mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
Merge branch 'master' into gg/llama-perf
ggml-ci
This commit is contained in:
commit
44f0218532
@ -89,6 +89,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||||
|
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
|
||||||
|
|
||||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
||||||
|
|
||||||
|
@ -173,7 +173,6 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
|
|||||||
std::string arg;
|
std::string arg;
|
||||||
const std::string arg_prefix = "--";
|
const std::string arg_prefix = "--";
|
||||||
gpt_params & params = ctx_arg.params;
|
gpt_params & params = ctx_arg.params;
|
||||||
gpt_sampler_params & sparams = params.sparams;
|
|
||||||
|
|
||||||
std::unordered_map<std::string, llama_arg *> arg_to_options;
|
std::unordered_map<std::string, llama_arg *> arg_to_options;
|
||||||
for (auto & opt : ctx_arg.options) {
|
for (auto & opt : ctx_arg.options) {
|
||||||
@ -283,10 +282,6 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
|
|||||||
params.kv_overrides.back().key[0] = 0;
|
params.kv_overrides.back().key[0] = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (sparams.seed == LLAMA_DEFAULT_SEED) {
|
|
||||||
sparams.seed = time(NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -831,7 +826,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
[](gpt_params & params) {
|
[](gpt_params & params) {
|
||||||
params.special = true;
|
params.special = true;
|
||||||
}
|
}
|
||||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
{"-cnv", "--conversation"},
|
{"-cnv", "--conversation"},
|
||||||
format(
|
format(
|
||||||
@ -917,7 +912,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
).set_sparam());
|
).set_sparam());
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
{"-s", "--seed"}, "SEED",
|
{"-s", "--seed"}, "SEED",
|
||||||
format("RNG seed (default: %d, use random seed for < 0)", params.sparams.seed),
|
format("RNG seed (default: %u, use random seed for %u)", params.sparams.seed, LLAMA_DEFAULT_SEED),
|
||||||
[](gpt_params & params, const std::string & value) {
|
[](gpt_params & params, const std::string & value) {
|
||||||
params.sparams.seed = std::stoul(value);
|
params.sparams.seed = std::stoul(value);
|
||||||
}
|
}
|
||||||
@ -1430,20 +1425,18 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||||
} else if (arg_next == "layer") {
|
} else if (arg_next == "layer") {
|
||||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||||
}
|
} else if (arg_next == "row") {
|
||||||
else if (arg_next == "row") {
|
|
||||||
#ifdef GGML_USE_SYCL
|
#ifdef GGML_USE_SYCL
|
||||||
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
|
||||||
exit(1);
|
exit(1);
|
||||||
#endif // GGML_USE_SYCL
|
#endif // GGML_USE_SYCL
|
||||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||||
}
|
} else {
|
||||||
else {
|
|
||||||
throw std::invalid_argument("invalid value");
|
throw std::invalid_argument("invalid value");
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
if (!llama_supports_gpu_offload()) {
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
|
||||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
}
|
||||||
}
|
}
|
||||||
));
|
));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
@ -1463,14 +1456,14 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
}
|
}
|
||||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||||
if (i < split_arg.size()) {
|
if (i < split_arg.size()) {
|
||||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||||
} else {
|
} else {
|
||||||
params.tensor_split[i] = 0.0f;
|
params.tensor_split[i] = 0.0f;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
if (!llama_supports_gpu_offload()) {
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
|
||||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
}
|
||||||
}
|
}
|
||||||
));
|
));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
@ -1478,9 +1471,9 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
|
|||||||
format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
|
format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
|
||||||
[](gpt_params & params, int value) {
|
[](gpt_params & params, int value) {
|
||||||
params.main_gpu = value;
|
params.main_gpu = value;
|
||||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
if (!llama_supports_gpu_offload()) {
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
|
||||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
}
|
||||||
}
|
}
|
||||||
));
|
));
|
||||||
add_opt(llama_arg(
|
add_opt(llama_arg(
|
||||||
|
@ -56,14 +56,6 @@
|
|||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
|
|
||||||
#define GGML_USE_CUDA_SYCL
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
|
|
||||||
#define GGML_USE_CUDA_SYCL_VULKAN
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(LLAMA_USE_CURL)
|
#if defined(LLAMA_USE_CURL)
|
||||||
#ifdef __linux__
|
#ifdef __linux__
|
||||||
#include <linux/limits.h>
|
#include <linux/limits.h>
|
||||||
@ -950,11 +942,37 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
|
|||||||
|
|
||||||
#ifdef LLAMA_USE_CURL
|
#ifdef LLAMA_USE_CURL
|
||||||
|
|
||||||
|
#define CURL_MAX_RETRY 3
|
||||||
|
#define CURL_RETRY_DELAY_SECONDS 2
|
||||||
|
|
||||||
|
|
||||||
static bool starts_with(const std::string & str, const std::string & prefix) {
|
static bool starts_with(const std::string & str, const std::string & prefix) {
|
||||||
// While we wait for C++20's std::string::starts_with...
