Merge branch 'master' into gg/llama-perf

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-09-12 09:21:42 +03:00
commit 44f0218532
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
22 changed files with 204 additions and 164 deletions

View File

@ -89,6 +89,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))

View File

@ -173,7 +173,6 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
std::string arg;
const std::string arg_prefix = "--";
gpt_params & params = ctx_arg.params;
gpt_sampler_params & sparams = params.sparams;
std::unordered_map<std::string, llama_arg *> arg_to_options;
for (auto & opt : ctx_arg.options) {
@ -283,10 +282,6 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
params.kv_overrides.back().key[0] = 0;
}
if (sparams.seed == LLAMA_DEFAULT_SEED) {
sparams.seed = time(NULL);
}
return true;
}
@ -831,7 +826,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
[](gpt_params & params) {
params.special = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
add_opt(llama_arg(
{"-cnv", "--conversation"},
format(
@ -917,7 +912,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
).set_sparam());
add_opt(llama_arg(
{"-s", "--seed"}, "SEED",
format("RNG seed (default: %d, use random seed for < 0)", params.sparams.seed),
format("RNG seed (default: %u, use random seed for %u)", params.sparams.seed, LLAMA_DEFAULT_SEED),
[](gpt_params & params, const std::string & value) {
params.sparams.seed = std::stoul(value);
}
@ -1430,20 +1425,18 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
}
else if (arg_next == "row") {
} else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
exit(1);
#endif // GGML_USE_SYCL
params.split_mode = LLAMA_SPLIT_MODE_ROW;
}
else {
} else {
throw std::invalid_argument("invalid value");
}
#ifndef GGML_USE_CUDA_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUDA_SYCL_VULKAN
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
}
}
));
add_opt(llama_arg(
@ -1463,14 +1456,14 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
}
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
params.tensor_split[i] = 0.0f;
params.tensor_split[i] = 0.0f;
}
}
#ifndef GGML_USE_CUDA_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUDA_SYCL_VULKAN
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
}
}
));
add_opt(llama_arg(
@ -1478,9 +1471,9 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
[](gpt_params & params, int value) {
params.main_gpu = value;
#ifndef GGML_USE_CUDA_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUDA_SYCL_VULKAN
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
}
}
));
add_opt(llama_arg(

View File

@ -56,14 +56,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
#define GGML_USE_CUDA_SYCL
#endif
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
#define GGML_USE_CUDA_SYCL_VULKAN
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
@ -950,11 +942,37 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
#ifdef LLAMA_USE_CURL
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool starts_with(const std::string & str, const std::string & prefix) {
// While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
fprintf(stderr, "%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
fprintf(stderr, "%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
fprintf(stderr, "%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
@ -1058,9 +1076,8 @@ static bool llama_download_file(const std::string & url, const std::string & pat
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
@ -1135,11 +1152,10 @@ static bool llama_download_file(const std::string & url, const std::string & pat
};
// start the download
fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
auto res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
fprintf(stderr, "%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}

View File

@ -310,6 +310,10 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
return cur_p.data[cur_p.selected].id;
}
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
return llama_sampler_get_seed(gsmpl->chain);
}
// helpers
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {

View File

@ -60,6 +60,8 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
//
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
// helpers
// access the internal list of current candidate tokens

View File

@ -31,6 +31,7 @@ import re
import requests
import sys
import json
import shutil
from hashlib import sha256
from enum import IntEnum, auto
@ -125,12 +126,27 @@ def download_model(model):
if tokt == TOKENIZER_TYPE.UGM:
files.append("spiece.model")
for file in files:
save_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
if os.path.isdir(repo):
# If repo is a path on the file system, copy the directory
for file in files:
src_path = os.path.join(repo, file)
dst_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(dst_path):
logger.info(f"{name}: File {dst_path} already exists - skipping")
continue
if os.path.isfile(src_path):
shutil.copy2(src_path, dst_path)
logger.info(f"{name}: Copied {src_path} to {dst_path}")
else:
logger.warning(f"{name}: Source file {src_path} does not exist")
else:
# If repo is a URL, download the files
for file in files:
save_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
for model in models:

View File

@ -3,32 +3,10 @@
#include "llama.h"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
// mutates the input string
static std::vector<int> parse_list(char * p) {
std::vector<int> ret;
char * q = p;
while (*p) {
if (*p == ',') {
*p = '\0';
ret.push_back(std::atoi(q));
q = p + 1;
}
++p;
}
ret.push_back(std::atoi(q));
return ret;
}
static void print_usage(int, char ** argv) {
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);

View File

@ -90,8 +90,6 @@ int main(int argc, char ** argv) {
print_build_info();
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
llama_backend_init();
llama_numa_init(params.numa);

