diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index f4e2175f1..2ae046933 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -82,7 +82,7 @@ static void usage(const char * executable) { printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); - printf(" --imatrixfile_name: use data in file_name as importance matrix for quant optimizations\n"); + printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n"); diff --git a/ggml-quants.c b/ggml-quants.c index 9290d54cf..0750fe1bb 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -1244,7 +1244,8 @@ static inline int nearest_int(float fval) { return (i & 0x007fffff) - 0x00400000; } -static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) { +static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type, + const float * restrict qw) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { @@ -1270,14 +1271,13 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * rmse_type = -rmse_type; return_early = true; } - int weight_type = rmse_type%2; float sumlx = 0; float suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); L[i] = l + nmax; - float w = weight_type == 1 ? x[i] * x[i] : 1; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } @@ -1293,7 +1293,7 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); - float w = weight_type == 1 ? x[i] * x[i] : 1; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } @@ -2089,6 +2089,112 @@ size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q3_K)); } +static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q3_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K / 16]; + float weight[16]; + float sw[QK_K / 16]; + int8_t Ls[QK_K / 16]; + + for (int i = 0; i < nb; i++) { + + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = 2*sumx2/QK_K; + + for (int j = 0; j < QK_K/16; ++j) { + if (quant_weights) { + const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]); + } else { + for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l]; + } + float sumw = 0; + for (int l = 0; l < 16; ++l) sumw += weight[l]; + sw[j] = sumw; + + scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight); + + } + + memset(y[i].scales, 0, 12); + + float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw); + for (int j = 0; j < QK_K/16; ++j) { + int l = Ls[j]; + if (j < 8) { + y[i].scales[j] = l & 0xF; + } else { + y[i].scales[j-8] |= ((l & 0xF) << 4); + } + l >>= 4; + y[i].scales[j%4 + 8] |= (l << (2*(j/4))); + } + y[i].d = GGML_FP32_TO_FP16(d_block); + + int8_t sc; + for (int j = 0; j < QK_K/16; ++j) { + sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; + sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; + float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } + + memset(y[i].hmask, 0, QK_K/8); + // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. + int m = 0; + uint8_t hm = 1; + for (int j = 0; j < QK_K; ++j) { + if (L[j] > 3) { + y[i].hmask[m] |= hm; + L[j] -= 4; + } + if (++m == QK_K/8) { + m = 0; hm <<= 1; + } + } + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } + + x += QK_K; + } +#endif +} + +size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row); + if (!quant_weights) { + quantize_row_q3_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 4-bit (de)-quantization void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) { @@ -2254,6 +2360,108 @@ size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q4_K)); } +static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q4_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[32]; + float weights[32]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + //scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + } + } + uint8_t * q = y[i].qs; + for (int j = 0; j < QK_K; j += 64) { + for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); + q += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row); + if (!quant_weights) { + quantize_row_q4_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 5-bit (de)-quantization void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) { @@ -2349,7 +2557,7 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict #else float max_scale = 0, amax = 0; for (int j = 0; j < QK_K/16; ++j) { - scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1); + scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL); float abs_scale = fabsf(scales[j]); if (abs_scale > amax) { amax = abs_scale; @@ -2460,6 +2668,123 @@ size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q5_K)); } +static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q5_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + float mins[QK_K/32]; + float scales[QK_K/32]; + float weights[32]; + uint8_t Laux[32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(31, l)); + L[32*j + ii] = l; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + uint8_t m1 = 1, m2 = 2; + for (int n = 0; n < QK_K; n += 64) { + for (int j = 0; j < 32; ++j) { + int l1 = L[n + j]; + if (l1 > 15) { + l1 -= 16; qh[j] |= m1; + } + int l2 = L[n + j + 32]; + if (l2 > 15) { + l2 -= 16; qh[j] |= m2; + } + ql[j] = l1 | (l2 << 4); + } + m1 <<= 2; m2 <<= 2; + ql += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row); + if (!quant_weights) { + quantize_row_q5_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 6-bit (de)-quantization void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) { @@ -2476,7 +2801,7 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict for (int ib = 0; ib < QK_K/16; ++ib) { - const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1); + const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); scales[ib] = scale; const float abs_scale = fabsf(scale); @@ -2608,6 +2933,112 @@ size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * return (n/QK_K*sizeof(block_q6_K)); } +static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q6_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K/16]; + //float weights[16]; + + for (int i = 0; i < nb; i++) { + + //float sum_x2 = 0; + //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j]; + //float sigma2 = sum_x2/QK_K; + + float max_scale = 0; + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/16; ++ib) { + + float scale; + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 16*ib; + //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]); + //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights); + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw); + } else { + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); + } + scales[ib] = scale; + + const float abs_scale = fabsf(scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scale; + } + + } + + if (!max_abs_scale) { + memset(&y[i], 0, sizeof(block_q6_K)); + y[i].d = GGML_FP32_TO_FP16(0.f); + x += QK_K; + continue; + } + + float iscale = -128.f/max_scale; + y[i].d = GGML_FP32_TO_FP16(1/iscale); + for (int ib = 0; ib < QK_K/16; ++ib) { + y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); + } + + for (int j = 0; j < QK_K/16; ++j) { + float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-32, MIN(31, l)); + L[16*j + ii] = l + 32; + } + } + + uint8_t * restrict ql = y[i].ql; + uint8_t * restrict qh = y[i].qh; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[j + l + 0] & 0xF; + const uint8_t q2 = L[j + l + 32] & 0xF; + const uint8_t q3 = L[j + l + 64] & 0xF; + const uint8_t q4 = L[j + l + 96] & 0xF; + ql[l+ 0] = q1 | (q3 << 4); + ql[l+32] = q2 | (q4 << 4); + qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); + } + ql += 64; + qh += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row); + if (!quant_weights) { + quantize_row_q6_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== "True" 2-bit (de)-quantization static const uint64_t iq2xxs_grid[256] = { diff --git a/ggml-quants.h b/ggml-quants.h index e5d110230..99467936a 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -249,4 +249,7 @@ void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); - +size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); diff --git a/ggml.c b/ggml.c index 52467475a..ef5888ab2 100644 --- a/ggml.c +++ b/ggml.c @@ -18713,26 +18713,38 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_Q3_K: { GGML_ASSERT(start % QK_K == 0); - block_q3_K * block = (block_q3_K*)dst + start / QK_K; - result = ggml_quantize_q3_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(start % QK_K == 0); - block_q4_K * block = (block_q4_K*)dst + start / QK_K; - result = ggml_quantize_q4_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q5_K: { GGML_ASSERT(start % QK_K == 0); - block_q5_K * block = (block_q5_K*)dst + start / QK_K; - result = ggml_quantize_q5_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(start % QK_K == 0); - block_q6_K * block = (block_q6_K*)dst + start / QK_K; - result = ggml_quantize_q6_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_IQ2_XXS: {