Add chat template support for llama-cli (#8068)

* add chat template support for llama-cli

* add help message

* server: simplify format_chat

* more consistent naming

* improve

* add llama_chat_format_example

* fix server

* code style

* code style

* Update examples/main/main.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Xuan Son Nguyen 2024-06-25 13:56:49 +02:00 committed by GitHub
parent 3791ad2193
commit 48e6b92cc3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 154 additions and 49 deletions

View File

@ -1444,7 +1444,10 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "main", " --cfg-negative-prompt-file FNAME", options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
"negative prompt file to use for guidance" }); "negative prompt file to use for guidance" });
options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale }); options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
"set custom jinja chat template (default: template taken from model's metadata)\n"
"only commonly used templates are accepted:\n"
"https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
options.push_back({ "grammar" }); options.push_back({ "grammar" });
options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() }); options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" }); options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
@ -2604,12 +2607,67 @@ bool llama_should_add_bos_token(const llama_model * model) {
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
} }
//
// Chat template utils
//
bool llama_chat_verify_template(const std::string & tmpl) { bool llama_chat_verify_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}}; llama_chat_message chat[] = {{"user", "test"}};
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0; return res >= 0;
} }
std::string llama_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & msgs,
bool add_ass) {
int alloc_size = 0;
std::vector<llama_chat_message> chat;
for (auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string llama_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & past_msg,
const llama_chat_msg & new_msg,
bool add_ass) {
auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false);
std::vector<llama_chat_msg> chat_new(past_msg);
chat_new.push_back(new_msg);
auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
auto formatted = fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return formatted;
}
std::string llama_chat_format_example(const struct llama_model * model,
const std::string & tmpl) {
std::vector<llama_chat_msg> msgs = {
{"system", "You are a helpful assistant"},
{"user", "Hello"},
{"assistant", "Hi there"},
{"user", "How are you?"},
};
return llama_chat_apply_template(model, tmpl, msgs, true);
}
// //
// KV cache utils // KV cache utils
// //

View File

@ -365,9 +365,32 @@ bool llama_should_add_bos_token(const llama_model * model);
// Chat template utils // Chat template utils
// //
// same with llama_chat_message, but uses std::string
struct llama_chat_msg {
std::string role;
std::string content;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool llama_chat_verify_template(const std::string & tmpl); bool llama_chat_verify_template(const std::string & tmpl);
// CPP wrapper for llama_chat_apply_template
std::string llama_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & chat,
bool add_ass);
// Format single message, while taking into account the position of that message in chat history
std::string llama_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & past_msg,
const llama_chat_msg & new_msg,
bool add_ass);
// Returns an example of formatted chat
std::string llama_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
// //
// KV cache utils // KV cache utils
// //

View File

@ -39,12 +39,12 @@ static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens; static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false; static bool is_interacting = false;
static bool file_exists(const std::string &path) { static bool file_exists(const std::string & path) {
std::ifstream f(path.c_str()); std::ifstream f(path.c_str());
return f.good(); return f.good();
} }
static bool file_is_empty(const std::string &path) { static bool file_is_empty(const std::string & path) {
std::ifstream f; std::ifstream f;
f.exceptions(std::ifstream::failbit | std::ifstream::badbit); f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate); f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
@ -117,6 +117,14 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
LOG_TEE("%s", text); LOG_TEE("%s", text);
} }
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
llama_chat_msg new_msg{role, content};
auto formatted = llama_chat_format_single(
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
return formatted;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
gpt_params params; gpt_params params;
g_params = &params; g_params = &params;
@ -190,6 +198,7 @@ int main(int argc, char ** argv) {
llama_model * model; llama_model * model;
llama_context * ctx; llama_context * ctx;
llama_context * ctx_guidance = NULL; llama_context * ctx_guidance = NULL;
std::vector<llama_chat_msg> chat_msgs;
g_model = &model; g_model = &model;
g_ctx = &ctx; g_ctx = &ctx;
@ -215,6 +224,8 @@ int main(int argc, char ** argv) {
__func__, n_ctx_train, n_ctx); __func__, n_ctx_train, n_ctx);
} }
LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
// print system information // print system information
{ {
LOG_TEE("\n"); LOG_TEE("\n");
@ -249,16 +260,21 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
{
auto prompt = params.conversation
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) { if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n"); LOG("tokenize the prompt\n");
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true); embd_inp = ::llama_tokenize(ctx, prompt, true, true);
} else { } else {
LOG("use session tokens\n"); LOG("use session tokens\n");
embd_inp = session_tokens; embd_inp = session_tokens;
} }
LOG("prompt: \"%s\"\n", log_tostr(params.prompt)); LOG("prompt: \"%s\"\n", log_tostr(prompt));
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
}
// Should not run without any tokens // Should not run without any tokens
if (embd_inp.empty()) { if (embd_inp.empty()) {
@ -478,6 +494,7 @@ int main(int argc, char ** argv) {
std::vector<int> input_tokens; g_input_tokens = &input_tokens; std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens; std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss; std::ostringstream output_ss; g_output_ss = &output_ss;
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
// the first thing we will do is to output the prompt, so set color accordingly // the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt); console::set_display(console::prompt);
@ -793,11 +810,18 @@ int main(int argc, char ** argv) {
is_antiprompt = true; is_antiprompt = true;
} }
chat_add_and_format(model, chat_msgs, "system", assistant_ss.str());
is_interacting = true; is_interacting = true;
printf("\n"); printf("\n");
} }
} }
// if current token is not EOG, we add it to current assistant message
if (params.conversation) {
auto id = llama_sampling_last(ctx_sampling);
assistant_ss << llama_token_to_piece(ctx, id, false);
}
if (n_past > 0 && is_interacting) { if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n"); LOG("waiting for user input\n");
@ -848,8 +872,12 @@ int main(int argc, char ** argv) {
string_process_escapes(buffer); string_process_escapes(buffer);
} }
std::string user_inp = params.conversation
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false); const auto line_inp = ::llama_tokenize(ctx, user_inp, false, params.conversation);
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
@ -864,6 +892,9 @@ int main(int argc, char ** argv) {
output_ss << llama_token_to_piece(ctx, token); output_ss << llama_token_to_piece(ctx, token);
} }
// reset assistant message
assistant_ss.str("");
n_remain -= line_inp.size(); n_remain -= line_inp.size();
LOG("n_remain: %d\n", n_remain); LOG("n_remain: %d\n", n_remain);
} else { } else {

