From 46be942214e295cd34660bbbd6b846155d1c36a0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?DAN=E2=84=A2?= Date: Sat, 4 Jan 2025 09:33:31 -0500 Subject: [PATCH] llama : add support for the cohere2 model architecture (#10900) --- convert_hf_to_gguf.py | 18 +++++ gguf-py/gguf/constants.py | 14 ++++ src/llama-arch.cpp | 16 ++++ src/llama-arch.h | 1 + src/llama-model.cpp | 11 +++ src/llama.cpp | 161 ++++++++++++++++++++++++++++++++++++++ 6 files changed, 221 insertions(+) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 4e6c0f60c..d4441bbe9 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -3373,6 +3373,24 @@ class CommandR2Model(Model): self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) +@Model.register("Cohere2ForCausalLM") +class Cohere2Model(Model): + model_arch = gguf.MODEL_ARCH.COHERE2 + + def set_gguf_parameters(self): + super().set_gguf_parameters() + + self.gguf_writer.add_logit_scale(self.hparams["logit_scale"]) + self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) + self.gguf_writer.add_vocab_size(self.hparams["vocab_size"]) + + rotary_pct = self.hparams["rotary_pct"] + hidden_size = self.hparams["hidden_size"] + num_attention_heads = self.hparams["num_attention_heads"] + self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads))) + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE) + + @Model.register("OlmoForCausalLM") @Model.register("OLMoForCausalLM") class OlmoModel(Model): diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 273370370..cdf79673b 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -255,6 +255,7 @@ class MODEL_ARCH(IntEnum): MAMBA = auto() XVERSE = auto() COMMAND_R = auto() + COHERE2 = auto() DBRX = auto() OLMO = auto() OLMO2 = auto() @@ -437,6 +438,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.XVERSE: "xverse", MODEL_ARCH.COMMAND_R: "command-r", + MODEL_ARCH.COHERE2: "cohere2", MODEL_ARCH.DBRX: "dbrx", MODEL_ARCH.OLMO: "olmo", MODEL_ARCH.OLMO2: "olmo2", @@ -1136,6 +1138,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ATTN_K_NORM, MODEL_TENSOR.ATTN_Q_NORM, ], + MODEL_ARCH.COHERE2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.DBRX: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index a60038385..fea4b21d3 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -39,6 +39,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_XVERSE, "xverse" }, { LLM_ARCH_COMMAND_R, "command-r" }, + { LLM_ARCH_COHERE2, "cohere2" }, { LLM_ARCH_DBRX, "dbrx" }, { LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_OLMO2, "olmo2" }, @@ -807,6 +808,21 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, }, }, + { + LLM_ARCH_COHERE2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_DBRX, { diff --git a/src/llama-arch.h b/src/llama-arch.h index 446e72eeb..10bd619a4 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -43,6 +43,7 @@ enum llm_arch { LLM_ARCH_MAMBA, LLM_ARCH_XVERSE, LLM_ARCH_COMMAND_R, + LLM_ARCH_COHERE2, LLM_ARCH_DBRX, LLM_ARCH_OLMO, LLM_ARCH_OLMO2, diff --git a/src/llama-model.cpp b/src/llama-model.cpp index ace0ba262..c356abded 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -786,6 +786,16 @@ void llm_load_hparams(llama_model_loader & ml, llama_model & model) { default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_COHERE2: + { + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); + ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_DBRX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); @@ -2031,6 +2041,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_MINICPM: case LLM_ARCH_XVERSE: case LLM_ARCH_COMMAND_R: + case LLM_ARCH_COHERE2: case LLM_ARCH_OLMO: case LLM_ARCH_ARCTIC: case LLM_ARCH_DEEPSEEK: diff --git a/src/llama.cpp b/src/llama.cpp index d7110b90b..50e9191fa 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -1552,6 +1552,32 @@ static bool llm_load_tensors( layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; + case LLM_ARCH_COHERE2: + { + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); + + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); + // init output from the input tok embed + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, + llama_model_loader::TENSOR_DUPLICATED); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); + + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); + } + } + break; case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed { model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -7633,6 +7659,137 @@ struct llm_build_context { } + struct ggml_cgraph * build_cohere2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + const float f_logit_scale = hparams.f_logit_scale; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + // cohere2 requires different mask for layers using sliding window (SWA) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(); + + // sliding window switch pattern + const int32_t sliding_window_pattern = 4; + + for (int il = 0; il < n_layer; ++il) { + // three layers sliding window attention (window size 4096) and ROPE + // fourth layer uses global attention without positional embeddings + const bool is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1); + struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + struct ggml_tensor * ffn_inp = cur; + + // self-attention + { + // rope freq factors for 128k context + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + if (is_sliding) { + Qcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, + beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, + attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + } else { + // For non-sliding layers, just reshape without applying RoPE + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + cb(Qcur, "Qcur", il); + + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + cb(Kcur, "Kcur", il); + } + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, + KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f / sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); + } + + struct ggml_tensor * attn_out = cur; + + // feed-forward network + { + cur = llm_build_ffn(ctx0, lctx, ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, + NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, + cb, il); + cb(cur, "ffn_out", il); + } + + // add together residual + FFN + self-attention + cur = ggml_add(ctx0, cur, inpL); + cur = ggml_add(ctx0, cur, attn_out); + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + if (f_logit_scale) { + cur = ggml_scale(ctx0, cur, f_logit_scale); + } + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + // ref: https://allenai.org/olmo // based on the original build_llama() function, changes: // * non-parametric layer norm @@ -10384,6 +10541,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_command_r(); } break; + case LLM_ARCH_COHERE2: + { + result = llm.build_cohere2(); + } break; case LLM_ARCH_DBRX: { result = llm.build_dbrx();