mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 13:30:35 +00:00
common : preallocate sampling token data vector (#8363)
`emplace_back` repeatedly-called is slower than preallocating the vector to the vocab size and directly inserting the data. Some rudimentary profiling with `chrono` improves the performance of this block of code from ~500us/op to ~40us/op. Overall, this slightly improves the sampling performance which has a more substantial impact for the `examples/lookahead` implementation -- I am able to see a ~10% performance boost in lookahead inference.
This commit is contained in:
parent
6f0dbf6ab0
commit
470939d483
@ -378,7 +378,7 @@ static llama_token_data_array llama_sampling_prepare_impl(
|
||||
if (ctx_sampling->grammar != NULL && !apply_grammar) {
|
||||
GGML_ASSERT(original_logits != NULL);
|
||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
||||
*original_logits = {logits, logits + n_vocab};
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
@ -391,10 +391,10 @@ static llama_token_data_array llama_sampling_prepare_impl(
|
||||
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
cur.clear();
|
||||
cur.resize(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
Loading…
Reference in New Issue
Block a user