|
// While we wait for C++20's std::string::starts_with...
|
||||||
return str.rfind(prefix, 0) == 0;
|
return str.rfind(prefix, 0) == 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
|
||||||
|
int remaining_attempts = max_attempts;
|
||||||
|
|
||||||
|
while (remaining_attempts > 0) {
|
||||||
|
fprintf(stderr, "%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||||
|
|
||||||
|
CURLcode res = curl_easy_perform(curl);
|
||||||
|
if (res == CURLE_OK) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||||
|
fprintf(stderr, "%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||||
|
|
||||||
|
remaining_attempts--;
|
||||||
|
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||||
|
|
||||||
// Initialize libcurl
|
// Initialize libcurl
|
||||||
@ -1058,9 +1076,8 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||||
|
|
||||||
CURLcode res = curl_easy_perform(curl.get());
|
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||||
if (res != CURLE_OK) {
|
if (!was_perform_successful) {
|
||||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1135,11 +1152,10 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
|||||||
};
|
};
|
||||||
|
|
||||||
// start the download
|
// start the download
|
||||||
fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
fprintf(stderr, "%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||||
auto res = curl_easy_perform(curl.get());
|
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||||
if (res != CURLE_OK) {
|
if (!was_perform_successful) {
|
||||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -310,6 +310,10 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
|
|||||||
return cur_p.data[cur_p.selected].id;
|
return cur_p.data[cur_p.selected].id;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
||||||
|
return llama_sampler_get_seed(gsmpl->chain);
|
||||||
|
}
|
||||||
|
|
||||||
// helpers
|
// helpers
|
||||||
|
|
||||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
||||||
|
@ -60,6 +60,8 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
|||||||
//
|
//
|
||||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||||
|
|
||||||
|
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
||||||
|
|
||||||
// helpers
|
// helpers
|
||||||
|
|
||||||
// access the internal list of current candidate tokens
|
// access the internal list of current candidate tokens
|
||||||
|
@ -31,6 +31,7 @@ import re
|
|||||||
import requests
|
import requests
|
||||||
import sys
|
import sys
|
||||||
import json
|
import json
|
||||||
|
import shutil
|
||||||
|
|
||||||
from hashlib import sha256
|
from hashlib import sha256
|
||||||
from enum import IntEnum, auto
|
from enum import IntEnum, auto
|
||||||
@ -125,12 +126,27 @@ def download_model(model):
|
|||||||
if tokt == TOKENIZER_TYPE.UGM:
|
if tokt == TOKENIZER_TYPE.UGM:
|
||||||
files.append("spiece.model")
|
files.append("spiece.model")
|
||||||
|
|
||||||
for file in files:
|
if os.path.isdir(repo):
|
||||||
save_path = f"models/tokenizers/{name}/{file}"
|
# If repo is a path on the file system, copy the directory
|
||||||
if os.path.isfile(save_path):
|
for file in files:
|
||||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
src_path = os.path.join(repo, file)
|
||||||
continue
|
dst_path = f"models/tokenizers/{name}/{file}"
|
||||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
if os.path.isfile(dst_path):
|
||||||
|
logger.info(f"{name}: File {dst_path} already exists - skipping")
|
||||||
|
continue
|
||||||
|
if os.path.isfile(src_path):
|
||||||
|
shutil.copy2(src_path, dst_path)
|
||||||
|
logger.info(f"{name}: Copied {src_path} to {dst_path}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"{name}: Source file {src_path} does not exist")
|
||||||
|
else:
|
||||||
|
# If repo is a URL, download the files
|
||||||
|
for file in files:
|
||||||
|
save_path = f"models/tokenizers/{name}/{file}"
|
||||||
|
if os.path.isfile(save_path):
|
||||||
|
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||||
|
continue
|
||||||
|
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||||
|
|
||||||
|
|
||||||
for model in models:
|
for model in models:
|
||||||
|
@ -3,32 +3,10 @@
|
|||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <cmath>
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
// mutates the input string
|
|
