xp); + gguf_add_tensor(fctx, opt->lbfgs.g); + gguf_add_tensor(fctx, opt->lbfgs.gp); + gguf_add_tensor(fctx, opt->lbfgs.d); + if (opt->lbfgs.pf) { + gguf_add_tensor(fctx, opt->lbfgs.pf); + } + gguf_add_tensor(fctx, opt->lbfgs.lmal); + gguf_add_tensor(fctx, opt->lbfgs.lmys); + gguf_add_tensor(fctx, opt->lbfgs.lms); + gguf_add_tensor(fctx, opt->lbfgs.lmy); } break; } } -void save_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename) { - struct llama_file file(filename, "wb"); - if (file.fp == NULL) { - return; +void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + std::string arch; + + std::vector keybuf; + keybuf.resize(512); + auto kv = [&arch, &keybuf](const char * key) -> const char * { + snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); + return keybuf.data(); + }; + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + auto tn = [&tn_buf](const char * key) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); + return tn_buf.data(); + }; + auto tni = [&tn_buf](const char * key, int bid) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); + return tn_buf.data(); + }; + + GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); + GGML_ASSERT(arch == "llama"); + + uint32_t ftype_u; + GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); + GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); + + // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here + GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); + + GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); + GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); + GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); + GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); + + model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head; + GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT)); + + float rope_freq_scale = 1.0f; + GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); + GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); + GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); + if (rope_freq_scale != 1.0f) { + model->hparams.rope_freq_scale = 1.0f / rope_freq_scale; } - const uint32_t magic = 'ggcp'; - const uint32_t version = 0; + init_model(model); - file.write_u32(magic); - file.write_u32(version); - file.write_u32(model->train_its); - file.write_u32(model->train_samples); - file.write_u32(model->train_tokens); - file.write_u32(model->hparams.n_vocab); - file.write_u32(model->hparams.n_embd); - file.write_u32(model->hparams.n_mult); - file.write_u32(model->hparams.n_head); - file.write_u32(model->hparams.n_layer); - file.write_u32(model->hparams.n_rot); - - write_tensor(&file, model->tok_embeddings); - write_tensor(&file, model->norm); - write_tensor(&file, model->output); + read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); + read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); + read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; - write_tensor(&file, layer.attention_norm); - write_tensor(&file, layer.wq); - write_tensor(&file, layer.wk); - write_tensor(&file, layer.wv); - write_tensor(&file, layer.wo); - write_tensor(&file, layer.ffn_norm); - write_tensor(&file, layer.w1); - write_tensor(&file, layer.w2); - write_tensor(&file, layer.w3); + read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); + read_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); + read_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); + read_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); + read_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); + read_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); + read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); + read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); + read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); } - - write_opt_context(&file, opt); } -bool load_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename, bool init) { - struct llama_file file(filename, "rb"); +void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { + const char * arch = "llama"; + enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; - uint32_t magic; - uint32_t version; + std::vector keybuf; + keybuf.resize(512); + auto kv = [arch, &keybuf](const char * key) -> const char * { + snprintf(keybuf.data(), keybuf.size(), key, arch); + return keybuf.data(); + }; - uint32_t train_its = 0; - uint32_t train_samples = 0; - uint32_t train_tokens = 0; + // set arch + gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); + gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); - if (file.fp) { - printf("%s: Loading model from '%s'.\n", __func__, filename); - magic = file.read_u32(); - GGML_ASSERT(magic == 'ggcp'); - version = file.read_u32(); - GGML_ASSERT(version == 0); - train_its = file.read_u32(); - train_samples = file.read_u32(); - train_tokens = file.read_u32(); - model->hparams.n_vocab = file.read_u32(); - model->hparams.n_embd = file.read_u32(); - model->hparams.n_mult = file.read_u32(); - model->hparams.n_head = file.read_u32(); - model->hparams.n_layer = file.read_u32(); - model->hparams.n_rot = file.read_u32(); - print_params(&model->hparams); - } + // set hparams + gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx ); + gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd ); + gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff ); + gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head ); + gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer ); + gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot ); - if (init) { - init_model(model); - } + gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps ); + gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp + gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale ); - if (file.fp) { - model->train_its = train_its; - model->train_samples = train_samples; - model->train_tokens = train_tokens; - } + // set vocab by copying from vocab_model gguf file + { + struct gguf_init_params params = { + /*.no_alloc = */ false, + /*.ctx = */ NULL, + }; + struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params); - printf("%s: Training iterations: %u.\n", __func__, model->train_its); - printf("%s: Training samples: %u.\n", __func__, model->train_samples); - printf("%s: Training tokens: %u.\n", __func__, model->train_tokens); + const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST)); + if (token_idx == -1) { + throw std::runtime_error("cannot find tokenizer vocab in model file\n"); + } + const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx); - if (file.fp) { - read_tensor(&file, model->tok_embeddings); - read_tensor(&file, model->norm); - read_tensor(&file, model->output); - - for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { - auto & layer = model->layers[i]; - - read_tensor(&file, layer.attention_norm); - read_tensor(&file, layer.wq); - read_tensor(&file, layer.wk); - read_tensor(&file, layer.wv); - read_tensor(&file, layer.wo); - read_tensor(&file, layer.ffn_norm); - read_tensor(&file, layer.w1); - read_tensor(&file, layer.w2); - read_tensor(&file, layer.w3); + const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES)); + if (score_idx == -1) { + throw std::runtime_error("cannot find tokenizer scores in model file\n"); } - read_opt_context(&file, model->ctx, opt); + const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx); + + const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE)); + if (toktype_idx == -1) { + throw std::runtime_error("cannot find token type list in GGUF file\n"); + } + + const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx); + + std::string tokenizer_name; + GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL)); + + gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str()); + gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab); + gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab); + + int32_t special_bos_id = 1; + int32_t special_eos_id = 2; + int32_t special_unk_id = 0; + int32_t special_sep_id = -1; + int32_t special_pad_id = -1; + if (tokenizer_name == "llama") { + // default special tokens + special_bos_id = 1; + special_eos_id = 2; + special_unk_id = 0; + special_sep_id = -1; + special_pad_id = -1; + } else if (tokenizer_name == "gpt2") { + // read and copy bpe merges + const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES)); + if (merges_keyidx == -1) { + throw std::runtime_error("cannot find tokenizer merges in model file\n"); + } + + const int n_merges = gguf_get_arr_n(vctx, merges_keyidx); + + std::vector merges; + merges.resize(n_merges); + for (int i = 0; i < n_merges; i++) { + merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i); + } + gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges); + + // default special tokens + special_bos_id = 11; + special_eos_id = 11; + special_unk_id = -1; + special_sep_id = -1; + special_pad_id = -1; + } else { + fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); + fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__); + } + + std::vector tokens; + tokens.resize(n_vocab); + for (uint32_t i = 0; i < n_vocab; i++) { + tokens[i] = gguf_get_arr_str(vctx, token_idx, i); + } + gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab); + + GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID)); + GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID)); + GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID)); + GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID)); + GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID)); + + gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id); + gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id); + gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id); + gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id); + gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id); + + gguf_free(vctx); } - return (file.fp != NULL); + // add tensors + gguf_add_tensor(fctx, model->tok_embeddings); + gguf_add_tensor(fctx, model->norm); + gguf_add_tensor(fctx, model->output); + for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { + auto & layer = model->layers[i]; + + + gguf_add_tensor(fctx, layer.attention_norm); + gguf_add_tensor(fctx, layer.wq); + gguf_add_tensor(fctx, layer.wk); + gguf_add_tensor(fctx, layer.wv); + gguf_add_tensor(fctx, layer.wo); + gguf_add_tensor(fctx, layer.ffn_norm); + gguf_add_tensor(fctx, layer.w1); + gguf_add_tensor(fctx, layer.w2); + gguf_add_tensor(fctx, layer.w3); + } } -void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, const char * filename) { - struct llama_file file(filename, "wb"); - if (file.fp == NULL) { - return; +void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { + struct gguf_context * fctx = gguf_init_empty(); + + save_llama_model_gguf(fctx, fn_vocab_model, model); + + // write file + const bool only_meta = false; + gguf_write_to_file(fctx, filename, only_meta); + gguf_free(fctx); +} + +void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) { + load_llama_model_gguf(fctx, f_ggml_ctx, model); + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); + GGML_ASSERT(file_version == 0); + + GGUF_GET_KEY(fctx, model->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, model->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); + + load_opt_context_gguf(fctx, f_ggml_ctx, opt); +} + +void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { + save_llama_model_gguf(fctx, fn_vocab_model, model); + + gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 0); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, model->train_samples); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT, model->train_tokens); + + save_opt_context_gguf(fctx, opt); +} + +bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) { + struct ggml_context * f_ggml_ctx; + struct gguf_init_params params; + params.no_alloc = false; + params.ctx = &f_ggml_ctx; + struct gguf_context * fctx = gguf_init_from_file(filename, params); + if (fctx == NULL) { + return false; } -#pragma message("TODO: implement file saving using gguf") - (void) vocab; - (void) model; -// // write_magic -// file.write_u32(LLAMA_FILE_MAGIC); // magic -// file.write_u32(LLAMA_FILE_VERSION); // version -// // write_hparams -// file.write_u32(model->hparams.n_vocab); -// file.write_u32(model->hparams.n_embd); -// file.write_u32(model->hparams.n_mult); -// file.write_u32(model->hparams.n_head); -// file.write_u32(model->hparams.n_layer); -// file.write_u32(model->hparams.n_rot); -// file.write_u32(LLAMA_FTYPE_ALL_F32); -// // write_vocab -// uint32_t n_vocab = model->hparams.n_vocab; -// for (uint32_t i = 0; i < n_vocab; i++) { -// const auto & token_data = vocab->id_to_token.at(i); -// file.write_u32((uint32_t) token_data.tok.size()); -// file.write_raw(token_data.tok.data(), token_data.tok.size()); -// file.write_raw(&token_data.score, sizeof(token_data.score)); -// } -// // write tensors -// write_tensor(&file, model->tok_embeddings); -// write_tensor(&file, model->norm); -// write_tensor(&file, model->output); -// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { -// auto & layer = model->layers[i]; -// -// write_tensor(&file, layer.attention_norm); -// write_tensor(&file, layer.wq); -// write_tensor(&file, layer.wk); -// write_tensor(&file, layer.wv); -// write_tensor(&file, layer.wo); -// write_tensor(&file, layer.ffn_norm); -// write_tensor(&file, layer.w1); -// write_tensor(&file, layer.w2); -// write_tensor(&file, layer.w3); -// } + load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt); + + return true; } -float cosine_decay(const int decay_steps, const float alpha, int step) { +void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { + struct gguf_context * fctx = gguf_init_empty(); + + save_checkpoint_gguf(fctx, fn_vocab_model, model, opt); + + // write file + const bool only_meta = false; + gguf_write_to_file(fctx, filename, only_meta); + gguf_free(fctx); +} + +float cosine_decay(const int decay_steps, const float minimum, int step) { if (step > decay_steps) { step = decay_steps; } const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); - const float decay = (1 - alpha)*cosine_decay + alpha; + const float decay = (1 - minimum)*cosine_decay + minimum; return decay; } -float cosine_decay_restart(int decay_steps, const float alpha, int step, float restart_step_mult) { - while (step > decay_steps) { - step -= decay_steps; - decay_steps = (int) restart_step_mult * decay_steps; +float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) { + if (enable_restart) { + while (step > decay_steps) { + step -= decay_steps; + decay_steps = (int) restart_step_mult * decay_steps; + } } - return cosine_decay(decay_steps, alpha, step); + return cosine_decay(decay_steps, minimum, step); } struct train_params { @@ -2683,39 +1513,51 @@ struct train_params { int n_ctx; int n_embd; - int n_mult; int n_head; int n_layer; - int n_rotmax; + int n_ff; int n_threads; int n_batch; int n_examples; - int n_predict; + + float f_norm_rms_eps; + float rope_freq_base; + float rope_freq_scale; int print_info_interval; - int print_details_interval; bool samples_start_after_nl; bool use_adam; bool use_flash; - bool use_scratch; + bool use_checkpointing; + bool use_alloc; // only adam int warmup; int cos_decay_steps; float cos_decay_restart; - float cos_decay_alpha; + float cos_decay_min; + bool enable_restart; + + int opt_past; + float opt_delta; + int opt_max_no_improvement; int lbfgs_n_iter; int adam_n_iter; float adam_alpha; + float adam_min_alpha; float adam_decay; + int adam_decay_min_ndim; + float adam_beta1; + float adam_beta2; + float adam_gclip; + float adam_eps_f; int mem_model_gb; int mem_compute_gb; int mem_compute0_gb; - int mem_compute1_gb; }; struct train_params get_default_train_params() { @@ -2730,40 +1572,51 @@ struct train_params get_default_train_params() { params.n_ctx = 128; params.n_embd = 256; - params.n_mult = 256; params.n_head = 8; params.n_layer = 16; - params.n_rotmax = 64; + params.n_ff = 768; params.n_threads = 6; params.n_batch = 8; - params.n_examples = 8; - params.n_predict = 1024; + params.n_examples = 1; + + params.f_norm_rms_eps = 1e-5; + params.rope_freq_base = 10000.0f; + params.rope_freq_scale = 1.0f; params.print_info_interval = 1; - params.print_details_interval = 2; params.samples_start_after_nl = false; params.use_adam = true; params.use_flash = true; - params.use_scratch = true; + params.use_checkpointing = true; + params.use_alloc = true; + + params.opt_past = 0; + params.opt_delta = 1e-5f; + params.opt_max_no_improvement = 0; // only adam params.warmup = 100; params.cos_decay_steps = 1000; params.cos_decay_restart = 1.1f; - params.cos_decay_alpha = 0.0f; + params.cos_decay_min = 0.1f; + params.enable_restart = false; - params.lbfgs_n_iter = 16; - params.adam_n_iter = 16; - params.adam_alpha = 1e-3f; - params.adam_decay = 1e-3f; + params.lbfgs_n_iter = 256; + params.adam_n_iter = 256; + params.adam_alpha = 1e-3f; + params.adam_min_alpha = 0; + params.adam_decay = 1e-1f; + params.adam_decay_min_ndim = 2; + params.adam_beta1 = 0.9f; + params.adam_beta2 = 0.999f; + params.adam_gclip = 1.0f; + params.adam_eps_f = 0.0f; - params.mem_model_gb = 2; + params.mem_model_gb = 2; params.mem_compute_gb = 24; params.mem_compute0_gb = 8; - params.mem_compute1_gb = 2; - return params; } @@ -2780,35 +1633,47 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); - fprintf(stderr, " --mult N Mult size used for new models, influences feedforward size. (default %d)\n", params->n_mult); + fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff); fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer); - fprintf(stderr, " --rotmax N Maximal number Rope dimensions for new models (default %d)\n", params->n_rotmax); + fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); + fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); + fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); - fprintf(stderr, " --predict N Number of tokens to generate after training (default %d)\n", params->n_predict); fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); - fprintf(stderr, " --print-details-interval N Print details during training each N examples (default %d)\n", params->print_details_interval); fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); - fprintf(stderr, " --no-flash Don't use flash attention.