minor
Some checks failed
flake8 Lint / Lint (push) Has been cancelled

ggml-ci
This commit is contained in:
slaren 2024-10-29 18:48:46 +01:00
parent 63c47ab8c3
commit 484984c8ec
6 changed files with 36 additions and 42 deletions

View File

@ -76,15 +76,15 @@ static T stdev(const std::vector<T> & v) {
}
static std::string get_cpu_info() {
std::vector<std::string> gpu_list;
std::vector<std::string> cpu_list;
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
auto * dev = ggml_backend_dev_get(i);
auto dev_type = ggml_backend_dev_type(dev);
if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
gpu_list.push_back(ggml_backend_dev_description(dev));
cpu_list.push_back(ggml_backend_dev_description(dev));
}
}
return join(gpu_list, ", ");
return join(cpu_list, ", ");
}
static std::string get_gpu_info() {

View File

@ -168,10 +168,13 @@ extern "C" {
GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
// Common functions that may be obtained using ggml_backend_reg_get_proc_address
// Split buffer type for tensor parallelism
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
// Set the number of threads for the backend
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
// Get additional buffer types provided by the device (returns a NULL-terminated array)
typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device);
//

View File

@ -95,8 +95,8 @@ extern "C" {
// (optional) complete all pending operations (required if the backend supports async operations)
void (*synchronize)(ggml_backend_t backend);
// (optional) graph plans
// compute graph with a plan (not used currently)
// (optional) graph plans (not used currently)
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology

View File

@ -1503,7 +1503,7 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, co
return -1;
}
#if 0
#if 1
#define GGML_SCHED_MAX_SPLITS_DEBUG 4096
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
@ -1906,11 +1906,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (src == NULL) {
continue;
}
// check if a weight is on a different backend
// check if a weight is on a different and incompatible backend
// by starting a new split, the memory of the previously offloaded weights can be reused
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = tensor_backend_id(src);
if (src_backend_id != cur_backend_id) {
if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
need_new_split = true;
break;
}
@ -1922,7 +1922,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
int src_backend_id = sched->hv_tensor_backend_ids[id];
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
need_new_split = true;
break;
}

View File

@ -3168,7 +3168,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(buft != nullptr);
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
}