||||||
static std::vector<int> parse_list(char * p) {
|
|
||||||
std::vector<int> ret;
|
|
||||||
|
|
||||||
char * q = p;
|
|
||||||
|
|
||||||
while (*p) {
|
|
||||||
if (*p == ',') {
|
|
||||||
*p = '\0';
|
|
||||||
ret.push_back(std::atoi(q));
|
|
||||||
q = p + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
++p;
|
|
||||||
}
|
|
||||||
|
|
||||||
ret.push_back(std::atoi(q));
|
|
||||||
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void print_usage(int, char ** argv) {
|
static void print_usage(int, char ** argv) {
|
||||||
LOG_TEE("\nexample usage:\n");
|
LOG_TEE("\nexample usage:\n");
|
||||||
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
||||||
|
@ -90,8 +90,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
|
@ -159,8 +159,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
LOG("%s: llama backend init\n", __func__);
|
LOG("%s: llama backend init\n", __func__);
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
@ -301,6 +299,9 @@ int main(int argc, char ** argv) {
|
|||||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
smpl = gpt_sampler_init(model, sparams);
|
||||||
|
|
||||||
|
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||||
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
LOG_TEE("\n\n");
|
LOG_TEE("\n\n");
|
||||||
@ -340,8 +341,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
|
|
||||||
smpl = gpt_sampler_init(model, sparams);
|
|
||||||
|
|
||||||
while (n_remain != 0 || params.interactive) {
|
while (n_remain != 0 || params.interactive) {
|
||||||
// predict
|
// predict
|
||||||
if (!embd.empty()) {
|
if (!embd.empty()) {
|
||||||
|
@ -18,8 +18,8 @@ struct llava_context {
|
|||||||
};
|
};
|
||||||
|
|
||||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
LOG_TEE("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
LOG_TEE("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||||
@ -255,7 +255,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, show_additional_info)) {
|
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -191,8 +191,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
LOG("%s: llama backend init\n", __func__);
|
LOG("%s: llama backend init\n", __func__);
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
@ -470,8 +468,10 @@ int main(int argc, char ** argv) {
|
|||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||||
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
|
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
|
||||||
LOG_TEE(" sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
|
LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
|
||||||
|
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
|
||||||
// group-attention state
|
// group-attention state
|
||||||
|
@ -2007,8 +2007,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
print_build_info();
|
print_build_info();
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
llama_numa_init(params.numa);
|
llama_numa_init(params.numa);
|
||||||
|
|
||||||
|
@ -1266,6 +1266,7 @@ struct server_context {
|
|||||||
{"n_predict", slot.n_predict}, // Server configured n_predict
|
{"n_predict", slot.n_predict}, // Server configured n_predict
|
||||||
{"model", params.model_alias},
|
{"model", params.model_alias},
|
||||||
{"seed", slot.sparams.seed},
|
{"seed", slot.sparams.seed},
|
||||||
|
{"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0},
|
||||||
{"temperature", slot.sparams.temp},
|
{"temperature", slot.sparams.temp},
|
||||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||||
|
20
flake.lock
20
flake.lock
@ -5,11 +5,11 @@
|
|||||||
"nixpkgs-lib": "nixpkgs-lib"
|
"nixpkgs-lib": "nixpkgs-lib"
|
||||||
},
|
},
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1725024810,
|
"lastModified": 1725234343,
|
||||||
"narHash": "sha256-ODYRm8zHfLTH3soTFWE452ydPYz2iTvr9T8ftDMUQ3E=",
|
"narHash": "sha256-+ebgonl3NbiKD2UD0x4BszCZQ6sTfL4xioaM49o5B3Y=",
|
||||||
"owner": "hercules-ci",
|
"owner": "hercules-ci",
|
||||||
"repo": "flake-parts",
|
"repo": "flake-parts",
|
||||||
"rev": "af510d4a62d071ea13925ce41c95e3dec816c01d",
|
"rev": "567b938d64d4b4112ee253b9274472dc3a346eb6",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@ -20,11 +20,11 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs": {
|
"nixpkgs": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1724819573,