\n"); + fprintf(stderr, " --no-flash Don't use flash attention \n"); fprintf(stderr, " --use-flash Use flash attention (default)\n"); - fprintf(stderr, " --no-scratch Don't use scratch buffers\n"); - fprintf(stderr, " --use-scratch Use scratch buffers (default)\n"); - fprintf(stderr, " --warmup N Number of warmup steps (default %d)\n", params->warmup); - fprintf(stderr, " --cos-decay-steps N Number of cosine decay steps (default %d)\n", params->cos_decay_steps); - fprintf(stderr, " --cos-decay-restart N Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); - fprintf(stderr, " --cos-decay-alpha N Cosine decay alpha (default %f)\n", params->cos_decay_alpha); - fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); + fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); + fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); + fprintf(stderr, " --no-alloc Don't use allocator\n"); + fprintf(stderr, " --use-alloc Use allocator (default)\n"); + fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); + fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); + fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); + fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); + fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); + fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); + fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); + fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); + fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); + fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); + fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); + fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); + fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); + fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); - fprintf(stderr, " --mem-compute0 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute0_gb); - fprintf(stderr, " --mem-compute1 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute1_gb); + fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb); fprintf(stderr, "\n"); } @@ -2872,12 +1737,12 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->n_embd = std::stoi(argv[i]); - } else if (arg == "--mult") { + } else if (arg == "--ff") { if (++i >= argc) { invalid_param = true; break; } - params->n_mult = std::stoi(argv[i]); + params->n_ff = std::stoi(argv[i]); } else if (arg == "--head") { if (++i >= argc) { invalid_param = true; @@ -2890,12 +1755,24 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->n_layer = std::stoi(argv[i]); - } else if (arg == "--rotmax") { + } else if (arg == "--norm-rms-eps") { if (++i >= argc) { invalid_param = true; break; } - params->n_rotmax = std::stoi(argv[i]); + params->f_norm_rms_eps = std::stof(argv[i]); + } else if (arg == "--rope-freq-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->rope_freq_base = std::stof(argv[i]); + } else if (arg == "--rope-freq-scale") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->rope_freq_scale = std::stof(argv[i]); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; @@ -2914,24 +1791,12 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->n_examples = std::stoi(argv[i]); - } else if (arg == "--predict") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_predict = std::stoi(argv[i]); } else if (arg == "--print-info-interval") { if (++i >= argc) { invalid_param = true; break; } params->print_info_interval = std::stoi(argv[i]); - } else if (arg == "--print-details-interval") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->print_details_interval = std::stoi(argv[i]); } else if (arg == "--samples-after-nl") { params->samples_start_after_nl = true; } else if (arg == "--use-lbfgs") { @@ -2942,10 +1807,14 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { params->use_flash = false; } else if (arg == "--use-flash") { params->use_flash = true; - } else if (arg == "--no-scratch") { - params->use_scratch = false; - } else if (arg == "--use-scratch") { - params->use_scratch = true; + } else if (arg == "--no-checkpointing") { + params->use_checkpointing = false; + } else if (arg == "--use-checkpointing") { + params->use_checkpointing = true; + } else if (arg == "--no-alloc") { + params->use_alloc = false; + } else if (arg == "--use-alloc") { + params->use_alloc = true; } else if (arg == "--warmup") { if (++i >= argc) { invalid_param = true; @@ -2964,18 +1833,40 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->cos_decay_restart = std::stof(argv[i]); - } else if (arg == "--cos-decay-alpha") { + } else if (arg == "--cos-decay-min") { if (++i >= argc) { invalid_param = true; break; } - params->cos_decay_alpha = std::stof(argv[i]); - } else if (arg == "--lbfgs-iter") { + params->cos_decay_min = std::stof(argv[i]); + } else if (arg == "--enable-restart") { + params->enable_restart = true; + } else if (arg == "--disable-restart") { + params->enable_restart = false; + } else if (arg == "--opt-past") { if (++i >= argc) { invalid_param = true; break; } - params->lbfgs_n_iter = std::stoi(argv[i]); + params->opt_past = std::stoi(argv[i]); + } else if (arg == "--opt-delta") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->opt_delta = std::stof(argv[i]); + } else if (arg == "--opt-max-no-improvement") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->opt_max_no_improvement = std::stoi(argv[i]); + } else if (arg == "--adam-epsf") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_eps_f = std::stof(argv[i]); } else if (arg == "--adam-iter") { if (++i >= argc) { invalid_param = true; @@ -2988,12 +1879,48 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->adam_alpha = std::stof(argv[i]); + } else if (arg == "--adam-min-alpha") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_min_alpha = std::stof(argv[i]); } else if (arg == "--adam-decay") { if (++i >= argc) { invalid_param = true; break; } params->adam_decay = std::stof(argv[i]); + } else if (arg == "--adam-decay-min-ndim") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_decay_min_ndim = std::stoi(argv[i]); + } else if (arg == "--adam-beta1") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_beta1 = std::stof(argv[i]); + } else if (arg == "--adam-beta2") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_beta2 = std::stof(argv[i]); + } else if (arg == "--adam-gclip") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->adam_gclip = std::stof(argv[i]); + } else if (arg == "--lbfgs-iter") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->lbfgs_n_iter = std::stoi(argv[i]); } else if (arg == "--mem-model") { if (++i >= argc) { invalid_param = true; @@ -3012,12 +1939,6 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->mem_compute0_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute1") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute1_gb = std::stoi(argv[i]); } else if (arg == "-h" || arg == "--help") { train_print_usage(argc, argv, &default_params); exit(0); @@ -3036,6 +1957,63 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { return true; } +struct opt_callback_data { + struct train_params * params; + struct ggml_opt_context * opt; + struct llama_context * lctx; + llama_token * tokens_data; + size_t tokens_size; + int * samples_data; + size_t samples_size; + int shuffle_countdown; + struct ggml_tensor * tokens_input; + struct ggml_tensor * target_logits; + struct ggml_tensor * target_probs; +}; + +void opt_callback(void * vdata, float * sched) { + struct opt_callback_data * data = (struct opt_callback_data *) vdata; + struct train_params * params = data->params; + struct ggml_opt_context * opt = data->opt; + int n_batch = params->n_batch; + + *sched = (opt->iter < params->warmup) + ? (float) opt->iter / (float) params->warmup + : cosine_decay_restart( + params->cos_decay_steps, + params->cos_decay_min, + opt->iter - params->warmup, + params->cos_decay_restart, + params->enable_restart); + float min_sched = params->adam_min_alpha / params->adam_alpha; + *sched = min_sched + *sched * (1.0f - min_sched); + + int impr_plot = std::isnan(opt->loss_after) ? 