View File

@ -159,8 +159,6 @@ int main(int argc, char ** argv) {
print_build_info();
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
@ -301,6 +299,9 @@ int main(int argc, char ** argv) {
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
}
}
smpl = gpt_sampler_init(model, sparams);
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n");
@ -340,8 +341,6 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
smpl = gpt_sampler_init(model, sparams);
while (n_remain != 0 || params.interactive) {
// predict
if (!embd.empty()) {

View File

@ -18,8 +18,8 @@ struct llava_context {
};
static void show_additional_info(int /*argc*/, char ** argv) {
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
LOG_TEE("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG_TEE("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
@ -255,7 +255,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, show_additional_info)) {
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
return 1;
}

View File

@ -191,8 +191,6 @@ int main(int argc, char ** argv) {
print_build_info();
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
@ -470,8 +468,10 @@ int main(int argc, char ** argv) {
exit(1);
}
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
LOG_TEE(" sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state

View File

@ -2007,8 +2007,6 @@ int main(int argc, char ** argv) {
print_build_info();
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
llama_backend_init();
llama_numa_init(params.numa);

View File

@ -1266,6 +1266,7 @@ struct server_context {
{"n_predict", slot.n_predict}, // Server configured n_predict
{"model", params.model_alias},
{"seed", slot.sparams.seed},
{"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},

View File

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1725024810,
"narHash": "sha256-ODYRm8zHfLTH3soTFWE452ydPYz2iTvr9T8ftDMUQ3E=",
"lastModified": 1725234343,
"narHash": "sha256-+ebgonl3NbiKD2UD0x4BszCZQ6sTfL4xioaM49o5B3Y=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "af510d4a62d071ea13925ce41c95e3dec816c01d",
"rev": "567b938d64d4b4112ee253b9274472dc3a346eb6",
"type": "github"
},
"original": {
@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1724819573,
"narHash": "sha256-GnR7/ibgIH1vhoy8cYdmXE6iyZqKqFxQSVkFgosBh6w=",
"lastModified": 1725634671,
"narHash": "sha256-v3rIhsJBOMLR8e/RNWxr828tB+WywYIoajrZKFM+0Gg=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "71e91c409d1e654808b2621f28a327acfdad8dc2",
"rev": "574d1eac1c200690e27b8eb4e24887f8df7ac27c",
"type": "github"
},
"original": {
@ -36,14 +36,14 @@
},
"nixpkgs-lib": {
"locked": {
"lastModified": 1722555339,
"narHash": "sha256-uFf2QeW7eAHlYXuDktm9c25OxOyCoUOQmh5SZ9amE5Q=",
"lastModified": 1725233747,
"narHash": "sha256-Ss8QWLXdr2JCBPcYChJhz4xJm+h/xjl4G0c0XlP6a74=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
},
"original": {
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
}
},
"root": {

View File

@ -1942,7 +1942,7 @@ GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
GGML_CANN_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return nullptr;
}
ggml_cann_set_device(ctx->device);
ggml_backend_t cann_backend =
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
/* .interface = */ ggml_backend_cann_interface,

View File

@ -26,7 +26,11 @@ void ggml_cuda_op_mul_mat_q(
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst};
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11;
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
switch (src0->type) {
case GGML_TYPE_Q4_0:

View File

@ -2742,6 +2742,7 @@ struct mmq_args {
int64_t ne00; int64_t ne01; int64_t stride01;
int64_t ne10; int64_t ne11; int64_t stride11;
int64_t ne0;
bool use_stream_k;
};
template<ggml_type type>
@ -2777,8 +2778,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
const dim3 block_nums_xy_tiling(nty, ntx, 1);
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
if (!use_stream_k) {
if (!args.use_stream_k) {
if (args.ne01 % mmq_y == 0) {
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>

View File

@ -130,42 +130,3 @@
#define cudaKernelNodeParams musaKernelNodeParams
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
#define cudaStreamEndCapture musaStreamEndCapture
// XXX: Clang builtins mapping
#define __vsub4 __vsub4_musa
#define __vcmpeq4 __vcmpeq4_musa
#define __vcmpne4 __vcmpne4_musa
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
static __device__ __forceinline__ int __vsub4_musa(const int a, const int b) {
return __vsubss4(a, b);
}
static __device__ __forceinline__ unsigned int __vcmpeq4_musa(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
}
return c;
}
static __device__ __forceinline__ unsigned int __vcmpne4_musa(unsigned int a, unsigned int b) {
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
unsigned int c;
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
#pragma unroll
for (int i = 0; i < 4; ++i) {
vc[i] = va[i] == vb[i] ? 0x00 : 0xff;
}
return c;
}

View File

@ -5137,13 +5137,17 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_CLAMP:
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
// TODO: add support for the new F32 operations
return op->src[0]->type == GGML_TYPE_F16;
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:

View File

@ -1127,6 +1127,10 @@ extern "C" {
int32_t n_logit_bias,
const llama_logit_bias * logit_bias);
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
/// @details Sample and accept a token from the idx-th output of the last evaluation
//
// Shorthand for:

View File

@ -8,6 +8,7 @@
#include <cstring>
#include <ctime>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <numeric>
#include <random>
@ -162,6 +163,19 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
cur_p->size = k;
}
static uint32_t get_rng_seed(uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
// use system clock if std::random_device is not a true RNG
static bool is_rd_prng = std::random_device().entropy() == 0;
if (is_rd_prng) {
return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
}
std::random_device rd;
return rd();
}
return seed;
}
// llama_sampler API
const char * llama_sampler_name(const struct llama_sampler * smpl) {
@ -387,6 +401,7 @@ struct llama_sampler * llama_sampler_init_greedy() {
struct llama_sampler_dist {
const uint32_t seed;
uint32_t seed_cur;
std::mt19937 rng;
};
@ -416,7 +431,8 @@ static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sample
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_dist *) smpl->ctx;
ctx->rng = std::mt19937(ctx->seed);
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
@ -433,11 +449,13 @@ static struct llama_sampler_i llama_sampler_dist_i = {
};
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
/* .seed = */ seed,
/* .rng = */ std::mt19937(seed),
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
@ -1032,6 +1050,7 @@ struct llama_sampler_mirostat {
const int32_t n_vocab;
const uint32_t seed;
uint32_t seed_cur;
const float tau;
const float eta;
@ -1100,7 +1119,8 @@ static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sa
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
ctx->mu = 2.0f*ctx->tau;
ctx->rng = std::mt19937(ctx->seed);
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
@ -1117,16 +1137,18 @@ static struct llama_sampler_i llama_sampler_mirostat_i = {
};
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
/* .iface = */ &llama_sampler_mirostat_i,
/* .ctx = */ new llama_sampler_mirostat {
/* .n_vocab = */ n_vocab,
/* .seed = */ seed,
/* .tau = */ tau,
/* .eta = */ eta,
/* .m = */ m,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed),
/* .n_vocab = */ n_vocab,
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .tau = */ tau,
/* .eta = */ eta,
/* .m = */ m,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
@ -1135,6 +1157,7 @@ struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t see
struct llama_sampler_mirostat_v2 {
const uint32_t seed;
uint32_t seed_cur;
const float tau;
const float eta;
@ -1179,7 +1202,8 @@ static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_t
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
ctx->mu = 2.0f*ctx->tau;
ctx->rng = std::mt19937(ctx->seed);
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
@ -1212,14 +1236,16 @@ static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
};
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
auto seed_cur = get_rng_seed(seed);
return new llama_sampler {
/* .iface = */ &llama_sampler_mirostat_v2_i,
/* .ctx = */ new llama_sampler_mirostat_v2 {
/* .seed = */ seed,
/* .tau = */ tau,
/* .eta = */ eta,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed),
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .tau = */ tau,
/* .eta = */ eta,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed_cur),
},
};
}
@ -1505,6 +1531,8 @@ struct llama_sampler * llama_sampler_init_penalties(
ignore_eos = false;
}
penalty_last_n = std::max(penalty_last_n, 0);
return new llama_sampler {
/* .iface = */ &llama_sampler_penalties_i,
/* .ctx = */ new llama_sampler_penalties {
@ -1568,6 +1596,7 @@ static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_to
}
}
}
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
@ -1600,6 +1629,34 @@ struct llama_sampler * llama_sampler_init_logit_bias(
};
}
// utils
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
if (smpl->iface == &llama_sampler_dist_i) {
return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
}
if (smpl->iface == &llama_sampler_mirostat_i) {
return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
}
if (smpl->iface == &llama_sampler_mirostat_v2_i) {
return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
}
if (smpl->iface == &llama_sampler_chain_i) {
const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
const uint32_t seed = llama_sampler_get_seed(*it);
if (seed != LLAMA_DEFAULT_SEED) {
return seed;
}
}
}
return LLAMA_DEFAULT_SEED;
}
// perf
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {

View File

@ -16078,19 +16078,21 @@ static int llama_decode_internal(
return -1;
}
for (uint32_t i = 0; i < n_tokens_all; ++i) {
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= lctx.model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
return -1;
}
}
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams;
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
if (batch_all.token) {
for (uint32_t i = 0; i < n_tokens_all; ++i) {
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
return -1;
}
}
}
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
@ -16377,19 +16379,21 @@ static int llama_encode_internal(
return -1;
}
for (uint32_t i = 0; i < n_tokens; ++i) {
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= lctx.model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
return -1;
}
}
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & cparams = lctx.cparams;
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
if (batch.token) {
for (uint32_t i = 0; i < n_tokens; ++i) {
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= model.vocab.n_vocab) {
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
return -1;
}
}
}
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");