|
"lastModified": 1725634671,
|
||||||
"narHash": "sha256-GnR7/ibgIH1vhoy8cYdmXE6iyZqKqFxQSVkFgosBh6w=",
|
"narHash": "sha256-v3rIhsJBOMLR8e/RNWxr828tB+WywYIoajrZKFM+0Gg=",
|
||||||
"owner": "NixOS",
|
"owner": "NixOS",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "71e91c409d1e654808b2621f28a327acfdad8dc2",
|
"rev": "574d1eac1c200690e27b8eb4e24887f8df7ac27c",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@ -36,14 +36,14 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs-lib": {
|
"nixpkgs-lib": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1722555339,
|
"lastModified": 1725233747,
|
||||||
"narHash": "sha256-uFf2QeW7eAHlYXuDktm9c25OxOyCoUOQmh5SZ9amE5Q=",
|
"narHash": "sha256-Ss8QWLXdr2JCBPcYChJhz4xJm+h/xjl4G0c0XlP6a74=",
|
||||||
"type": "tarball",
|
"type": "tarball",
|
||||||
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
|
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
"type": "tarball",
|
"type": "tarball",
|
||||||
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
|
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"root": {
|
"root": {
|
||||||
|
@ -1942,7 +1942,7 @@ GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
|
|||||||
GGML_CANN_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
GGML_CANN_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
ggml_cann_set_device(ctx->device);
|
||||||
ggml_backend_t cann_backend =
|
ggml_backend_t cann_backend =
|
||||||
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
|
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
|
||||||
/* .interface = */ ggml_backend_cann_interface,
|
/* .interface = */ ggml_backend_cann_interface,
|
||||||
|
@ -26,7 +26,11 @@ void ggml_cuda_op_mul_mat_q(
|
|||||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||||
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
||||||
|
|
||||||
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst};
|
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
||||||
|
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||||
|
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||||
|
const bool use_stream_k = compute_capability >= CC_VOLTA && compute_capability < CC_OFFSET_AMD && src1_ncols == ne11;
|
||||||
|
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_Q4_0:
|
case GGML_TYPE_Q4_0:
|
||||||
|
@ -2742,6 +2742,7 @@ struct mmq_args {
|
|||||||
int64_t ne00; int64_t ne01; int64_t stride01;
|
int64_t ne00; int64_t ne01; int64_t stride01;
|
||||||
int64_t ne10; int64_t ne11; int64_t stride11;
|
int64_t ne10; int64_t ne11; int64_t stride11;
|
||||||
int64_t ne0;
|
int64_t ne0;
|
||||||
|
bool use_stream_k;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<ggml_type type>
|
template<ggml_type type>
|
||||||
@ -2777,8 +2778,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
|||||||
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
|
||||||
const dim3 block_nums_xy_tiling(nty, ntx, 1);
|
const dim3 block_nums_xy_tiling(nty, ntx, 1);
|
||||||
|
|
||||||
const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
|
if (!args.use_stream_k) {
|
||||||
if (!use_stream_k) {
|
|
||||||
if (args.ne01 % mmq_y == 0) {
|
if (args.ne01 % mmq_y == 0) {
|
||||||
constexpr bool need_check = false;
|
constexpr bool need_check = false;
|
||||||
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
|
mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
|
||||||
|
39
ggml/src/ggml-cuda/vendors/musa.h
vendored
39
ggml/src/ggml-cuda/vendors/musa.h
vendored
@ -130,42 +130,3 @@
|
|||||||
#define cudaKernelNodeParams musaKernelNodeParams
|
#define cudaKernelNodeParams musaKernelNodeParams
|
||||||
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
|
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
|
||||||
#define cudaStreamEndCapture musaStreamEndCapture
|
#define cudaStreamEndCapture musaStreamEndCapture
|
||||||
|
|
||||||
// XXX: Clang builtins mapping
|
|
||||||
#define __vsub4 __vsub4_musa
|
|
||||||
#define __vcmpeq4 __vcmpeq4_musa
|
|
||||||
#define __vcmpne4 __vcmpne4_musa
|
|
||||||
|
|
||||||
#ifndef __has_builtin
|
|
||||||
#define __has_builtin(x) 0
|
|
||||||
#endif
|
|
||||||
|
|
||||||
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
|
|
||||||
|
|
||||||
static __device__ __forceinline__ int __vsub4_musa(const int a, const int b) {
|
|
||||||
return __vsubss4(a, b);