View File

@ -2606,16 +2606,8 @@ int main(int argc, char ** argv) {
// print sample chat example to make it clear which template is used // print sample chat example to make it clear which template is used
{ {
json chat;
chat.push_back({{"role", "system"}, {"content", "You are a helpful assistant"}});
chat.push_back({{"role", "user"}, {"content", "Hello"}});
chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
chat.push_back({{"role", "user"}, {"content", "How are you?"}});
const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat);
LOG_INFO("chat template", { LOG_INFO("chat template", {
{"chat_example", chat_example}, {"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
{"built_in", params.chat_template.empty()}, {"built_in", params.chat_template.empty()},
}); });
} }

View File

@ -118,36 +118,17 @@ static inline void server_log(const char * level, const char * function, int lin
// Format given chat. If tmpl is empty, we take the template from model metadata // Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) { inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
size_t alloc_size = 0; std::vector<llama_chat_msg> chat;
// vector holding all allocated string to be passed to llama_chat_apply_template
std::vector<std::string> str(messages.size() * 2);
std::vector<llama_chat_message> chat(messages.size());
for (size_t i = 0; i < messages.size(); ++i) { for (size_t i = 0; i < messages.size(); ++i) {
const auto & curr_msg = messages[i]; const auto & curr_msg = messages[i];
str[i*2 + 0] = json_value(curr_msg, "role", std::string("")); std::string role = json_value(curr_msg, "role", std::string(""));
str[i*2 + 1] = json_value(curr_msg, "content", std::string("")); std::string content = json_value(curr_msg, "content", std::string(""));
alloc_size += str[i*2 + 1].length(); chat.push_back({role, content});
chat[i].role = str[i*2 + 0].c_str();
chat[i].content = str[i*2 + 1].c_str();
} }
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); auto formatted_chat = llama_chat_apply_template(model, tmpl, chat, true);
std::vector<char> buf(alloc_size * 2);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
}
const std::string formatted_chat(buf.data(), res);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}}); LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat; return formatted_chat;
} }

View File

@ -18818,10 +18818,10 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "<|im_start|>assistant\n"; ss << "<|im_start|>assistant\n";
} }
} else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) { } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl.find("[INST]") != std::string::npos) {
// llama2 template and its variants // llama2 template and its variants
// [variant] support system message // [variant] support system message
bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos; bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos || tmpl == "mistral";
// [variant] space before + after response // [variant] space before + after response
bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos; bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
// [variant] add BOS inside history // [variant] add BOS inside history

View File

@ -7,6 +7,7 @@
#include <cassert> #include <cassert>
#include "llama.h" #include "llama.h"
#include "common.h"
int main(void) { int main(void) {
llama_chat_message conversation[] = { llama_chat_message conversation[] = {
@ -119,5 +120,24 @@ int main(void) {
std::cout << output << "\n-------------------------\n"; std::cout << output << "\n-------------------------\n";
assert(output == expected); assert(output == expected);
} }
// test llama_chat_format_single
std::cout << "\n\n=== llama_chat_format_single ===\n\n";
std::vector<llama_chat_msg> chat2;
chat2.push_back({"system", "You are a helpful assistant"});
chat2.push_back({"user", "Hello"});
chat2.push_back({"assistant", "I am assistant"});
llama_chat_msg new_msg{"user", "How are you"};
auto fmt_single = [&](std::string tmpl) {
auto output = llama_chat_format_single(nullptr, tmpl, chat2, new_msg, true);
std::cout << "fmt_single(" << tmpl << ")\n" << output << "\n-------------------------\n";
return output;
};
assert(fmt_single("chatml") == "<|im_start|>user\nHow are you<|im_end|>\n<|im_start|>assistant\n");
assert(fmt_single("llama2") == "[INST] How are you [/INST]");
assert(fmt_single("gemma") == "<start_of_turn>user\nHow are you<end_of_turn>\n<start_of_turn>model\n");
assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n");
return 0; return 0;
} }