View File

@ -3423,8 +3423,8 @@ static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t d
}
template<typename F>
static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t * buft_list, const F & fn) {
for (const auto & cur : *buft_list) {
static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) {
for (const auto & cur : buft_list) {
ggml_backend_dev_t cur_dev = cur.first;
ggml_backend_buffer_type_t cur_buft = cur.second;
if (buft_supported(cur_buft, cur_dev, fn)) {
@ -3499,7 +3499,7 @@ static bool llama_kv_cache_init(
} else {
buft_list = &model.cpu_buft_list;
}
ggml_backend_buffer_type_t buft = select_buft(buft_list,
ggml_backend_buffer_type_t buft = select_buft(*buft_list,
[&](ggml_context * ctx) {
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
@ -6955,7 +6955,6 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
}
}
//////// TODO: move elsewhere, maybe
enum llm_tensor_layer {
LLM_TENSOR_LAYER_INPUT,
LLM_TENSOR_LAYER_REPEATING,
@ -7093,7 +7092,7 @@ static const std::map<llm_tensor, llm_tensor_info> llm_tensor_info_mapping = {
};
// checks if the weight tensor can be used with the specified buffer type and device
static bool weight_buft_supported(ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
GGML_ASSERT(w != nullptr);
if (op == GGML_OP_NONE) {
@ -7125,7 +7124,7 @@ static bool weight_buft_supported(ggml_tensor * w, ggml_op op, ggml_backend_buff
} break;
case GGML_OP_MUL_MAT_ID:
{
int n_expert_used = 2; // TODO: from model
int n_expert_used = hparams.n_expert_used;
ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
@ -7147,8 +7146,8 @@ static bool weight_buft_supported(ggml_tensor * w, ggml_op op, ggml_backend_buff
} break;
case GGML_OP_ROPE:
{
int n_embd_head = 64; // TODO: from model
int n_head = 16;
int n_embd_head = hparams.n_embd_head_v;
int n_head = hparams.n_head();
ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
op_tensor = ggml_rope_ext(
@ -7190,12 +7189,12 @@ static bool weight_buft_supported(ggml_tensor * w, ggml_op op, ggml_backend_buff
}
// find the first buffer type in the list that can use the tensor
static ggml_backend_buffer_type_t select_weight_buft(ggml_tensor * tensor, ggml_op op, llama_model::buft_list_t * buft_list) {
GGML_ASSERT(!buft_list->empty());
for (auto & cur : *buft_list) {
static ggml_backend_buffer_type_t select_weight_buft(const llama_model & model, ggml_tensor * tensor, ggml_op op, const llama_model::buft_list_t & buft_list) {
GGML_ASSERT(!buft_list.empty());
for (const auto & cur : buft_list) {
ggml_backend_dev_t cur_dev = cur.first;
ggml_backend_buffer_type_t cur_buft = cur.second;
if (weight_buft_supported(tensor, op, cur_buft, cur_dev)) {
if (weight_buft_supported(model.hparams, tensor, op, cur_buft, cur_dev)) {
return cur_buft;
}
}
@ -7420,8 +7419,6 @@ static bool llm_load_tensors(
ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
constexpr auto * func = __func__;
auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
@ -7482,7 +7479,7 @@ static bool llm_load_tensors(
GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
}
ggml_backend_buffer_type_t buft = select_weight_buft(t_meta, op, buft_list);
ggml_backend_buffer_type_t buft = select_weight_buft(model, t_meta, op, *buft_list);
if (!buft) {
throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
}
@ -7512,8 +7509,7 @@ static bool llm_load_tensors(
return t;
}
}
ggml_tensor * t = ml.create_tensor(ctx, tn, ne, flags);
return t;
return ml.create_tensor(ctx, tn, ne, flags);
};
model.layers.resize(n_layer);
@ -9064,11 +9060,10 @@ static bool llm_load_tensors(
}
if (n_moved_tensors > 0) {
LLAMA_LOG_WARN("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
func, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
__func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
}
}
ml.done_getting_tensors();
@ -9146,7 +9141,7 @@ static bool llm_load_tensors(
for (auto & buf : bufs) {
// indicate that this buffer contains weights
// this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
// this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
}
@ -19517,7 +19512,7 @@ struct llama_context * llama_new_context_with_model(
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
if (!hparams.vocab_only) {
// initialize backends
// GPU backends
for (auto * dev : model->devices) {
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
if (backend == nullptr) {
@ -19528,7 +19523,7 @@ struct llama_context * llama_new_context_with_model(
ctx->backends.push_back(backend);
}
// add other backends (such as BLAS)
// add ACCEL backends (such as BLAS)
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
@ -19542,6 +19537,7 @@ struct llama_context * llama_new_context_with_model(
}
}
// add CPU backend
ctx->backend_cpu = ggml_backend_cpu_init();
if (ctx->backend_cpu == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
@ -19638,11 +19634,6 @@ struct llama_context * llama_new_context_with_model(
continue;
}
auto * dev = ggml_backend_get_device(backend);
if (!dev) {
// backend is using old interface, not supported
pipeline_parallel = false;
break;
}
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
if (!props.caps.async || !props.caps.events) {
@ -19667,17 +19658,19 @@ struct llama_context * llama_new_context_with_model(
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf_pp = llama_build_graph(*ctx, ubatch_pp, true);
// reserve pp graph first so that buffers are only allocated once
ggml_backend_sched_reserve(ctx->sched, gf_pp);
int n_splits_pp = ggml_backend_sched_get_n_splits(ctx->sched);
int n_nodes_pp = ggml_graph_n_nodes(gf_pp);
// reserve with tg graph to get the number of splits and nodes
llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
ggml_cgraph * gf_tg = llama_build_graph(*ctx, ubatch_tg, true);
ggml_backend_sched_reserve(ctx->sched, gf_tg);
int n_splits_tg = ggml_backend_sched_get_n_splits(ctx->sched);
int n_nodes_tg = ggml_graph_n_nodes(gf_tg);
// restore
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
gf_pp = llama_build_graph(*ctx, ubatch_pp, false);
if (!ggml_backend_sched_reserve(ctx->sched, gf_pp)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
@ -19989,7 +19982,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const
cvec.tensors.reserve(model.hparams.n_layer);
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < model.hparams.n_layer; il++) {
ggml_backend_buffer_type_t buft = select_buft(model.dev_layer.at(il).buft_list,
ggml_backend_buffer_type_t buft = select_buft(*model.dev_layer.at(il).buft_list,
[&](ggml_context * ctx) {
ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);