|
|
||||||
}
|
|
||||||
|
|
||||||
static __device__ __forceinline__ unsigned int __vcmpeq4_musa(unsigned int a, unsigned int b) {
|
|
||||||
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
|
||||||
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
|
||||||
unsigned int c;
|
|
||||||
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < 4; ++i) {
|
|
||||||
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
|
|
||||||
}
|
|
||||||
return c;
|
|
||||||
}
|
|
||||||
|
|
||||||
static __device__ __forceinline__ unsigned int __vcmpne4_musa(unsigned int a, unsigned int b) {
|
|
||||||
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
|
||||||
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
|
||||||
unsigned int c;
|
|
||||||
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
|
||||||
#pragma unroll
|
|
||||||
for (int i = 0; i < 4; ++i) {
|
|
||||||
vc[i] = va[i] == vb[i] ? 0x00 : 0xff;
|
|
||||||
}
|
|
||||||
return c;
|
|
||||||
}
|
|
||||||
|
@ -5137,13 +5137,17 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
|
|||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
case GGML_OP_SQR:
|
case GGML_OP_SQR:
|
||||||
case GGML_OP_CLAMP:
|
case GGML_OP_CLAMP:
|
||||||
|
return true;
|
||||||
case GGML_OP_CONT:
|
case GGML_OP_CONT:
|
||||||
|
return op->src[0]->type != GGML_TYPE_BF16;
|
||||||
case GGML_OP_DIAG_MASK_INF:
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
return true;
|
return true;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
return ggml_is_contiguous(op->src[0]);
|
return ggml_is_contiguous(op->src[0]);
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
|
// TODO: add support for the new F32 operations
|
||||||
|
return op->src[0]->type == GGML_TYPE_F16;
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
case GGML_OP_SUM_ROWS:
|
case GGML_OP_SUM_ROWS:
|
||||||
case GGML_OP_ARGSORT:
|
case GGML_OP_ARGSORT:
|
||||||
|
@ -1127,6 +1127,10 @@ extern "C" {
|
|||||||
int32_t n_logit_bias,
|
int32_t n_logit_bias,
|
||||||
const llama_logit_bias * logit_bias);
|
const llama_logit_bias * logit_bias);
|
||||||
|
|
||||||
|
|
||||||
|
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
|
||||||
|
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
|
||||||
|
|
||||||
/// @details Sample and accept a token from the idx-th output of the last evaluation
|
/// @details Sample and accept a token from the idx-th output of the last evaluation
|
||||||
//
|
//
|
||||||
// Shorthand for:
|
// Shorthand for:
|
||||||
|
@ -8,6 +8,7 @@
|
|||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <ctime>
|
#include <ctime>
|
||||||
#include <cfloat>
|
#include <cfloat>
|
||||||
|
#include <chrono>
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <numeric>
|
#include <numeric>
|
||||||
#include <random>
|
#include <random>
|
||||||
@ -162,6 +163,19 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
|
|||||||
cur_p->size = k;
|
cur_p->size = k;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static uint32_t get_rng_seed(uint32_t seed) {
|
||||||
|
if (seed == LLAMA_DEFAULT_SEED) {
|
||||||
|
// use system clock if std::random_device is not a true RNG
|
||||||
|
static bool is_rd_prng = std::random_device().entropy() == 0;
|
||||||
|
if (is_rd_prng) {
|
||||||
|
return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
|
||||||
|
}
|
||||||
|
std::random_device rd;
|
||||||
|
return rd();
|
||||||
|
}
|
||||||
|
return seed;
|
||||||
|
}
|
||||||
|
|
||||||
// llama_sampler API
|
// llama_sampler API
|
||||||
|
|
||||||
const char * llama_sampler_name(const struct llama_sampler * smpl) {
|
const char * llama_sampler_name(const struct llama_sampler * smpl) {
|
||||||
@ -387,6 +401,7 @@ struct llama_sampler * llama_sampler_init_greedy() {
|
|||||||
|
|
||||||
struct llama_sampler_dist {
|
struct llama_sampler_dist {
|
||||||
const uint32_t seed;
|
const uint32_t seed;
|
||||||
|
uint32_t seed_cur;
|
||||||
|
|
||||||
std::mt19937 rng;
|
std::mt19937 rng;
|
||||||
};
|
};
|
||||||
@ -416,7 +431,8 @@ static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sample
|
|||||||
|
|
||||||
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
|
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
|
||||||
auto * ctx = (llama_sampler_dist *) smpl->ctx;
|
auto * ctx = (llama_sampler_dist *) smpl->ctx;
|
||||||