0 : -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); + printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); + + if (data->shuffle_countdown < n_batch) { + printf("%s: reshuffle samples\n", __func__); + shuffle_ints(data->samples_data, data->samples_data + data->samples_size); + for (int i = 0; i < (int) data->samples_size; ++i) { + GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size); + } + data->shuffle_countdown = data->samples_size; + } + + get_example_targets_batch( + data->lctx, + data->samples_data, + data->samples_size, + data->tokens_data, + data->tokens_size, + opt->iter, + data->tokens_input, + data->target_logits, + data->target_probs); + + data->shuffle_countdown -= n_batch; +} + int main(int argc, char ** argv) { struct train_params params = get_default_train_params(); @@ -3055,18 +2033,6 @@ int main(int argc, char ** argv) { struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); - struct llama_vocab vocab; - { - const int n_vocab = llama_n_vocab(lctx); - vocab.id_to_token.resize(n_vocab); - for (int i=0; i train_tokens; if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { @@ -3078,10 +2044,14 @@ int main(int argc, char ** argv) { model.hparams.n_vocab = llama_n_vocab(lctx); model.hparams.n_ctx = params.n_ctx; model.hparams.n_embd = params.n_embd; - model.hparams.n_mult = params.n_mult; model.hparams.n_head = params.n_head; model.hparams.n_layer = params.n_layer; - model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); + model.hparams.n_ff = params.n_ff; + // llama.cpp requires n_rot to be exactly n_embd / n_head + model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head; + model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; + model.hparams.rope_freq_base = params.rope_freq_base; + model.hparams.rope_freq_scale = params.rope_freq_scale; print_params(&model.hparams); @@ -3103,19 +2073,12 @@ int main(int argc, char ** argv) { } printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); - struct my_llama_kv_cache kv_self; - - struct ggml_init_params lcparams; lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_buffer = NULL; lcparams.no_alloc = false; model.ctx = ggml_init(lcparams); - kv_self.ctx = model.ctx; - - my_llama_sampler sampler; - int n_tokens = model.hparams.n_ctx; int n_vocab = model.hparams.n_vocab; @@ -3126,24 +2089,38 @@ int main(int argc, char ** argv) { struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); - opt_params_adam.print_forward_graph = false; + opt_params_adam.print_forward_graph = false; opt_params_adam.print_backward_graph = false; - opt_params_adam.n_threads = params.n_threads; - opt_params_adam.adam.n_iter = params.adam_n_iter; - opt_params_adam.adam.sched = 1.0f; - opt_params_adam.adam.alpha = params.adam_alpha; - opt_params_adam.adam.decay = params.adam_decay; + opt_params_adam.n_threads = params.n_threads; + opt_params_adam.past = params.opt_past; + opt_params_adam.delta = params.opt_delta; + opt_params_adam.max_no_improvement = params.opt_max_no_improvement; + opt_params_adam.adam.n_iter = params.adam_n_iter; + opt_params_adam.adam.sched = 1.0f; + opt_params_adam.adam.alpha = params.adam_alpha; + opt_params_adam.adam.decay = params.adam_decay; + opt_params_adam.adam.decay_min_ndim = params.adam_decay_min_ndim; + opt_params_adam.adam.beta1 = params.adam_beta1; + opt_params_adam.adam.beta2 = params.adam_beta2; + opt_params_adam.adam.gclip = params.adam_gclip; + opt_params_adam.adam.eps_f = params.adam_eps_f; - opt_params_lbfgs.print_forward_graph = false; + opt_params_lbfgs.print_forward_graph = false; opt_params_lbfgs.print_backward_graph = false; - opt_params_lbfgs.n_threads = params.n_threads; - opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; + opt_params_lbfgs.n_threads = params.n_threads; + opt_params_adam.past = params.opt_past; + opt_params_adam.delta = params.opt_delta; + opt_params_adam.max_no_improvement = params.opt_max_no_improvement; + opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; opt->ctx = model.ctx; opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; printf("%s: init model\n", __func__); - bool existed = load_checkpoint(&model, opt, params.fn_checkpoint_in, true); + bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt); + if (!existed) { + init_model(&model); + } set_param_model(&model); opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; @@ -3156,11 +2133,7 @@ int main(int argc, char ** argv) { randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); } - init_kv_cache(&kv_self, &model, 1); - // init_kv_cache(&kv_self, &model, n_batch); - init_sampler(&sampler, lctx); - - printf("used_mem model+cache: %zu bytes\n", ggml_used_mem(model.ctx)); + printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx)); // ggml_print_tensor_objects(model.ctx); // TODO: use std::vector intead of "new" @@ -3168,9 +2141,13 @@ int main(int argc, char ** argv) { uint8_t * compute_addr = new uint8_t[compute_size]; size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); - size_t size_buf_1 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute1_gb); uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; - uint8_t * compute_buf_1 = new uint8_t[size_buf_1]; + + ggml_allocr * alloc = NULL; + if (params.use_alloc) { + static const size_t tensor_alignment = 32; + alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment); + } GGML_ASSERT(n_tokens < (int) train_tokens.size()); std::vector train_samples; @@ -3185,10 +2162,23 @@ int main(int argc, char ** argv) { GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); } - std::vector work_buffer; - printf("%s: begin training\n", __func__); + struct opt_callback_data opt_cb_data; + opt_cb_data.params = ¶ms; + opt_cb_data.opt = opt; + opt_cb_data.lctx = lctx; + opt_cb_data.tokens_data = train_tokens.data(); + opt_cb_data.tokens_size = train_tokens.size(); + opt_cb_data.samples_data = train_samples.data(); + opt_cb_data.samples_size = train_samples.size(); + opt_cb_data.shuffle_countdown = train_samples.size(); + opt_cb_data.tokens_input = NULL; + opt_cb_data.target_logits = NULL; + opt_cb_data.target_probs = NULL; + + int64_t t0 = ggml_time_ms(); + for (int ex = 0; ex < params.n_examples; ++ex) { if (ex*n_batch >= (int) train_samples.size()) { shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); @@ -3198,198 +2188,110 @@ int main(int argc, char ** argv) { } struct ggml_init_params cparams = { - /*.mem_size =*/ compute_size, - /*.mem_buffer =*/ compute_addr, - /*.no_alloc =*/ false, + compute_size, // mem_size + compute_addr, // mem_buffer + false, // no_alloc }; struct ggml_context * ctx0 = ggml_init(cparams); - struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); + ggml_set_no_alloc(ctx0, false); + + // don't use alloc for input tensors, so we can safely fill them with data + //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + ggml_set_no_alloc(ctx0, (alloc != NULL)); + + if (alloc) { + ggml_allocr_reset(alloc); + } + + opt_cb_data.tokens_input = tokens_input; + opt_cb_data.target_logits = target_logits; + opt_cb_data.target_probs = target_probs; + int n_past = 0; - struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); - struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0)); - - memset(gfbuf->data, 0, ggml_nbytes(gfbuf)); - memset(gbbuf->data, 0, ggml_nbytes(gbbuf)); - - struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; - struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; - - - get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs); + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + struct ggml_cgraph * gb = ggml_new_graph(ctx0); + struct ggml_cgraph * gb_tmp = params.use_checkpointing + ? ggml_new_graph(ctx0) + : NULL; GGML_ASSERT(n_past == 0); struct ggml_tensor * loss = NULL; struct ggml_tensor * logits = NULL; - if (params.use_scratch) { - loss = forward_batch_wo_cache_flash_attn_train( - &model, ctx0, - gf, gb, - &logits, tokens_input, target_probs, - compute_buf_0, compute_buf_1, - size_buf_0, size_buf_1, - n_tokens, n_batch); - } else if (params.use_flash) { - logits = forward_batch_wo_cache_flash_attn(&model, ctx0, gf, tokens_input, n_tokens, n_batch); - loss = cross_entropy_loss(ctx0, logits, target_probs); - ggml_build_forward_expand(gf, loss); - *gb = ggml_build_backward(ctx0, gf, true); - } else { - logits = forward_batch_wo_cache(&model, ctx0, gf, tokens_input, n_tokens, n_batch); - loss = cross_entropy_loss(ctx0, logits, target_probs); - ggml_build_forward_expand(gf, loss); - *gb = ggml_build_backward(ctx0, gf, true); - } - - ggml_graph_compute_helper(work_buffer, gf, params.n_threads); + loss = llama_build_train_graphs( + &model, alloc, ctx0, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.use_flash, + params.use_checkpointing + ); size_t used_mem_before_opt = ggml_used_mem(ctx0); - float error_before_opt = ggml_get_f32_1d(loss, 0); - opt->params.adam.sched = (opt->iter < params.warmup) ? (float) opt->iter / (float) params.warmup : cosine_decay_restart( params.cos_decay_steps, - params.cos_decay_alpha, + params.cos_decay_min, opt->iter - params.warmup, - params.cos_decay_restart); + params.cos_decay_restart, + params.enable_restart); + + float min_sched = params.adam_min_alpha / params.adam_alpha; + opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched); printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); - ggml_opt_resume_g(ctx0, opt, loss, gf, gb); + ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data); size_t used_mem_after_opt = ggml_used_mem(ctx0); + int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter; model.train_its = opt->iter; - model.train_samples += n_batch; - model.train_tokens += n_batch * n_tokens; - - ggml_graph_compute_helper(work_buffer, gf, params.n_threads); - - float error_after_opt = ggml_get_f32_1d(loss, 0); + model.train_samples += n_batch * n_iter; + model.train_tokens += n_batch * n_tokens * n_iter; if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { printf("Example %d, opt iter %d\n", ex, opt->iter); - printf("error_before_opt: %.6f\n", error_before_opt); - printf("error_after_opt: %.6f\n", error_after_opt); + printf("error_before_opt: %.6f\n", opt->loss_before); + printf("error_after_opt: %.6f\n", opt->loss_after); printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); } - if (params.print_details_interval > 0 && ex % params.print_details_interval == 0) { - // set_logits_masked(logits, token_notavail, -1e9); - for (int i=0; idata + i*logits->nb[2] + k*logits->nb[1]), - (llama_token *) ((char *) tokens_input->data + i*tokens_input->nb[1]), - k); - * ((int32_t *) ((char *) after_opt_best_samples->data + i*after_opt_best_samples->nb[1] + k*after_opt_best_samples->nb[0])) = token; - } - } - - // printf("probabilities after optimization:\n"); - // print_matrix(after_opt_probs); - printf("Example:\n---\n"); - print_tokens_batch(lctx, tokens_input); - printf("\n---\n"); - - // printf("best samples after optimization:\n---\n"); - printf("samples after optimization:\n---\n"); - print_tokens_batch(lctx, after_opt_best_samples); - printf("\n---\n"); - } - ggml_free(ctx0); } + int64_t t1 = ggml_time_ms(); + int64_t d = t1-t0; + double dd = (double) d * 1e-3; + printf("%s: total training time=%f seconds\n", __func__, dd); + if (params.n_examples > 0) { - save_checkpoint(&model, opt, params.fn_checkpoint_out); + save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt); } if (strlen(params.fn_model_out) > 0) { - save_as_llama_model(&vocab, &model, params.fn_model_out); + save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model); } - { - int n_gen = params.n_predict; - int sample_ctx = n_tokens - n_tokens/8; - - sampler.params.temp = 0.2f; - sampler.params.repeat_penalty = 1.1f; - sampler.params.mirostat = 2; - init_sampler(&sampler, lctx); - - printf("Generating %d tokens.\n", n_gen); - - struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens); - struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); - struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); - - get_example_targets(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs); - for (int i=sample_ctx; idata + (sample_ctx-1)*logits->nb[1]), - (llama_token *) tokens_input->data, - sample_ctx-1); - //int token = ggml_get_i32_1d(best_samples, sample_ctx-1); - - // print_row(probs, sample_at); - print_token(lctx, token); - - lshift_examples(tokens_input, target_logits, target_probs, 1); - ggml_set_i32_1d(tokens_input, 0, 0); - ggml_set_i32_1d(tokens_input, sample_ctx-1, token); - - ggml_free(ctx0); - } + if (alloc) { + ggml_allocr_free(alloc); } delete[] compute_addr; delete[] compute_buf_0; - delete[] compute_buf_1; - + ggml_free(model.ctx); llama_free(lctx); llama_free_model(lmodel); - ggml_free(model.ctx); - return 0; } diff --git a/ggml-alloc.c b/ggml-alloc.c index 140e9a2a7..63beb1d4e 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -107,6 +107,10 @@ static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct g } void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { +#ifdef GGML_ALLOCATOR_DEBUG + GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources + GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated +#endif size_t size = ggml_allocator_get_alloc_size(alloc, tensor); size = aligned_offset(NULL, size, alloc->alignment); diff --git a/ggml.c b/ggml.c index dadb30757..9a787863d 100644 --- a/ggml.c +++ b/ggml.c @@ -123,6 +123,8 @@ typedef void * thread_ret_t; #define GGML_GELU_FP16 #define GGML_GELU_QUICK_FP16 #define GGML_SILU_FP16 +// #define GGML_CROSS_ENTROPY_EXP_FP16 +// #define GGML_FLASH_ATTN_EXP_FP16 #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 @@ -186,8 +188,8 @@ typedef void * thread_ret_t; // #if defined(_MSC_VER) || defined(__MINGW32__) -#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) -#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) +#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) +#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) #else inline static void * ggml_aligned_malloc(size_t size) { void * aligned_memory = NULL; @@ -212,8 +214,8 @@ inline static void * ggml_aligned_malloc(size_t size) { } return aligned_memory; } -#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) -#define GGML_ALIGNED_FREE(ptr) free(ptr) +#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) +#define GGML_ALIGNED_FREE(ptr) free(ptr) #endif #define UNUSED GGML_UNUSED @@ -5857,7 +5859,8 @@ struct ggml_tensor * ggml_rms_norm_inplace( struct ggml_tensor * ggml_rms_norm_back( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b) { + struct ggml_tensor * b, + float eps) { bool is_node = false; if (a->grad) { @@ -5867,6 +5870,8 @@ struct ggml_tensor * ggml_rms_norm_back( struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + ggml_set_op_params(result, &eps, sizeof(eps)); + result->op = GGML_OP_RMS_NORM_BACK; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; @@ -9443,6 +9448,8 @@ static void ggml_compute_forward_div_f32( #ifdef GGML_USE_ACCELERATE + UNUSED(ggml_vec_div_f32); + vDSP_vdiv( (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, @@ -10749,7 +10756,8 @@ static void ggml_compute_forward_rms_norm_back_f32( GGML_TENSOR_BINARY_OP_LOCALS; - const float eps = 1e-6f; // TODO: make this a parameter + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); // TODO: optimize for (int64_t i03 = 0; i03 < ne03; i03++) { @@ -12139,6 +12147,7 @@ static void ggml_compute_forward_soft_max_back_f32( // dx = J * dy // dxk = sum_i(Jki * dyi) // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk + // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk // dxk = sum_i(-yk*yi * dyi) + yk*dyk // dxk = -yk * sum_i(yi * dyi) + yk*dyk // dxk = -yk * dot(y, dy) + yk*dyk @@ -13929,7 +13938,7 @@ static void ggml_compute_forward_flash_attn_f32( vvexpf(S, S, &Mup); ggml_vec_sum_f32(Mup, &sum, S); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { @@ -13939,9 +13948,13 @@ static void ggml_compute_forward_flash_attn_f32( if (SS[j] == -INFINITY) { SS[j] = 0.0f; } else { +#ifndef GGML_FLASH_ATTN_EXP_FP16 + const float val = expf(SS[j] - max); +#else ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); memcpy(&scvt[j], &s, sizeof(uint16_t)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); +#endif sump[j] += (ggml_float)val; SS[j] = val; } @@ -14519,7 +14532,7 @@ static void ggml_compute_forward_flash_attn_back_f32( vvexpf(SM, SM, &Mup); ggml_vec_sum_f32(Mup, &sum, SM); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { @@ -14530,9 +14543,13 @@ static void ggml_compute_forward_flash_attn_back_f32( if (SR[j] == -INFINITY) { SW[j] = 0.0f; } else { +#ifndef GGML_FLASH_ATTN_EXP_FP16 + const float val = expf(SR[j] - max); +#else ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); memcpy(&scvt[j], &s, sizeof(uint16_t)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); +#endif sump[j] += (ggml_float)val; SW[j] = val; } @@ -15270,6 +15287,8 @@ static void ggml_compute_forward_cross_entropy_loss_f32( const int nc = src0->ne[0]; const int nr = ggml_nrows(src0); + GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc)); + if (params->type == GGML_TASK_INIT) { if (ith == 0) { memset(sums, 0, sizeof(float) * (nth + nth * nc)); @@ -15281,7 +15300,7 @@ static void ggml_compute_forward_cross_entropy_loss_f32( if (ith == 0) { float * dp = (float *) dst->data; ggml_vec_sum_f32(nth, dp, sums); - dp[0] *= -1.0f; + dp[0] *= -1.0f / (float) nr; } return; } @@ -15298,7 +15317,7 @@ static void ggml_compute_forward_cross_entropy_loss_f32( for (int i1 = ir0; i1 < ir1; i1++) { float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]); float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]); - float * st = (float *) params->wdata + nth + ith*nc; + float * st = ((float *) params->wdata) + nth + ith*nc; #ifndef NDEBUG for (int i = 0; i < nc; ++i) { @@ -15313,15 +15332,19 @@ static void ggml_compute_forward_cross_entropy_loss_f32( float max = -INFINITY; ggml_vec_max_f32(nc, &max, s0); - uint16_t scvt; + uint16_t scvt; UNUSED(scvt); for (int i = 0; i < nc; i++) { if (s0[i] == -INFINITY) { st[i] = 0.0f; } else { - // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max); +#ifndef GGML_CROSS_ENTROPY_EXP_FP16 + const float s = s0[i] - max; + const float val = expf(s); +#else ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); memcpy(&scvt, &s, sizeof(scvt)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]); +#endif sum += (ggml_float)val; st[i] = val; } @@ -15337,7 +15360,9 @@ static void ggml_compute_forward_cross_entropy_loss_f32( ggml_vec_log_f32(nc, st, st); ggml_vec_mul_f32(nc, st, st, s1); - ggml_vec_sum_f32(nc, sums + ith, st); + float st_sum = 0; + ggml_vec_sum_f32(nc, &st_sum, st); + sums[ith] += st_sum; #ifndef NDEBUG for (int i = 0; i < nc; ++i) { @@ -15387,7 +15412,7 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( return; } - const float eps = 1e-9f; + const double eps = 1e-9; // TODO: handle transposed/permuted matrices const int64_t nc = src0->ne[0]; @@ -15406,7 +15431,6 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]); float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]); float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]); - float * sm = (float *) params->wdata + ith*nc; #ifndef NDEBUG for (int i = 0; i < nc; ++i) { @@ -15415,54 +15439,6 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( assert(!isnan(s1[i])); } #endif - // step by step explanation: - { - //float * sums = (float *) params->wdata; - - // forward pass with annotated gradients from backward pass - // (built by going in reverse operation order, adding to gradients of current operation args) - // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum - // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1])) - // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps) - // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3] - // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3 - // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1 - // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]] - // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel] - - // substitute into grad[st1], because we can reuse softmax_back from this point on - // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps)) - // postorder: - // grad[st1] := softmax(s0) - // grad[st1] := grad[st1]*(1.0 - eps) - // grad[st1] := grad[st1] + eps - // grad[st1] := s1 / grad[st1] - // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel] - - // src0 gradients by going through softmax_back - // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1])) - // from softmax_back: - // dxk = yk * (dyk - dot(y, dy)) - // dot_y_dy := dot(y, dy) - // dx := dy - // dx := dx - dot_y_dy - // dx := dx * y - // postorder: - // dot_st1_dst1 := dot(st1, grad[st1]) - // grad[s0] := grad[st1] - // grad[s0] := grad[s0] - dot_st1_dst1 - // grad[s0] := grad[s0] * st1 - - // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1] - // sm := softmax(s0) - // grad[s0] := sm*(1.0 - eps) - // grad[s0] := grad[s0] + eps - // grad[s0] := s1 / grad[s0] - // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel] - // dot_st1_dst1 := dot(sm, grad[s0]) - // grad[s0] := grad[s0] - dot_st1_dst1 - // grad[s0] := grad[s0] * sm - } // soft_max ggml_float sum = 0.0; @@ -15470,39 +15446,37 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( float max = -INFINITY; ggml_vec_max_f32(nc, &max, s0); - uint16_t scvt; + uint16_t scvt; UNUSED(scvt); for (int i = 0; i < nc; i++) { if (s0[i] == -INFINITY) { - sm[i] = 0.0f; + ds0[i] = 0.0f; } else { - // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max); +#ifndef GGML_CROSS_ENTROPY_EXP_FP16 + const float s = s0[i] - max; + const float val = expf(s); +#else ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); memcpy(&scvt, &s, sizeof(scvt)); const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]); +#endif sum += (ggml_float)val; - sm[i] = val; + ds0[i] = val; } } assert(sum > 0.0); - sum = 1.0/sum; + sum = (1.0 - eps)/sum; } - float dot_st1_dst1 = 0; - ggml_vec_scale_f32(nc, sm, sum); - ggml_vec_cpy_f32 (nc, ds0, sm); - ggml_vec_scale_f32(nc, ds0, (1.0f - eps)); - ggml_vec_add1_f32 (nc, ds0, ds0, eps); - ggml_vec_div_f32 (nc, ds0, s1, ds0); - ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]); - ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0); - ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1); - ggml_vec_mul_f32 (nc, ds0, ds0, sm); + // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr + ggml_vec_scale_f32(nc, ds0, sum); + ggml_vec_add1_f32(nc, ds0, ds0, eps); + ggml_vec_sub_f32(nc, ds0, ds0, s1); + ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr); + #ifndef NDEBUG for (int i = 0; i < nc; ++i) { - assert(!isnan(sm[i])); - assert(!isinf(sm[i])); assert(!isnan(ds0[i])); assert(!isinf(ds0[i])); } @@ -16057,9 +16031,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { + float eps; + memcpy(&eps, tensor->op_params, sizeof(float)); + src0->grad = ggml_add_impl(ctx, src0->grad, - ggml_rms_norm_back(ctx, src0, tensor->grad), + ggml_rms_norm_back(ctx, src0, tensor->grad, eps), inplace); } } break; @@ -16827,9 +16804,7 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { return result; } -struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { - struct ggml_cgraph result = *gf; - +void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) { GGML_ASSERT(gf->n_nodes > 0); // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph @@ -16853,15 +16828,19 @@ struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cg } } - for (int i = gf->n_nodes - 1; i >= 0; i--) { + for (int i = 0; i < gf->n_nodes; i++) { struct ggml_tensor * node = gf->nodes[i]; if (node->is_param) { GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node); - ggml_build_forward_expand(&result, node->grad); + ggml_build_forward_expand(gb, node->grad); } } +} +struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { + struct ggml_cgraph result = *gf; + ggml_build_backward_expand(ctx, gf, &result, keep); return result; } @@ -17537,10 +17516,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { case GGML_OP_CROSS_ENTROPY_LOSS_BACK: { n_tasks = n_threads; - - size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks; - - work_size = MAX(work_size, cur); } break; case GGML_OP_NONE: { @@ -18418,14 +18393,16 @@ static enum ggml_opt_result ggml_opt_adam( struct ggml_opt_params params, struct ggml_tensor * f, struct ggml_cgraph * gf, - struct ggml_cgraph * gb) { + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data) { GGML_ASSERT(ggml_is_scalar(f)); // these will store the parameters we want to optimize struct ggml_tensor * ps[GGML_MAX_PARAMS]; int np = 0; - int nx = 0; + int64_t nx = 0; for (int i = 0; i < gf->n_nodes; ++i) { if (gf->nodes[i]->is_param) { GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); @@ -18444,31 +18421,32 @@ static enum ggml_opt_result ggml_opt_adam( } // constants - const float sched = params.adam.sched; - const float decay = params.adam.decay * sched; - const float alpha = params.adam.alpha * sched; + float sched = params.adam.sched; + const float alpha = params.adam.alpha; + const float decay = params.adam.decay * alpha; const float beta1 = params.adam.beta1; const float beta2 = params.adam.beta2; const float eps = params.adam.eps; + const float gclip = params.adam.gclip; + const int decay_min_ndim = params.adam.decay_min_ndim; - float * x = opt->adam.x->data; // view of the parameters - float * g1 = opt->adam.g1->data; // gradient - float * g2 = opt->adam.g2->data; // gradient squared float * m = opt->adam.m->data; // first moment float * v = opt->adam.v->data; // second moment - float * mh = opt->adam.mh->data; // first moment hat - float * vh = opt->adam.vh->data; // second moment hat float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values - // update view - ggml_opt_get_params(np, ps, x); + if (callback) { + callback(callback_data, &sched); + } // compute the function value ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx, gb, params.n_threads); + struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); + cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; + ggml_graph_compute(gb, &cplan); opt->adam.fx_prev = ggml_get_f32_1d(f, 0); opt->adam.fx_best = opt->adam.fx_prev; @@ -18476,6 +18454,9 @@ static enum ggml_opt_result ggml_opt_adam( pf[opt->iter % params.past] = opt->adam.fx_prev; } + opt->loss_before = opt->adam.fx_prev; + opt->loss_after = opt->adam.fx_prev; + // initialize if (opt->just_initialized) { opt->adam.n_no_improvement = 0; @@ -18508,50 +18489,55 @@ static enum ggml_opt_result ggml_opt_adam( UNUSED(t_start_cpu); { - // update the gradient - ggml_opt_get_grad(np, ps, g1); + float gnorm = 1.0f; + if (gclip > 0.0f) { + // gradient clipping + ggml_float sum = 0.0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]); + for (int64_t j = 0; j < ne; ++j) { + float g = ggml_get_f32_1d(ps[p]->grad, j); + sum += (ggml_float)(g*g); + } + } + ggml_float norm = sqrt(sum); + if (norm > (ggml_float) gclip) { + gnorm = (float) ((ggml_float) gclip / norm); + } + } + const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter)); + const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter)); + int64_t i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]); + const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched; + for (int64_t j = 0; j < ne; ++j) { + float x = ggml_get_f32_1d(ps[p], j); + float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm; + m[i] = m[i]*beta1 + g*(1.0f - beta1); + v[i] = v[i]*beta2 + g*g*(1.0f - beta2); + float mh = m[i]*beta1h; + float vh = v[i]*beta2h; + vh = sqrtf(vh) + eps; + x = x*(1.0f - p_decay) - mh/vh; + ggml_set_f32_1d(ps[p], j, x); + ++i; + } + } + } - // m_t = beta1*m_t-1 + (1 - beta1)*g_t - ggml_vec_scale_f32(nx, m, beta1); - ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1); - - // g2 = g1^2 - ggml_vec_sqr_f32 (nx, g2, g1); - - // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2 - ggml_vec_scale_f32(nx, v, beta2); - ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2); - - // m^hat = m_t / (1 - beta1^t) - // v^hat = v_t / (1 - beta2^t) - // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1) - // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1 - // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps) - // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps) - // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay) - ggml_vec_cpy_f32 (nx, mh, m); - ggml_vec_cpy_f32 (nx, vh, v); - - ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter))); - ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter))); - - ggml_vec_sqrt_f32 (nx, vh, vh); - ggml_vec_acc1_f32 (nx, vh, eps); - - ggml_vec_div_f32 (nx, mh, mh, vh); - ggml_vec_scale_f32(nx, x, 1.0f - decay); - ggml_vec_sub_f32 (nx, x, x, mh); - - // update the parameters - ggml_opt_set_params(np, ps, x); + if (callback) { + callback(callback_data, &sched); } ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx, gb, params.n_threads); + ggml_graph_compute(gb, &cplan); const float fx = ggml_get_f32_1d(f, 0); + opt->loss_after = fx; + // check convergence if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) { @@ -18620,7 +18606,6 @@ struct ggml_lbfgs_iteration_data { }; static enum ggml_opt_result linesearch_backtracking( - struct ggml_context * ctx, const struct ggml_opt_params * params, int nx, float * x, @@ -18632,8 +18617,11 @@ static enum ggml_opt_result linesearch_backtracking( struct ggml_tensor * f, struct ggml_cgraph * gf, struct ggml_cgraph * gb, + struct ggml_cplan * cplan, const int np, - struct ggml_tensor * ps[]) { + struct ggml_tensor * ps[], + ggml_opt_callback callback, + void * callback_data) { int count = 0; float width = 0.0f; @@ -18662,6 +18650,12 @@ static enum ggml_opt_result linesearch_backtracking( dgtest = params->lbfgs.ftol*dginit; while (true) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, &sched); + } + ggml_vec_cpy_f32(nx, x, xp); ggml_vec_mad_f32(nx, x, d, *step); @@ -18672,7 +18666,7 @@ static enum ggml_opt_result linesearch_backtracking( ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx, gb, params->n_threads); + ggml_graph_compute(gb, cplan); ggml_opt_get_grad(np, ps, g); @@ -18732,7 +18726,9 @@ static enum ggml_opt_result ggml_opt_lbfgs( struct ggml_opt_params params, struct ggml_tensor * f, struct ggml_cgraph * gf, - struct ggml_cgraph * gb) { + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data) { if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) { @@ -18764,6 +18760,10 @@ static enum ggml_opt_result ggml_opt_lbfgs( opt->iter = iter; } + struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); + cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; + float * x = opt->lbfgs.x->data; // current parameters float * xp = opt->lbfgs.xp->data; // previous parameters float * g = opt->lbfgs.g->data; // current gradient @@ -18785,6 +18785,12 @@ static enum ggml_opt_result ggml_opt_lbfgs( float * lm_s = opt->lbfgs.lms->data; float * lm_y = opt->lbfgs.lmy->data; + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, &sched); + } + // evaluate the function value and its gradient { ggml_opt_set_params(np, ps, x); @@ -18792,11 +18798,14 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx, gb, params.n_threads); + ggml_graph_compute(gb, &cplan); ggml_opt_get_grad(np, ps, g); fx = ggml_get_f32_1d(f, 0); + + opt->loss_before = fx; + opt->loss_after = fx; } // search direction = -gradient @@ -18851,7 +18860,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); - ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps); + ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data); if (ls < 0) { // linesearch failed - go back to the previous point and return @@ -18861,6 +18870,8 @@ static enum ggml_opt_result ggml_opt_lbfgs( return ls; } + opt->loss_after = fx; + ggml_vec_norm_f32(nx, &xnorm, x); ggml_vec_norm_f32(nx, &gnorm, g); @@ -18918,7 +18929,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( // ys = y^t \cdot s -> 1 / \rho. // yy = y^t \cdot y. // - ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]); + ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]); ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]); lm_ys[end[0]] = ys; @@ -18981,13 +18992,15 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { .adam = { .n_iter = 10000, .sched = 1.000f, - .decay = 0.001f, + .decay = 0.0f, + .decay_min_ndim = 2, .alpha = 0.001f, .beta1 = 0.9f, .beta2 = 0.999f, .eps = 1e-8f, .eps_f = 1e-5f, .eps_g = 1e-3f, + .gclip = 0.0f, }, }; } break; @@ -19037,23 +19050,13 @@ GGML_API void ggml_opt_init( switch (opt->params.type) { case GGML_OPT_ADAM: { - opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); opt->adam.pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) : NULL; - ggml_set_zero(opt->adam.x); - ggml_set_zero(opt->adam.g1); - ggml_set_zero(opt->adam.g2); ggml_set_zero(opt->adam.m); ggml_set_zero(opt->adam.v); - ggml_set_zero(opt->adam.mh); - ggml_set_zero(opt->adam.vh); if (opt->adam.pf) { ggml_set_zero(opt->adam.pf); } @@ -19137,7 +19140,7 @@ enum ggml_opt_result ggml_opt_resume( *gf = ggml_build_forward (f); *gb = ggml_build_backward(ctx, gf, true); - return ggml_opt_resume_g(ctx, opt, f, gf, gb); + return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL); } enum ggml_opt_result ggml_opt_resume_g( @@ -19145,7 +19148,9 @@ enum ggml_opt_result ggml_opt_resume_g( struct ggml_opt_context * opt, struct ggml_tensor * f, struct ggml_cgraph * gf, - struct ggml_cgraph * gb) { + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data) { // build forward + backward compute graphs enum ggml_opt_result result = GGML_OPT_OK; @@ -19153,11 +19158,11 @@ enum ggml_opt_result ggml_opt_resume_g( switch (opt->params.type) { case GGML_OPT_ADAM: { - result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb); + result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data); } break; case GGML_OPT_LBFGS: { - result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb); + result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data); } break; } @@ -19612,7 +19617,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // read the kv pairs { - ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv)); + ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv)); for (uint32_t i = 0; i < ctx->header.n_kv; ++i) { struct gguf_kv * kv = &ctx->kv[i]; @@ -19695,7 +19700,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // read the tensor infos { - ctx->infos = GGML_ALIGNED_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info)); + ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info)); for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) { struct gguf_tensor_info * info = &ctx->infos[i]; @@ -19896,7 +19901,7 @@ void gguf_free(struct gguf_context * ctx) { } } - GGML_ALIGNED_FREE(ctx->kv); + free(ctx->kv); } if (ctx->infos) { @@ -19908,7 +19913,7 @@ void gguf_free(struct gguf_context * ctx) { } } - GGML_ALIGNED_FREE(ctx->infos); + free(ctx->infos); } GGML_ALIGNED_FREE(ctx); diff --git a/ggml.h b/ggml.h index 4ef3d5253..8b410cc85 100644 --- a/ggml.h +++ b/ggml.h @@ -952,11 +952,11 @@ extern "C" { // a - x // b - dy - // TODO: update with configurable eps GGML_API struct ggml_tensor * ggml_rms_norm_back( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + float eps); // A: n columns, m rows // B: n columns, p rows (i.e. we transpose it internally) @@ -1612,7 +1612,8 @@ extern "C" { struct ggml_tensor * tensor); - GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); + GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); + GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); @@ -1677,6 +1678,8 @@ extern "C" { GGML_LINESEARCH_INVALID_PARAMETERS, }; + typedef void (*ggml_opt_callback)(void * data, float * sched); + // optimization parameters // // see ggml.c (ggml_opt_default_params) for default values @@ -1712,12 +1715,14 @@ extern "C" { float sched; // schedule multiplier (fixed, decay or warmup) float decay; // weight decay for AdamW, use 0.0f to disable + int decay_min_ndim; // minimum number of tensor dimension to apply weight decay float alpha; // learning rate float beta1; float beta2; float eps; // epsilon for numerical stability float eps_f; // epsilon for convergence test float eps_g; // epsilon for convergence test + float gclip; // gradient clipping } adam; // LBFGS parameters @@ -1745,14 +1750,12 @@ extern "C" { bool just_initialized; + float loss_before; + float loss_after; + struct { - struct ggml_tensor * x; // view of the parameters - struct ggml_tensor * g1; // gradient - struct ggml_tensor * g2; // gradient squared struct ggml_tensor * m; // first moment struct ggml_tensor * v; // second moment - struct ggml_tensor * mh; // first moment hat - struct ggml_tensor * vh; // second moment hat struct ggml_tensor * pf; // past function values float fx_best; float fx_prev; @@ -1789,10 +1792,10 @@ extern "C" { // initialize optimizer context GGML_API void ggml_opt_init( - struct ggml_context * ctx, + struct ggml_context * ctx, struct ggml_opt_context * opt, - struct ggml_opt_params params, - int64_t nx); + struct ggml_opt_params params, + int64_t nx); // continue optimizing the function defined by the tensor f GGML_API enum ggml_opt_result ggml_opt_resume( @@ -1806,7 +1809,9 @@ extern "C" { struct ggml_opt_context * opt, struct ggml_tensor * f, struct ggml_cgraph * gf, - struct ggml_cgraph * gb); + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data); // // quantization diff --git a/llama.cpp b/llama.cpp index 11697ee65..7cb468538 100644 --- a/llama.cpp +++ b/llama.cpp @@ -6248,7 +6248,6 @@ const char * llama_print_system_info(void) { } void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { - fprintf(stream, "\n"); fprintf(stream, "###########\n"); fprintf(stream, "# Timings #\n"); @@ -6264,10 +6263,10 @@ void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval); fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval); fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample); - fprintf(stream, "t_eval_us: %ld # total microseconds spent generating tokens\n", ctx->t_eval_us); - fprintf(stream, "t_load_us: %ld # total microseconds spent loading the model\n", ctx->t_load_us); - fprintf(stream, "t_p_eval_us: %ld # total microseconds spent prompt processing\n", ctx->t_p_eval_us); - fprintf(stream, "t_sample_us: %ld # total microseconds spent sampling\n", ctx->t_sample_us); + fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us); + fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us); + fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us); + fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us); fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n", 1.0e6 * ctx->n_eval / ctx->t_eval_us); fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n", diff --git a/tests/test-grad0.cpp b/tests/test-grad0.cpp index 75a698d73..468cde66a 100644 --- a/tests/test-grad0.cpp +++ b/tests/test-grad0.cpp @@ -275,14 +275,14 @@ static bool check_gradient( ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); - const float f0 = ggml_get_f32_1d(f, 0); + const double f0 = ggml_get_f32_1d(f, 0); ggml_set_f32_1d(x[i], k, xm); ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); - const float f1 = ggml_get_f32_1d(f, 0); - const float g0 = (f0 - f1)/(2.0f*eps); + const double f1 = ggml_get_f32_1d(f, 0); + const double g0 = (f0 - f1)/(2.0*(double) eps); ggml_set_f32_1d(x[i], k, x0); @@ -292,10 +292,10 @@ static bool check_gradient( ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); - const float g1 = ggml_get_f32_1d(x[i]->grad, k); + const double g1 = ggml_get_f32_1d(x[i]->grad, k); - const float error_abs = fabsf(g0 - g1); - const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabsf(g0) : 0; + const double error_abs = fabs(g0 - g1); + const double error_rel = g0 != 0 ? fabs(g0 - g1)/fabs(g0) : 0; if (error_abs > max_error_abs || error_rel > max_error_rel) { printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n", @@ -531,7 +531,7 @@ int main(int argc, const char ** argv) { struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0])); - check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f); + check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, 2e-2f, 1e-1f); } } @@ -1345,9 +1345,18 @@ int main(int argc, const char ** argv) { x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); ggml_set_param(ctx0, x[0]); - struct ggml_tensor * f = ggml_sum(ctx0, ggml_soft_max(ctx0, x[0])); + float eps = 1e-6f; + // dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work + // instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) + struct ggml_tensor * f = ggml_sum(ctx0, + ggml_log(ctx0, + ggml_add1(ctx0, + ggml_scale(ctx0, + ggml_soft_max(ctx0, x[0]), + ggml_new_f32(ctx0, 1.0f - eps)), + ggml_new_f32(ctx0, eps)))); - check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); + check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY); } } @@ -1358,15 +1367,26 @@ int main(int argc, const char ** argv) { int64_t ne2[4]; get_random_dims(ne2, 4); - for (int ndims = 1; ndims <= 3; ++ndims) { - x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); + for (int ndims = 1; ndims <= 4; ++ndims) { + x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -0.1f, 0.1f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f); + // the second argument to cross_entropy_loss must sum up to 1 for each row + int nr = ggml_nrows(x[1]); + int nc = ggml_nelements(x[1]) / nr; + for (int ir = 0; ir < nr; ++ir) { + float sum = 0; + for (int ic = 0; ic < nc; ++ic) { + sum += ((float *) x[1]->data)[ic + ir*nc]; + } + for (int ic = 0; ic < nc; ++ic) { + ((float *) x[1]->data)[ic + ir*nc] /= sum; + } + } ggml_set_param(ctx0, x[0]); - struct ggml_tensor * f = ggml_sum(ctx0, ggml_cross_entropy_loss(ctx0, x[0], x[1])); + struct ggml_tensor * f = ggml_cross_entropy_loss(ctx0, x[0], x[1]); - check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-1f, 1e-2f, INFINITY); - // finite differences regularly fails! + check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-4f, 1e-3f, INFINITY); } } @@ -1473,7 +1493,7 @@ int main(int argc, const char ** argv) { struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); - check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f); + check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); } } } @@ -1514,7 +1534,7 @@ int main(int argc, const char ** argv) { struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); - check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f); + check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); } } }