Compute perplexity over prompt (#270)

* Compute perplexity over prompt

* More accurate perplexity calculation - over all logits in the context window (so 512x more tokens!)

* Output all perplexitiies

* Add timing/ETA
This commit is contained in:
Gary Linscott 2023-03-21 09:27:42 -07:00 committed by GitHub
parent 3ab3e6582f
commit 486ae645fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 98 additions and 13 deletions

103
main.cpp
View File

@ -560,7 +560,8 @@ bool llama_eval(
const int n_past,
const std::vector<llama_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
size_t & mem_per_token,
bool return_all_logits = false) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
@ -578,7 +579,7 @@ bool llama_eval(
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
//fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
@ -764,9 +765,14 @@ bool llama_eval(
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (return_all_logits) {
embd_w.resize(n_vocab * N);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
} else {
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
@ -778,6 +784,76 @@ bool llama_eval(
return true;
}
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
float logit = logits[i] - max_logit;
double exp_logit = std::exp(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
return probs;
}
void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params &params, size_t mem_per_token) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
int count = 0;
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
printf("Calculating perplexity over %d chunks\n", seq_count);
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
std::vector<float> logits;
auto start_t = std::chrono::high_resolution_clock::now();
if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
fprintf(stderr, "Failed to predict\n");
return;
}
auto end_t = std::chrono::high_resolution_clock::now();
if (i == 0) {
double seconds = std::chrono::duration<double>(end_t - start_t).count();
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
int n_vocab = model.hparams.n_vocab;
std::vector<float> tok_logits(
logits.begin() + j * n_vocab,
logits.begin() + (j + 1) * n_vocab);
double prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood)
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
fflush(stdout);
}
printf("\n");
}
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
@ -868,13 +944,22 @@ int main(int argc, char ** argv) {
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
std::vector<float> logits;
// determine the required inference memory per token:
size_t mem_per_token = 0;
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
if (params.perplexity) {
perplexity(vocab, model, params, mem_per_token);
exit(0);
}
int n_past = 0;
int64_t t_sample_us = 0;
int64_t t_predict_us = 0;
std::vector<float> logits;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
@ -928,10 +1013,6 @@ int main(int argc, char ** argv) {
std::vector<llama_vocab::id> embd;
// determine the required inference memory per token:
size_t mem_per_token = 0;
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
int last_n_size = params.repeat_last_n;
std::vector<llama_vocab::id> last_n_tokens(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);

View File

@ -72,6 +72,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.use_color = true;
} else if (arg == "-r" || arg == "--reverse-prompt") {
params.antiprompt.push_back(argv[++i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "--n_parts") {
@ -120,6 +122,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n");
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");

View File

@ -40,6 +40,7 @@ struct gpt_params {
bool interactive_start = false; // reverse prompt immediately
bool instruct = false; // instruction mode (used for Alpaca models)
bool ignore_eos = false; // do not stop generating after eos
bool perplexity = false; // compute perplexity over the prompt
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);