ctx->rng = std::mt19937(ctx->seed);
|
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||||
|
ctx->rng.seed(ctx->seed_cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
|
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
|
||||||
@ -433,11 +449,13 @@ static struct llama_sampler_i llama_sampler_dist_i = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
|
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
|
||||||
|
auto seed_cur = get_rng_seed(seed);
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_dist_i,
|
/* .iface = */ &llama_sampler_dist_i,
|
||||||
/* .ctx = */ new llama_sampler_dist {
|
/* .ctx = */ new llama_sampler_dist {
|
||||||
/* .seed = */ seed,
|
/* .seed = */ seed,
|
||||||
/* .rng = */ std::mt19937(seed),
|
/* .seed_cur = */ seed_cur,
|
||||||
|
/* .rng = */ std::mt19937(seed_cur),
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -1032,6 +1050,7 @@ struct llama_sampler_mirostat {
|
|||||||
const int32_t n_vocab;
|
const int32_t n_vocab;
|
||||||
|
|
||||||
const uint32_t seed;
|
const uint32_t seed;
|
||||||
|
uint32_t seed_cur;
|
||||||
|
|
||||||
const float tau;
|
const float tau;
|
||||||
const float eta;
|
const float eta;
|
||||||
@ -1100,7 +1119,8 @@ static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sa
|
|||||||
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
|
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
|
||||||
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
|
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
|
||||||
ctx->mu = 2.0f*ctx->tau;
|
ctx->mu = 2.0f*ctx->tau;
|
||||||
ctx->rng = std::mt19937(ctx->seed);
|
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||||
|
ctx->rng.seed(ctx->seed_cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
|
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
|
||||||
@ -1117,16 +1137,18 @@ static struct llama_sampler_i llama_sampler_mirostat_i = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
|
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
|
||||||
|
auto seed_cur = get_rng_seed(seed);
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_mirostat_i,
|
/* .iface = */ &llama_sampler_mirostat_i,
|
||||||
/* .ctx = */ new llama_sampler_mirostat {
|
/* .ctx = */ new llama_sampler_mirostat {
|
||||||
/* .n_vocab = */ n_vocab,
|
/* .n_vocab = */ n_vocab,
|
||||||
/* .seed = */ seed,
|
/* .seed = */ seed,
|
||||||
/* .tau = */ tau,
|
/* .seed_cur = */ seed_cur,
|
||||||
/* .eta = */ eta,
|
/* .tau = */ tau,
|
||||||
/* .m = */ m,
|
/* .eta = */ eta,
|
||||||
/* .mu = */ 2.0f*tau,
|
/* .m = */ m,
|
||||||
/* .rng = */ std::mt19937(seed),
|
/* .mu = */ 2.0f*tau,
|
||||||
|
/* .rng = */ std::mt19937(seed_cur),
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -1135,6 +1157,7 @@ struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t see
|
|||||||
|
|
||||||
struct llama_sampler_mirostat_v2 {
|
struct llama_sampler_mirostat_v2 {
|
||||||
const uint32_t seed;
|
const uint32_t seed;
|
||||||
|
uint32_t seed_cur;
|
||||||
|
|
||||||
const float tau;
|
const float tau;
|
||||||
const float eta;
|
const float eta;
|
||||||
@ -1179,7 +1202,8 @@ static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_t
|
|||||||
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
|
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
|
||||||
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
|
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
|
||||||
ctx->mu = 2.0f*ctx->tau;
|
ctx->mu = 2.0f*ctx->tau;
|
||||||
ctx->rng = std::mt19937(ctx->seed);
|
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||||
|
ctx->rng.seed(ctx->seed_cur);
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
|
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
|
||||||
@ -1212,14 +1236,16 @@ static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
|
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
|
||||||
|
auto seed_cur = get_rng_seed(seed);
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_mirostat_v2_i,
|
/* .iface = */ &llama_sampler_mirostat_v2_i,
|
||||||
/* .ctx = */ new llama_sampler_mirostat_v2 {
|
/* .ctx = */ new llama_sampler_mirostat_v2 {
|
||||||
/* .seed = */ seed,
|
/* .seed = */ seed,
|
||||||
/* .tau = */ tau,
|
/* .seed_cur = */ seed_cur,
|
||||||
/* .eta = */ eta,
|
/* .tau = */ tau,
|
||||||
/* .mu = */ 2.0f*tau,
|
/* .eta = */ eta,
|
||||||
/* .rng = */ std::mt19937(seed),
|
/* .mu = */ 2.0f*tau,
|
||||||
|
/* .rng = */ std::mt19937(seed_cur),
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -1505,6 +1531,8 @@ struct llama_sampler * llama_sampler_init_penalties(
|
|||||||
ignore_eos = false;
|
ignore_eos = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
penalty_last_n = std::max(penalty_last_n, 0);
|
||||||
|
|
||||||
return new llama_sampler {
|
return new llama_sampler {
|
||||||
/* .iface = */ &llama_sampler_penalties_i,
|
/* .iface = */ &llama_sampler_penalties_i,
|
||||||
/* .ctx = */ new llama_sampler_penalties {
|
/* .ctx = */ new llama_sampler_penalties {
|
||||||
@ -1568,6 +1596,7 @@ static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_to
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
|
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
|
||||||
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
|
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
|
||||||
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
|
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
|
||||||
@ -1600,6 +1629,34 @@ struct llama_sampler * llama_sampler_init_logit_bias(
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// utils
|
||||||
|
|
||||||
|
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
|
||||||
|
if (smpl->iface == &llama_sampler_dist_i) {
|
||||||
|
return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (smpl->iface == &llama_sampler_mirostat_i) {
|
||||||
|
return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (smpl->iface == &llama_sampler_mirostat_v2_i) {
|
||||||
|
return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (smpl->iface == &llama_sampler_chain_i) {
|
||||||
|
const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
|
||||||
|
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
|
||||||
|
const uint32_t seed = llama_sampler_get_seed(*it);
|
||||||
|
if (seed != LLAMA_DEFAULT_SEED) {
|
||||||
|
return seed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return LLAMA_DEFAULT_SEED;
|
||||||
|
}
|
||||||
|
|
||||||
// perf
|
// perf
|
||||||
|
|
||||||
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
|
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
|
||||||
|
@ -16078,19 +16078,21 @@ static int llama_decode_internal(
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
|
||||||
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= lctx.model.vocab.n_vocab) {
|
|
||||||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const auto & model = lctx.model;
|
const auto & model = lctx.model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
const auto & cparams = lctx.cparams;
|
const auto & cparams = lctx.cparams;
|
||||||
|
|
||||||
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
|
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
|
||||||
|
|
||||||
|
if (batch_all.token) {
|
||||||
|
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||||
|
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= model.vocab.n_vocab) {
|
||||||
|
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch_all.token[i]);
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
||||||
|
|
||||||
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
||||||
@ -16377,19 +16379,21 @@ static int llama_encode_internal(
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
|
||||||
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= lctx.model.vocab.n_vocab) {
|
|
||||||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const auto & model = lctx.model;
|
const auto & model = lctx.model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
const auto & cparams = lctx.cparams;
|
const auto & cparams = lctx.cparams;
|
||||||
|
|
||||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||||
|
|
||||||
|
if (batch.token) {
|
||||||
|
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||||||
|
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= model.vocab.n_vocab) {
|
||||||
|
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d", __func__, i, batch.token[i]);
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
|
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
|
||||||
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
|
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user